Homotopically trivializing the circle in the framed little disks

Gabriel C. Drummond-Cole
Northwestern University

March 13, 2012

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each one with a marked point on its boundary.

We can compose two configurations by shrinking one down and gluing it in, rotating to match marked points and relabeling.

Actions of the framed little disks

The framed little disks acts on W if:

Actions of the framed little disks

The framed little disks acts on W if:

- there is an operation $W^{n} \rightarrow W$ for each point in $F L D(n)$

Actions of the framed little disks

The framed little disks acts on W if:

- there is an operation $W^{n} \rightarrow W$ for each point in $F L D(n)$
- these operations vary continously, and

Actions of the framed little disks

The framed little disks acts on W if:

- there is an operation $W^{n} \rightarrow W$ for each point in $F L D(n)$
- these operations vary continously, and
- their composition behaves well with respect to the composition of framed little disks.

Actions of the framed little disks

The framed little disks acts on W if:

- there is an operation $W^{n} \rightarrow W$ for each point in $F L D(n)$
- these operations vary continously, and
- their composition behaves well with respect to the composition of framed little disks.

Example
$W=\Omega^{2} X=\operatorname{Hom}\left(\left(D^{2} ; S^{1}\right) ;(X, *)\right)$

Actions of the framed little disks

The framed little disks acts on W if:

- there is an operation $W^{n} \rightarrow W$ for each point in $F L D(n)$
- these operations vary continously, and
- their composition behaves well with respect to the composition of framed little disks.

Example

$W=\Omega^{2} X=\operatorname{Hom}\left(\left(D^{2} ; S^{1}\right) ;(X, *)\right)$

Actions of the framed little disks

The framed little disks acts on W if:

- there is an operation $W^{n} \rightarrow W$ for each point in $F L D(n)$
- these operations vary continously, and
- their composition behaves well with respect to the composition of framed little disks.

Example

$W=\Omega^{2} X=\operatorname{Hom}\left(\left(D^{2} ; S^{1}\right) ;(X, *)\right)$

(f, g, h)

Actions of the framed little disks

The framed little disks acts on W if:

- there is an operation $W^{n} \rightarrow W$ for each point in $F L D(n)$
- these operations vary continously, and
- their composition behaves well with respect to the composition of framed little disks.

Example

$W=\Omega^{2} X=\operatorname{Hom}\left(\left(D^{2} ; S^{1}\right) ;(X, *)\right)$

S^{1} in the framed little disks

Consider the space of one framed little disk.

S^{1} in the framed little disks

Consider the space of one framed little disk.

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin and then the radius of the disk to 1 ,

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin and then the radius of the disk to 1 ,

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin and then the radius of the disk to 1 ,

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin and then the radius of the disk to 1 ,

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin and then the radius of the disk to 1 ,

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin and then the radius of the disk to 1 ,

S^{1} in the framed little disks

Consider the space of one framed little disk.

We can deformation retract the center of the disk to the origin and then the radius of the disk to 1 , so this space is homotopy equivalent to S^{1}.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Trivializing the circle

What happens if a space is acted on by the framed little disks but the circle acts trivially? In such a case, how does this change the space of operations?
In fact, the space of operations in such a case is contractible. We can contract the disks to be small:

Then configurations of small enough disks can be put in standard position by circle actions.

Problems with the naive trivialization

This answer is homotopically inadequate.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

The naive trivialization gives the interval.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

The naive trivialization gives the interval.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

The naive trivialization gives the interval.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

The naive trivialization gives the interval.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

The naive trivialization gives the interval.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

The naive trivialization gives the interval.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

The naive trivialization gives the interval.

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

The naive trivialization gives the interval. Homotopy equivalent space of operations: $D^{2} \times E S^{1}$

Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D^{2}, with the standard multiplication in \mathbb{C} and the standard circle action.

The naive trivialization gives the interval. Homotopy equivalent space of operations: $D^{2} \times E S^{1}$
Naive trivialization: $B S^{1}$

Homotopy trivialization

Moral: To get homotopy invariant information, we need to be more careful.

Homotopy trivialization

Moral: To get homotopy invariant information, we need to be more careful.

Conjecture/Theorem (Kontsevich, 2005)

Homotopy trivialization

Moral: To get homotopy invariant information, we need to be more careful.

Conjecture/Theorem (Kontsevich, 2005)

An action of the framed little disks and a choice of trivialization of the circle action should be homotopically the same as

Homotopy trivialization

Moral: To get homotopy invariant information, we need to be more careful.

Conjecture/Theorem (Kontsevich, 2005)

An action of the framed little disks and a choice of trivialization of the circle action should be homotopically the same as an action of the genus zero Deligne-Mumford-Knudsen spaces $\overline{\mathcal{M}}_{0, n}$

Description of $\mathcal{M}_{0, n}$

Definition

$\mathcal{M}_{0, n}$ is the moduli space of configurations of $n>2$ points on a genus zero surface up to conformal equivalence

Description of $\mathcal{M}_{0, n}$

Definition

$\mathcal{M}_{0, n}$ is the moduli space of configurations of $n>2$ points on a genus zero surface up to conformal equivalence

Algebro-geometric

Description of $\mathcal{M}_{0, n}$

Definition

$\mathcal{M}_{0, n}$ is the moduli space of configurations of $n>2$ points on a genus zero surface up to conformal equivalence

Algebro-geometric

Spherical

Description of $\mathcal{M}_{0, n}$

Definition

$\mathcal{M}_{0, n}$ is the moduli space of configurations of $n>2$ points on a genus zero surface up to conformal equivalence

Algebro-geometric

Spherical

Flat (one point at ∞)

Description of $\mathcal{M}_{0, n}$

Definition

$\mathcal{M}_{0, n}$ is the moduli space of configurations of $n>2$ points on a genus zero surface up to conformal equivalence

Approaching the boundary of moduli space

ค

Approaching the boundary of moduli space

Sketch of Definition

$\overline{\mathcal{M}}_{0, n+1}$ consists of at least trivalent trees with n leaves and vertices labeled by $\mathcal{M}_{0, \operatorname{val}(v)}$.

Sketch of Definition

$\overline{\mathcal{M}}_{0, n+1}$ consists of at least trivalent trees with n leaves and vertices labeled by $\mathcal{M}_{0, \operatorname{val}(v)}$.

Example

A point in $\overline{\mathcal{M}}_{0,8}$:

Sketch of Definition

$\overline{\mathcal{M}}_{0, n+1}$ consists of at least trivalent trees with n leaves and vertices labeled by $\mathcal{M}_{0, \operatorname{val}(v)}$.

Example

A point in $\overline{\mathcal{M}}_{0,8}$:

Sketch of Definition

$\overline{\mathcal{M}}_{0, n+1}$ consists of at least trivalent trees with n leaves and vertices labeled by $\mathcal{M}_{0, \operatorname{val}(v)}$.

Example

A point in $\overline{\mathcal{M}}_{0,8}$:

Sketch of Definition

$\overline{\mathcal{M}}_{0, n+1}$ consists of at least trivalent trees with n leaves and vertices labeled by $\mathcal{M}_{0, \operatorname{val}(v)}$.

Example

A point in $\overline{\mathcal{M}}_{0,8}$:

Sketch of Definition

$\overline{\mathcal{M}}_{0, n+1}$ consists of at least trivalent trees with n leaves and vertices labeled by $\mathcal{M}_{0, \operatorname{val}(v)}$.

Example

A point in $\overline{\mathcal{M}}_{0,8}$:

Sketch of Definition

$\overline{\mathcal{M}}_{0, n+1}$ consists of at least trivalent trees with n leaves and vertices labeled by $\mathcal{M}_{0, \operatorname{val}(v)}$.

Example

A point in $\overline{\mathcal{M}}_{0,8}$:

Sketch of Definition

$\overline{\mathcal{M}}_{0, n+1}$ consists of at least trivalent trees with n leaves and vertices labeled by $\mathcal{M}_{0, \operatorname{val}(v)}$.

Example

A point in $\overline{\mathcal{M}}_{0,8}$:

Composition in $\overline{\mathcal{M}}_{0, n}$

A framework for Kontsevich's statement

Conjecture/Theorem (Kontsevich, 2005)
An action of the framed little disks and a choice of trivialization of S^{1} should be homotopically the same as an action of $\overline{\mathcal{M}}$

A framework for Kontsevich's statement

Conjecture/Theorem (Kontsevich, 2005)
An action of the framed little disks and a choice of trivialization of S^{1} should be homotopically the same as an action of $\overline{\mathcal{M}}$

Theorem (Kontsevich?; D.-Vallette)

$$
{\underset{F L D}{S^{1}}}_{\underbrace{1}}
$$

A framework for Kontsevich's statement

Conjecture/Theorem (Kontsevich, 2005)
An action of the framed little disks and a choice of trivialization of S^{1} should be homotopically the same as an action of $\overline{\mathcal{M}}$

Theorem (Kontsevich?; D.-Vallette)

$$
\underbrace{H_{\mathbb{Q}}\left(S^{1}\right)}_{H_{\mathbb{Q}}(F L D)}
$$

A framework for Kontsevich's statement

Conjecture/Theorem (Kontsevich, 2005)
An action of the framed little disks and a choice of trivialization of S^{1} should be homotopically the same as an action of $\overline{\mathcal{M}}$

Theorem (Kontsevich?; D.-Vallette)

$$
{\underset{\mathbb{Q}}{\mathbb{Q}}}^{H_{\mathbb{Q}}(F L D)_{\infty}}
$$

A framework for Kontsevich's statement

Conjecture/Theorem (Kontsevich, 2005)
An action of the framed little disks and a choice of trivialization of S^{1} should be homotopically the same as an action of $\overline{\mathcal{M}}$

Theorem (Kontsevich?; D.-Vallette)

$$
\begin{aligned}
& H_{\mathbb{Q}}\left(S^{1}\right)_{\infty} \longrightarrow \mathbb{Q} \\
& H_{\mathbb{Q}}(F L D)_{\infty}
\end{aligned}
$$

A framework for Kontsevich's statement

Conjecture/Theorem (Kontsevich, 2005)
An action of the framed little disks and a choice of trivialization of S^{1} should be homotopically the same as an action of $\overline{\mathcal{M}}$

Theorem (Kontsevich?; D.-Vallette)
The pushout of:

$$
\begin{aligned}
& H_{\mathbb{Q}}\left(S^{1}\right)_{\infty} \longrightarrow \mathbb{Q} \\
& H_{\mathbb{Q}}(F L D)_{\infty}
\end{aligned}
$$

is $H_{\mathbb{Q}}(\overline{\mathcal{M}})_{\infty}$

A framework for Kontsevich's statement

Conjecture/Theorem (Kontsevich, 2005)
An action of the framed little disks and a choice of trivialization of S^{1} should be homotopically the same as an action of $\overline{\mathcal{M}}$

Theorem (Kontsevich?; D.-Vallette)
The homotopy pushout of:

$$
{\underset{\sim}{\mathbb{Q}}}_{\boldsymbol{H}_{\mathbb{Q}}\left(S^{1}\right) \longrightarrow \mathbb{Q}}^{H_{\mathbb{Q}}(F L D)}
$$

is $H_{\mathbb{Q}}(\overline{\mathcal{M}})$

A framework for Kontsevich's statement

Conjecture/Theorem (Kontsevich, 2005)
An action of the framed little disks and a choice of trivialization of S^{1} should be homotopically the same as an action of $\overline{\mathcal{M}}$

Theorem (Kontsevich?; D.)
The homotopy pushout of:

$$
{\underset{F L D}{S} \longrightarrow * ~}_{\text {SLD }}
$$

is $\overline{\mathcal{M}}$

Outline of Proof of Main Theorem

Theorem

The (weak) homotopy pushout of $F L D \leftarrow S^{1} \rightarrow *$ is $\overline{\mathcal{M}}$.

Outline of Proof of Main Theorem

Theorem

The (weak) homotopy pushout of $F L D \leftarrow S^{1} \rightarrow *$ is $\overline{\mathcal{M}}$.

- Show that the pushout $P_{\mathcal{M}}$ of $F L D \leftarrow F L D(1) \rightarrow t A n$ contains $\overline{\mathcal{M}}$ as a deformation retract

Outline of Proof of Main Theorem

Theorem

The (weak) homotopy pushout of $F L D \leftarrow S^{1} \rightarrow *$ is $\overline{\mathcal{M}}$.

- Show that the pushout $P_{\mathcal{M}}$ of $F L D \leftarrow F L D(1) \rightarrow t A n$ contains $\overline{\mathcal{M}}$ as a deformation retract
- Show that the pushout P_{h} of $r F L D \leftarrow S^{1} \rightarrow t A n$ is a weak homotopy pushout

Outline of Proof of Main Theorem

Theorem

The (weak) homotopy pushout of $F L D \leftarrow S^{1} \rightarrow *$ is $\overline{\mathcal{M}}$.

- Show that the pushout $P_{\mathcal{M}}$ of $F L D \leftarrow F L D(1) \rightarrow t A n$ contains $\overline{\mathcal{M}}$ as a deformation retract
- Show that the pushout P_{h} of $r F L D \leftarrow S^{1} \rightarrow t A n$ is a weak homotopy pushout
- Show that the map from the second pushout to the first pushout is a weak homotopy equivalence of operads

Pushouts of operads

Reminder

The pushout in groups is the amalgamated product $A *_{B} C$.

Pushouts of operads

Reminder

The pushout in groups is the amalgamated product $A *_{B} C$.
A generic element looks like ac \cdots, which we will write like this:

Pushouts of operads

Reminder

The pushout in groups is the amalgamated product $A *_{B} C$.
A generic element looks like ac \cdots, which we will write like this:

Pushouts of operads

Reminder

The pushout in groups is the amalgamated product $A *_{B} C$.
A generic element looks like ac \cdots, which we will write like this:

There are relations coming from B :

$$
(a b) c
$$

Pushouts of operads

Reminder

The pushout in groups is the amalgamated product $A *_{B} C$.
A generic element looks like ac \cdots, which we will write like this:

There are relations coming from B :

$$
(a b) c=a b c
$$

Pushouts of operads

Reminder

The pushout in groups is the amalgamated product $A *_{B} C$.
A generic element looks like ac \cdots, which we will write like this:

There are relations coming from B :

$$
(a b) c=a b c=a(b c)
$$

Pushouts of operads

Fact

The pushout in operads is the amalgamated product $A *_{B} C$.
A generic element looks like ac \cdots, which we will write like this:

Pushouts of operads

Fact

The pushout in operads is the amalgamated product $A *_{B} C$.
A generic element looks like ac \cdots, which we will write like this:

There are relations coming from B :

$$
(a b) c
$$

Pushouts of operads

Fact

The pushout in operads is the amalgamated product $A *_{B} C$.
A generic element looks like ac \cdots, which we will write like this:

There are relations coming from B :

$$
(a b) c=a b c
$$

Pushouts of operads

Fact

The pushout in operads is the amalgamated product $A *_{B} C$.
A generic element looks like ac \cdots, which we will write like this:

There are relations coming from B :

$$
(a b) c=a b c=a(b c)
$$

$F L D(1)$ and the affine group

Definition

Aff \mathbb{C}, the affine group of \mathbb{C}, is $\mathbb{C} \rtimes \mathbb{C}^{*}$ with this product.

$t A n$ and the affine group

$$
\left(c_{1}, r_{1}\right) \circ\left(c_{2}, r_{2}\right)=\left(c_{1}+r_{1} c_{2}, r_{1} r_{2}\right)
$$

Definition

Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}^{*}$ with this product.

$t A n$ and the affine group

$$
\left(c_{1}, r_{1}\right) \circ\left(c_{2}, r_{2}\right)=\left(c_{1}+r_{1} c_{2}, r_{1} r_{2}\right)
$$

Definition

Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}^{*}$ with this product.

Fact

$F L D(1)$ is the submonoid of $\operatorname{Aff} \mathbb{C}$ with $|r|+|c| \leq 1$ with this product.

$t A n$ and the affine group

$$
\left(c_{1}, r_{1}\right) \circ\left(c_{2}, r_{2}\right)=\left(c_{1}+r_{1} c_{2}, r_{1} r_{2}\right)
$$

Definition

Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}^{*}$ with this product.
Fact
$F L D(1)$ is the submonoid of $\operatorname{Aff} \mathbb{C}$ with $|r|+|c| \leq 1$ with this product.

Definition

t Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}$ with this product.

$t A n$ and the affine group

$$
\left(c_{1}, r_{1}\right) \circ\left(c_{2}, r_{2}\right)=\left(c_{1}+r_{1} c_{2}, r_{1} r_{2}\right)
$$

Definition

Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}^{*}$ with this product.

Fact

$F L D(1)$ is the submonoid of $\operatorname{Aff} \mathbb{C}$ with $|r|+|c| \leq 1$ with this product.

Definition

t Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}$ with this product.

Definition

$t A n$ is the submonoid of $t \operatorname{Aff} \mathbb{C}$ with $|r|+|c| \leq 1$ with this product.

$t A n$ and the affine group

$$
\begin{gathered}
\left(c_{1}, r_{1}\right) \circ\left(c_{2}, r_{2}\right)=\left(c_{1}+r_{1} c_{2}, r_{1} r_{2}\right) \\
\left(c_{1}, r_{1}\right) \circ\left(c_{2}, 0\right)=\left(c_{1}+r_{1} c_{2}, 0\right)
\end{gathered}
$$

Definition

Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}^{*}$ with this product.

Fact

$F L D(1)$ is the submonoid of $\operatorname{Aff} \mathbb{C}$ with $|r|+|c| \leq 1$ with this product.

Definition

t Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}$ with this product.

Definition

$t A n$ is the submonoid of $t \operatorname{Aff} \mathbb{C}$ with $|r|+|c| \leq 1$ with this product.

$t A n$ and the affine group

$$
\begin{gathered}
\left(c_{1}, r_{1}\right) \circ\left(c_{2}, r_{2}\right)=\left(c_{1}+r_{1} c_{2}, r_{1} r_{2}\right) \\
\left(c_{1}, r_{1}\right) \circ(0,0)=\left(c_{1}, 0\right)
\end{gathered}
$$

Definition

Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}^{*}$ with this product.

Fact

$F L D(1)$ is the submonoid of Aff \mathbb{C} with $|r|+|c| \leq 1$ with this product.

Definition

$t \mathrm{Aff} \mathbb{C}$ is $\mathbb{C} \rtimes \mathbb{C}$ with this product.

Definition

$t A n$ is the submonoid of $t \operatorname{Aff} \mathbb{C}$ with $|r|+|c| \leq 1$ with this product.

$t A n$ and the affine group

$$
\begin{gathered}
\left(c_{1}, r_{1}\right) \circ\left(c_{2}, r_{2}\right)=\left(c_{1}+r_{1} c_{2}, r_{1} r_{2}\right) \\
\left(c_{1}, 0\right) \circ\left(c_{2}, r_{2}\right)=\left(c_{1}, 0\right)
\end{gathered}
$$

Definition

Aff \mathbb{C} is $\mathbb{C} \rtimes \mathbb{C}^{*}$ with this product.

Fact

$F L D(1)$ is the submonoid of $\operatorname{Aff} \mathbb{C}$ with $|r|+|c| \leq 1$ with this product.

Definition

$t \mathrm{Aff} \mathbb{C}$ is $\mathbb{C} \rtimes \mathbb{C}$ with this product.

Definition

$t A n$ is the submonoid of t Aff \mathbb{C} with $|r|+|c| \leq 1$ with this product.

Describing $P_{\mathcal{M}}$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

$$
(c, r) \in t A n
$$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

$$
(c, 0) \in t A n
$$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

$$
(0,0) \in t A n
$$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Description

$P_{\mathcal{M}}$ consists (roughly) of at least trivalent trees with some special ("blue") external edges and a label on each vertex as follows:

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Description

$P_{\mathcal{M}}$ consists (roughly) of at least trivalent trees with some special ("blue") external edges and a label on each vertex as follows:
a configuration of points and disks in the disk (blue outgoing edge)

Describing $P_{\mathcal{M}}=F L D *_{F L D(1)} t A n$

Description

$P_{\mathcal{M}}$ consists (roughly) of at least trivalent trees with some special ("blue") external edges and a label on each vertex as follows:
a configuration of points and disks in the disk
(blue outgoing edge)
a configuration of points and disks in the plane (red outgoing edge) up to Aff \mathbb{C}

Description

$P_{\mathcal{M}}$ consists of at least trivalent trees with some blue external edges and vertices labeled by:
a configuration of points and disks in the disk (blue outgoing edge) a configuration of points and disks in the plane (red outgoing edge) up to Aff \mathbb{C}

Description

$P_{\mathcal{M}}$ consists of at least trivalent trees with some blue external edges and vertices labeled by:
a configuration of points and disks in the disk (blue outgoing edge) a configuration of points and disks in the plane (red outgoing edge) up to Aff \mathbb{C}

Reminder

$\overline{\mathcal{M}}$ consists of at least trivalent trees with vertices labeled by: a configuration of points in the plane up to conformal equivalence

Description

$P_{\mathcal{M}}$ consists of at least trivalent trees with some blue external edges and vertices labeled by:
a configuration of points and disks in the disk (blue outgoing edge) a configuration of points and disks in the plane (red outgoing edge) up to Aff \mathbb{C}

Reminder

$\overline{\mathcal{M}}$ consists of at least trivalent trees with vertices labeled by: a configuration of points in the plane up to Aff \mathbb{C}

Description

$P_{\mathcal{M}}$ consists of at least trivalent trees with some blue external edges and vertices labeled by:
a configuration of points and disks in the disk (blue outgoing edge) a configuration of points and disks in the plane (red outgoing edge) up to Aff \mathbb{C}

Reminder

$\overline{\mathcal{M}}$ consists of at least trivalent trees with vertices labeled by: a configuration of points in the plane up to Aff \mathbb{C}

Goal
 Homotope away all blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Homotoping away the blue edges

Conclusion

$\overline{\mathcal{M}}(n)$ is a deformation retract of $P_{\mathcal{M}}(n)$.

Homotoping away the blue edges

Conclusion

$\overline{\mathcal{M}}(n)$ is a deformation retract of $P_{\mathcal{M}}(n)$. The map $\overline{\mathcal{M}} \rightarrow P_{\mathcal{M}}$ is a map of operads.

Describing P_{h}

Describing $P_{h}=r F L D * s^{1} t A n$

Describing $P_{h}=r F L D * s^{1} t A n$

Definition
 $r F L D(n)=F L D(n)$, except that

Describing $P_{h}=r F L D * s^{1} t A n$

Definition

$r F L D(n)=F L D(n)$, except that $r F L D(1)=S^{1}$.

Describing $P_{h}=r F L D * S^{1} t A n$

Describing $P_{h}=r F L D * S^{1} t A n$

Describing $P_{h}=r F L D * S^{1} t A n$

Describing $P_{h}=r F L D * s^{1} t A n$

Describing $P_{h}=r F L D * s^{1} t A n$

Describing $P_{h}=r F L D * S^{1} t A n$

Describing $P_{h}=r F L D * S^{1} t A n$

Describing $P_{h}=r F L D * S^{1} t A n$

Describing $P_{h}=r F L D * S^{1} t A n$

Describing $P_{h}=r F L D * S^{1} t A n$

Describing $P_{h}=r F L D * s^{1} t A n$

Describing $P_{h}=r F L D * s^{1}$ tAn

Describing $P_{h}=r F L D *_{s^{1}} t A n$

Definition

$n F L D(n)$ consists of configurations of n framed little disks so that the vector from the center of the first disk to the center of the second disk, along with all of the radius vectors, are positive reals.

Describing $P_{h}=r F L D * s^{1} t A n$

Definition

$n F L D(n)$ consists of configurations of n framed little disks so that the vector from the center of the first disk to the center of the second disk, along with all of the radius vectors, are positive reals.

Observation

Every point in P_{h} can be realized "uniquely" as a tree with alternating bivalent and at least trivalent vertices, with markings on the bivalent vertices from $t A n$ and on the other vertices from $n F L D$.

Showing P_{h} is a weak homotopy pushout

Showing P_{h} is a weak homotopy pushout

- The framed little disks $F L D(n)$ are homeomorphic to the product $S^{1} \times n F L D(n) \times\left(S^{1}\right)^{n}$

Showing P_{h} is a weak homotopy pushout

- The framed little disks $F L D(n)$ are homeomorphic to the product $S^{1} \times n F L D(n) \times\left(S^{1}\right)^{n}$
- The inclusion of the circle into the trivializable annuli is a pointed cofibration

Showing P_{h} is a weak homotopy pushout

- The framed little disks $F L D(n)$ are homeomorphic to the product $S^{1} \times n F L D(n) \times\left(S^{1}\right)^{n}$
- The inclusion of the circle into the trivializable annuli is a pointed cofibration
- Weak equivalences and cofibrations of spaces interact nicely with coproducts and products

Taking stock

Taking stock

$$
P_{\mathcal{M}}^{\stackrel{\sim}{\sim}} \underset{\sim}{\sim} \overline{\mathcal{M}}
$$

Taking stock

$$
P_{h} \quad P_{\mathcal{M}} \stackrel{\sim}{\sim} \underset{\mathcal{M}}{\sim}
$$

Taking stock

$$
P_{h} \longrightarrow P_{\mathcal{M}} \stackrel{\sim}{\sim} \underset{\sim}{\sim} \overline{\mathcal{M}}
$$

Taking stock

$$
P_{h} \longrightarrow P_{\mathcal{M}} \stackrel{\sim}{\sim} \underset{\sim}{\sim}
$$

Taking stock

$$
\begin{aligned}
& \tau \\
& P_{h} \longrightarrow P_{\mathcal{M}} \stackrel{\sim}{\sim} \stackrel{\rightharpoonup}{\sim} \overline{\mathcal{M}}
\end{aligned}
$$

A criterion to show that a map is a weak equivalence
A map of spaces f is a weak equivalence if its range has an open cover, closed under finite intersection, and the restriction of f to each element of the cover is a weak equivalence.

Taking stock

$$
P_{h} \xrightarrow{\sim} P_{\mathcal{M}} \stackrel{\sim}{\sim} \underset{\sim}{\sim} \stackrel{\rightharpoonup}{\mathcal{M}}
$$

A criterion to show that a map is a weak equivalence
A map of spaces f is a weak equivalence if its range has an open cover, closed under finite intersection, and the restriction of f to each element of the cover is a weak equivalence.

U

Taking stock

$$
P_{h} \longrightarrow \stackrel{\tau}{\longrightarrow} P_{\mathcal{M}} \underset{\sim}{\sim} \stackrel{\leftrightarrow}{\sim} \overline{\mathcal{M}}
$$

A criterion to show that a map is a weak equivalence
A map of spaces f is a weak equivalence if its range has an open cover, closed under finite intersection, and the restriction of f to each element of the cover is a weak equivalence.

$$
\tau^{-1}(U) \longrightarrow U
$$

Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into certain partitions.

Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into certain partitions.

Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into certain partitions.

Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into certain partitions.

Simplifying assumptions

- Restrict to \mathcal{M} inside $\overline{\mathcal{M}}$

Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into certain partitions.

Simplifying assumptions

- Restrict to \mathcal{M} inside $\overline{\mathcal{M}}$
- Discard inappropriate separations in the preimage

Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into certain partitions.

Simplifying assumptions

- Restrict to \mathcal{M} inside $\overline{\mathcal{M}}$
- Discard inappropriate and ambiguous separations in the preimage

A point in $U(\{2,3\} ;\{2,3,4\})$

Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into certain partitions.

Simplifying assumptions

- Restrict to \mathcal{M} inside $\overline{\mathcal{M}}$
- Discard inappropriate and ambiguous separations in the preimage
- This cover is not closed under finite intersection

Justifying the restriction to \mathcal{M}

Problem

It is not enough to achieve a weak equivalence on neighborhoods over \mathcal{M}; these need to have appropriate limiting behavior at the boundary.

Justifying the restriction to \mathcal{M}

Problem

It is not enough to achieve a weak equivalence on neighborhoods over \mathcal{M}; these need to have appropriate limiting behavior at the boundary.

Justifying the restriction to \mathcal{M}

Problem

It is not enough to achieve a weak equivalence on neighborhoods over \mathcal{M}; these need to have appropriate limiting behavior at the boundary.

Solution

Find a deformation retraction that is fixed fiberwise and that has appropriate limiting behavior.

Picturing the retraction

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint

Issues with the straight line homotopy

- Making sure disjoint pairs stay disjoint
- Making sure nested pairs stay nested

A solution to the problem

A solution to the problem

A solution to the problem

Homotope through θ rather than along the distance.

A solution to the problem

Homotope through θ rather than along the distance.

$$
\theta=\arccos \left(\frac{r_{0}^{2}+r_{1}^{2}-\Delta^{2}}{2 r_{0} r_{1}}\right)
$$

A solution to the problem

Homotope through θ rather than along the distance.

$$
\theta=\arccos \left(\frac{r_{0}^{2}+r_{1}^{2}-\Delta^{2}}{2 r_{0} r_{1}}\right)
$$

This formula makes sense as long as the radii are nonzero. θ is either in $[0, \pi)$ or is a positive imaginary number.

A solution to the problem

Homotope through θ rather than along the distance.

$$
\theta=\arccos \left(\frac{r_{0}^{2}+r_{1}^{2}-\Delta^{2}}{2 r_{0} r_{1}}\right)
$$

This formula makes sense as long as the radii are nonzero. θ is either in $[0, \pi)$ or is a positive imaginary number.
$c_{t}=\frac{c_{1} r_{0} \sin (t \theta)+c_{0} r_{1} \sin ((1-t) \theta)}{r_{0} \sin (t \theta)+r_{1} \sin ((1-t) \theta)}, \quad r_{t}=\frac{r_{0} r_{1} \sin (\theta)}{r_{0} \sin (t \theta)+r_{1} \sin ((1-t) \theta)}$

Some evidence

