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The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each
one with a marked point on its boundary.
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We can compose two configurations by shrinking one down and gluing it
in, rotating to match marked points and relabeling.
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The framed little disks

Consider the space made up of n disjoint disks in the standard disk, each
one with a marked point on its boundary.
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We can compose two configurations by shrinking one down and gluing it
in, rotating to match marked points and relabeling.
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Actions of the framed little disks
The framed little disks acts on W if:
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S1 in the framed little disks

Consider the space of one framed little disk.
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S1 in the framed little disks

Consider the space of one framed little disk.

1

We can deformation retract the center of the disk to the origin and then
the radius of the disk to 1, so this space is homotopy equivalent to S1.
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Trivializing the circle

What happens if a space is acted on by the framed little disks but the
circle acts trivially? In such a case, how does this change the space of
operations?
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Problems with the naive trivialization

This answer is homotopically inadequate.
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Space of operations: the disk D2, with the standard multiplication in C

and the standard circle action.

The naive trivialization gives the interval.
Homotopy equivalent space of operations: D2 × ES1
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Problems with the naive trivialization

This answer is homotopically inadequate.

Example

Space of operations: the disk D2, with the standard multiplication in C

and the standard circle action.

The naive trivialization gives the interval.
Homotopy equivalent space of operations: D2 × ES1

Naive trivialization: BS1
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Homotopy trivialization

Moral: To get homotopy invariant information, we need to be more careful.
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Homotopy trivialization

Moral: To get homotopy invariant information, we need to be more careful.

Conjecture/Theorem (Kontsevich, 2005)

An action of the framed little disks and a choice of trivialization of the
circle action should be homotopically the same as an action of the genus
zero Deligne-Mumford-Knudsen spaces M0,n
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Description ofM0,n

Definition

M0,n is the moduli space of configurations of n > 2 points on a genus
zero surface up to conformal equivalence
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Sketch of Definition

M0,n+1 consists of at least trivalent trees with n leaves and vertices
labeled by M0,val(v).
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A framework for Kontsevich’s statement

Conjecture/Theorem (Kontsevich, 2005)

An action of the framed little disks and a choice of trivialization of S1

should be homotopically the same as an action ofM
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Outline of Proof of Main Theorem

Theorem

The (weak) homotopy pushout of FLD ← S1 → ∗ isM.
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Theorem

The (weak) homotopy pushout of FLD ← S1 → ∗ isM.

Show that the pushout PM of FLD ← FLD(1)→ tAn containsM as
a deformation retract

Show that the pushout Ph of rFLD ← S1 → tAn is a weak homotopy
pushout

Show that the map from the second pushout to the first pushout is a
weak homotopy equivalence of operads
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Pushouts of operads

Reminder

The pushout in groups is the amalgamated product A ∗B C .
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FLD(1) and the affine group

c1 + r1c2

r1r2

(c1, r1) ◦ (c2, r2) = (c1 + r1c2, r1r2)
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FLD(1) and the affine group

c1 + r1c2

r1r2

(c1, r1) ◦ (c2, r2) = (c1 + r1c2, r1r2)

Definition

Aff C, the affine group of C, is C ⋊ C∗ with this product.
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tAn and the affine group
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tAn and the affine group

(c1, r1) ◦ (c2, r2) = (c1 + r1c2, r1r2)

Definition

Aff C is C ⋊ C∗ with this product.

Fact

FLD(1) is the submonoid of Aff C with |r |+ |c | ≤ 1 with this product.
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Describing PM = FLD ∗FLD(1) tAn

x ∈ FLD(3)

(c , r) ∈ tAn

y ∈ FLD(2)
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Describing PM = FLD ∗FLD(1) tAn
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Describing PM = FLD ∗FLD(1) tAn

x ′ ∈ FLD(3)
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Describing PM = FLD ∗FLD(1) tAn
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Description

PM consists (roughly) of at least trivalent trees with some special
(“blue”) external edges and a label on each vertex as follows:
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a configuration of points and disks in the disk (blue outgoing edge)
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Description

PM consists (roughly) of at least trivalent trees with some special
(“blue”) external edges and a label on each vertex as follows:

a configuration of points and disks in the disk (blue outgoing edge)

a configuration of points and disks in the plane
up to Aff C

(red outgoing edge)
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Description

PM consists of at least trivalent trees with some blue external edges and
vertices labeled by:
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vertices labeled by:
a configuration of points and disks in the disk (blue outgoing edge)
a configuration of points and disks in the plane
up to Aff C

(red outgoing edge)

Reminder

M consists of at least trivalent trees with vertices labeled by:
a configuration of points in the plane
up to conformal equivalence
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Description

PM consists of at least trivalent trees with some blue external edges and
vertices labeled by:
a configuration of points and disks in the disk (blue outgoing edge)
a configuration of points and disks in the plane
up to Aff C

(red outgoing edge)

Reminder

M consists of at least trivalent trees with vertices labeled by:
a configuration of points in the plane
up to Aff C

Goal

Homotope away all blue edges
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Homotoping away the blue edges

Conclusion

M(n) is a deformation retract of PM(n).
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Homotoping away the blue edges

Conclusion

M(n) is a deformation retract of PM(n).
The mapM→ PM is a map of operads.
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Describing Ph = rFLD ∗S1 tAn

Definition

rFLD(n) = FLD(n), except that rFLD(1) = S1.

1 1
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Describing Ph = rFLD ∗S1 tAn

x ∈ rFLD(3)

(c , r) ∈ tAn

y ∈ rFLD(2)
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Describing Ph = rFLD ∗S1 tAn

x ∈ nFLD(3)

A (c , r) ∈ tAn

y ∈ nFLD(2)
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Describing Ph = rFLD ∗S1 tAn
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Describing Ph = rFLD ∗S1 tAn

1

3

2

Definition

nFLD(n) consists of configurations of n framed little disks so that the
vector from the center of the first disk to the center of the second disk,
along with all of the radius vectors, are positive reals.
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Describing Ph = rFLD ∗S1 tAn

Definition

nFLD(n) consists of configurations of n framed little disks so that the
vector from the center of the first disk to the center of the second disk,
along with all of the radius vectors, are positive reals.

Observation

Every point in Ph can be realized “uniquely” as a tree with alternating
bivalent and at least trivalent vertices, with markings on the bivalent
vertices from tAn and on the other vertices from nFLD.
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Showing Ph is a weak homotopy pushout
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The framed little disks FLD(n) are homeomorphic to the product
S1 × nFLD(n)× (S1)n
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Showing Ph is a weak homotopy pushout

The framed little disks FLD(n) are homeomorphic to the product
S1 × nFLD(n)× (S1)n

The inclusion of the circle into the trivializable annuli is a pointed
cofibration
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Showing Ph is a weak homotopy pushout

The framed little disks FLD(n) are homeomorphic to the product
S1 × nFLD(n)× (S1)n

The inclusion of the circle into the trivializable annuli is a pointed
cofibration

Weak equivalences and cofibrations of spaces interact nicely with
coproducts and products
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Taking stock

Ph
//

τ

%%

PM

∼ //
M

∼
oo

A criterion to show that a map is a weak equivalence

A map of spaces f is a weak equivalence if its range has an open cover,
closed under finite intersection, and the restriction of f to each element of
the cover is a weak equivalence.
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closed under finite intersection, and the restriction of f to each element of
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Taking stock

Ph
//

τ

%%

PM

∼ //
M

∼
oo

A criterion to show that a map is a weak equivalence

A map of spaces f is a weak equivalence if its range has an open cover,
closed under finite intersection, and the restriction of f to each element of
the cover is a weak equivalence.

τ−1(U) // U
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Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into
certain partitions.

A
1

2 3

4
1

A 42

3

A point in U({2, 3}; {2, 3, 4})
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Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into
certain partitions.

A
1

2 3

4
1

A 42

3

A point in U({2, 3}; {2, 3, 4}) or its preimage
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Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into
certain partitions.

Simplifying assumptions

Restrict to M insideM

1 2 3 4
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Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into
certain partitions.

Simplifying assumptions

Restrict to M insideM

Discard inappropriate separations in the preimage

1 2 3 4
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A point in the preimage of U({2, 3}; {2, 3, 4})
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Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into
certain partitions.

Simplifying assumptions

Restrict to M insideM

Discard inappropriate and ambiguous separations in the preimage

1 2 3 4
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Describing the local weak equivalence

U consists of configurations that can be simultaneously separated into
certain partitions.

Simplifying assumptions

Restrict to M insideM

Discard inappropriate and ambiguous separations in the preimage

This cover is not closed under finite intersection

1 2 3 4

1

2
3

4

A point in U({2, 3}; {2, 3, 4})
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Justifying the restriction toM

Problem

It is not enough to achieve a weak equivalence on neighborhoods over M;
these need to have appropriate limiting behavior at the boundary.
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Justifying the restriction toM

Problem

It is not enough to achieve a weak equivalence on neighborhoods over M;
these need to have appropriate limiting behavior at the boundary.

Solution

Find a deformation retraction that is fixed fiberwise and that has
appropriate limiting behavior.
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Picturing the retraction
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Issues with the straight line homotopy

Making sure disjoint pairs stay disjoint
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Issues with the straight line homotopy

Making sure disjoint pairs stay disjoint

Making sure nested pairs stay nested
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A solution to the problem
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A solution to the problem

θ

Homotope through θ rather than along the distance.
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A solution to the problem

θ

∆

r0 r1

Homotope through θ rather than along the distance.

θ = arccos

(

r2
0 + r2

1 −∆2

2r0r1

)

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 31 / 32



A solution to the problem

θ

∆

r0 r1

Homotope through θ rather than along the distance.

θ = arccos

(

r2
0 + r2

1 −∆2

2r0r1

)

This formula makes sense as long as the radii are nonzero. θ is either in
[0, π) or is a positive imaginary number.
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A solution to the problem

θ

∆

r0 r1

Homotope through θ rather than along the distance.

θ = arccos

(

r2
0 + r2

1 −∆2

2r0r1

)

This formula makes sense as long as the radii are nonzero. θ is either in
[0, π) or is a positive imaginary number.

ct =
c1r0 sin(tθ) + c0r1 sin((1− t)θ)

r0 sin(tθ) + r1 sin((1− t)θ)
, rt =

r0r1 sin(θ)

r0 sin(tθ) + r1 sin((1− t)θ)

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 31 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32



Some evidence

Gabriel C. Drummond-Cole (Northwestern University) Trivializing the circle March 13, 2012 32 / 32


	Motivation and Background

