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Overview

Classical algebraic probability theory

L∞ algebraic probability theory

Abstract homotopical algebraic probability theory

The first arrow is rigorously constructed but the second arrow is still in
development.

This talk is based in part on joint work with J.-S. Park (IBS-CGP) and J.
Terilla (CUNY). It is intended to be nontechnical, expository, and sketchy.
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Classical probability theory

Classical probability theory begins with a measure space (Ω, µ) with∫
Ω µ = 1.

We study measurable functions (usually to the ground field C), called
random variables.
Random variables come equipped with the expectation map to C:

X 7→
∫

Ω
Xµ.
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Algebraic probability theory

We can axiomatize this presentation as follows:

Definition

An (algebraic) classical probability space is a unital commutative
associative algebra A of random variables equipped with a linear
unit-preserving expectation map E to C.

Note that E is not required to be an algebra map, and in practice will not
be one.
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Moments and cumulants

Definition

Given a tuple of random variables (X1, . . . ,Xn), their moment is
E (X1 . . .Xn).

Definition

Given a tuple of random variables (X1, . . . ,Xn), their cumulant
κ(X1, . . . ,Xn) is defined recursively by the equation:

E (X1 . . .Xn) =
∑

P=(P1,...,Pk )

κ(P1) · · ·κ(Pk)

where P ranges over all partitions of (X1, . . . ,Xn).
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Cumulants

Cumulants keep track of important information about the independence of
random variables.

Definition

Random variables X and Y are independent if

κ(X + tY , . . .X + tY︸ ︷︷ ︸
m copies

) = κ(X , . . . ,X︸ ︷︷ ︸
m copies

) + tmκ(Y , . . . ,Y︸ ︷︷ ︸
m copies

)

We can also phrase this in terms of “mixed cumulants.”

Definition

Random variables (X1, . . . ,Xn) are independent if

κ(Xi1 , . . . ,Xim) = 0

whenever there are at least two distinct indices among {i1, . . . , im}.
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Examples of cumulants

The first cumulant is the expectation

κ(X ) = E (X ).

The second cumulant is the covariance

κ(X ,Y ) = E (XY )− E (X )E (Y ).

The third cumulant is the third central moment

κ(X ,Y ,Z ) =

E (XYZ )− E (XY )E (Z )− E (YZ )E (X )− E (ZX )E (Y ) + 2E (X )E (Y )E (Z ).

It keeps track of the skewness of X via the formula

γ1 =
κ(X ,X ,X )

κ(X ,X )
3
2

.

The fourth cumulant keeps track of excess kurtosis:

γ2 =
κ(X ,X ,X ,X )

κ(X ,X )2
.
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Cumulants

Moral

Cumulants are a useful repackaging of the interaction between the
expectation and the product.

Question

How can we justify the cumulant formula in a way that leads to good
generalizations?

Answer

Homotopy algebra.
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L∞ algebras

Definition

An L∞ algebra structure on V is a square zero differential on the
symmetric coalgebra

SV =
∞⊕
n=1

SnV .

Fact

The data of an L∞ algebra can be specified by a map ` : SV → V
satisfying certain relations.

The map ` has components `1, `2, . . ., which are a differential, a bracket
which satisfies the Jacobi relation up to homotopy, a homotopy for the
Jacobi relation, and higher coherent homotopies.
Don’t worry about the relations because in this talk I’m mainly talking
about L∞ algebras where `i = 0 for all i .
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L∞ morphisms

Definition

An L∞ morphism V →W is a coalgebra map SV → SW commuting with
the differentials.

Fact

The data of an L∞ morphism can be specified by a map f : SV →W
satisfying certain (related but different) relations.

The map f has components f1, f2, . . ., which are a chain map which
respects brackets up to homotopy, a homotopy for f1, and higher coherent
homotopies.
The map f is an isomorphism if and only if f1 is an isomorphism V →W .
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Reformulation of cumulants

Construction

Consider a classical probability space A as an L∞ algebra with trivial
(zero) L∞ structure. Do the same for C.

Let E be the L∞ map A→ C where SnA→ C is E if n = 1.

Let MA be the L∞ map A→ A where SnA→ A is multiplication using the
product in A, and similarly for C. This is an isomorphism since M1 = id.

Let K be the L∞ map A→ C given as M−1
C EMA.

(SA, 0) (SC, 0)

(SA, 0) (SC, 0)

MA

K

MC

E
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product in A, and similarly for C.

This is an isomorphism since M1 = id.

Let K be the L∞ map A→ C given as M−1
C EMA.

(SA, 0) (SC, 0)

(SA, 0) (SC, 0)

MA

K

MC

E

Gabriel C. Drummond-Cole (CGP) Homotopy Probability Theory Nov. 20, 2014 11 / 21



Reformulation of cumulants

Construction

Consider a classical probability space A as an L∞ algebra with trivial
(zero) L∞ structure. Do the same for C.

Let E be the L∞ map A→ C where SnA→ C is E if n = 1.

Let MA be the L∞ map A→ A where SnA→ A is multiplication using the
product in A, and similarly for C. This is an isomorphism since M1 = id.

Let K be the L∞ map A→ C given as M−1
C EMA.

(SA, 0) (SC, 0)

(SA, 0) (SC, 0)

MA

K

MC

E

Gabriel C. Drummond-Cole (CGP) Homotopy Probability Theory Nov. 20, 2014 11 / 21



Reformulation of cumulants

Construction

Consider a classical probability space A as an L∞ algebra with trivial
(zero) L∞ structure. Do the same for C.

Let E be the L∞ map A→ C where SnA→ C is E if n = 1.

Let MA be the L∞ map A→ A where SnA→ A is multiplication using the
product in A, and similarly for C. This is an isomorphism since M1 = id.

Let K be the L∞ map A→ C given as M−1
C EMA.

(SA, 0) (SC, 0)

(SA, 0) (SC, 0)

MA

K

MC

E

Gabriel C. Drummond-Cole (CGP) Homotopy Probability Theory Nov. 20, 2014 11 / 21



Reformulating Cumulants

(SA, 0) (SC, 0)

(SA, 0) (SC, 0)

MA

K

MC

E

Fact

These maps satisfy the conditions to be L∞ maps for a stupid reason:

any
sequence of maps is an L∞ map between trivial L∞ algebras.

Nevertheless, we have the following.

Proposition

The L∞ map K = K1,K2,K3, . . ., recovers the cumulants of A.
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L∞ cumulants

Proposition

The L∞ map K = K1,K2,K3, . . ., recovers the cumulants of A.

Proof.

Extending K as a coalgebra map means splitting SA in all possible ways
and then applying the appropriate version of K . So the composition of the
top and right maps to X1, . . . ,Xn is the sum∑

P=P1,...,Pk

K (P1) · · ·K (Pk).

where the sum runs over partitions of X1, . . . ,Xn. Since E only has E1,
applying the composition of the left and bottom maps is just E (X1 · · ·Xn).
This is the equation defining cumulants.
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Homotopy probability theory

This motivates a new definition:

Definition

A homotopy probability space is a unital commutative associative algebra
A

equipped with a linear unit-preserving expectation map E to C and a
differential d so that d(1) = Ed = 0.

Again E is not required to be an algebra map, and the differential is not
required to be a derivation of the product.
We can play the same game but we have to be a tiny bit careful. Before
we were dealing with the zero L∞ algebra on A. Now we can use d as `1

and have the rest of the L∞ structure be zero.
But that means that MA is an isomorphism not between (SA, d) and itself,
but rather between (SA,M−1

A dMA) and (SA, d).
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Homotopy random variables

Definition

A collection of homotopy random variables in a homotopy probability
space is an L∞ map f from a trivial L∞ algebra to the L∞ algebra
(A,M−1

A dMA).

Example

Consider a trivial L∞ algebra spanned by (x1, . . . , xn) and suppose
(A, d) = (A, 0) is an classical probability space. Choose random variables
X1, . . . ,Xn and let f (xi ) = Xi .
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Homotopy probability theory

Definition

The joint moment of a collection of homotopy random variables is the L∞
map EMAf .

The joint cumulant of a collection of homotopy random
variables is the L∞ map Kf = M−1

C EMAf .

This theory has good homotopy invariance properties.

Proposition

A homotopy of expectation maps induces L∞ homotopies of moment and
cumulant maps.

Homotopic maps between spaces with trivial structure are equal.

Corollary

Joint moments and cumulants only depend on the homotopy class of the
expectation map and the collection of random variables.
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Generalizing the theory

One would like to generalize this theory to deal with different kinds of
probability space.

For example, free and Boolean probability deal with
non-commutative algebras. Each kind of probability theory has its own
version of independence and thus its own kind of cumulants.

Idea

A probability space is a unital commutative algebra equipped with a
unit-preserving expectation map.

P could be commutative, associative, or something more exotic. We can
also decide to get rid of the unit.
We hope to define moments, cumulants, and collections of homotopy
random variables as before. But. . .
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Problems with the theory

There are some problems with naively following what was done for
classical probability spaces.

Problem (minor)

We need C to have a P-algebra structure. For an interesting theory, that
structure should not be trivial.

Problem (major)

We used a non-canonical identification of the symmetric coalgebra with
the symmetric algebra. That is, the map MA, repeated multiplication,
from the commutative coalgebra on A to itself. We would know what to
do if the domain was the commutative algebra on A.
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(Partial) solution

Solution (?)

If we require the unit to be independent of everything (have vanishing
joint cumulants), then this specifies the map MA, at least for the kinds of
probability spaces that arise in practice.

E (MA(1 ·X1, . . .Xn)) = K (1)
∑

P=P1,...Pk

K (P1) · · ·K (Pk) + vanishing terms.

Problem (?)

Not every kind of probability space should be unital. Furthermore, the
meaning of “vanishing joint cumulants” is not clearly independent of P.
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Thank you for listening!
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