Edge stabilization in graph configuration spaces

Gabriel C. Drummond-Cole (joint with Byunghee An and Ben Knudsen)

https://arxiv.org/abs/1708.02351 https://arxiv.org/abs/1806.05585

IBS-CGP

June 25, 2018

An-Drummond-Cole-Knudsen

• • = • • =

Configuration spaces

Definition (Configuration spaces)

Let X be a space. The ordered configuration space $F_k(X)$ of X is the space of k-tuples of distinct points in X:

$$\mathcal{F}_k(X) \coloneqq \{(x_1,\ldots,x_k) \in X^k | x_i
eq x_j ext{ for } i
eq j\}.$$

Configuration spaces

Definition (Configuration spaces)

Let X be a space. The ordered configuration space $F_k(X)$ of X is the space of k-tuples of distinct points in X:

$$F_k(X) \coloneqq \{(x_1,\ldots,x_k) \in X^k | x_i \neq x_j \text{ for } i \neq j\}.$$

The unordered configuration space $B_k(X)$ is the quotient of $F_k(X)$ by the symmetric group action.

$$B_k(X) \coloneqq F_k(X)/S_k$$

Configuration spaces of graphs

This talk is about the unordered configuration space of a graph $\Gamma.$

Configuration spaces of graphs

This talk is about the unordered configuration space of a graph Γ .

Theorem (Ghrist; Abrams)

Let Γ be a connected graph. The space $B_k(\Gamma)$ is a $K(\pi, 1)$ space.

Configuration spaces of graphs

This talk is about the unordered configuration space of a graph Γ .

Theorem (Ghrist; Abrams)

Let Γ be a connected graph. The space $B_k(\Gamma)$ is a $K(\pi, 1)$ space.

Motivating question

Let Γ be a graph. Calculate the bigraded groups $H_i(B_k(\Gamma))$.

(bigrading by *homological degree* and *cardinality*).

・ 何 ト ・ ヨ ト ・ ヨ ト

Stabilization at boundary components

Let *M* be a manifold with a boundary component ∂ .

Stabilization at boundary components

Stabilization at boundary components

Let *M* be a manifold with a boundary component ∂ . There is a ∂ -stabilization operation from $B_k(M)$ to $B_{k+1}(M)$.

We stabilize at ∂ by deforming a cylindrical end near ∂ inwards from the boundary and adding a new point.

Stabilization at cylindrical ends

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space. For example, we can stabilize at a leaf of a graph.

An alternative parameterization for graphs

An–Dr	ummond	-Cole-	Knudsen
-------	--------	--------	---------

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space. For example, we can stabilize at a leaf of a graph.

An alternative parameterization for graphs

An-	Drummond	-Cole–	Knudsen

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space. For example, we can stabilize at a leaf of a graph.

An alternative parameterization for graphs

An–Drummond-C	ole–Knudsen
---------------	-------------

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space. For example, we can stabilize at a leaf of a graph.

An alternative parameterization for graphs

An-Drummone	l-Cole–	Knud	lsen
-------------	---------	------	------

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space. For example, we can stabilize at a leaf of a graph.

An alternative parameterization for graphs

An–Drummond-C	ole–Knudsen
---------------	-------------

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space. For example, we can stabilize at a leaf of a graph.

An alternative parameterization for graphs

An-Drummone	l-Cole–	Knud	lsen
-------------	---------	------	------

Key observation

Key observation

Key observation

Key observation

Key observation

Key observation

Key observation

Key observation

Key observation

Midpoint stabilization

Key observation

The midpoint parameterization is (basically) insensitive to the presence of configuration points at the vertices.

Midpoint stabilization

Key observation

The midpoint parameterization is (basically) insensitive to the presence of configuration points at the vertices.

Midpoint stabilization

Key observation

The midpoint parameterization is (basically) insensitive to the presence of configuration points at the vertices.

Consequence

Consequence

Consequence

Consequence

Consequence

Consequence

Fix a graph Γ with edges E.

Proposition (An–D.–Knudsen)

The singular chains $C_*(B_*(\Gamma))$ are a differential bigraded $\mathbb{Z}[E]$ -module.

Fix a graph Γ with edges E.

Proposition (An–D.–Knudsen)

The singular chains $C_*(B_*(\Gamma))$ are a differential bigraded $\mathbb{Z}[E]$ -module. There is an equivalent finitely generated $\mathbb{Z}[E]$ -linear chain model.

Fix a graph Γ with edges E.

Proposition (An–D.–Knudsen)

The singular chains $C_*(B_*(\Gamma))$ are a differential bigraded $\mathbb{Z}[E]$ -module. There is an equivalent finitely generated $\mathbb{Z}[E]$ -linear chain model.

This makes contact with earlier work at the level of homology.

Proposition (Ramos; An–D.–Knudsen)

The homology groups $H_*(B_*(\Gamma))$ are (naturally) a bigraded $\mathbb{Z}[E]$ -module.

Fix a graph Γ with edges E.

Proposition (An–D.–Knudsen)

The singular chains $C_*(B_*(\Gamma))$ are a differential bigraded $\mathbb{Z}[E]$ -module. There is an equivalent finitely generated $\mathbb{Z}[E]$ -linear chain model.

This makes contact with earlier work at the level of homology.

Proposition (Ramos; An–D.–Knudsen)

The homology groups $H_*(B_*(\Gamma))$ are (naturally) a bigraded $\mathbb{Z}[E]$ -module.

Finite generation has the following consequence.

Corollary

Over a field, for any i, dim $H_i(B_k(\Gamma))$ is eventually polynomial in k.

イロト 不得下 イヨト イヨト

Growth rate of the homology

Corollary

Over a field, for any i, dim $H_i(B_k(\Gamma))$ is eventually polynomial in k.

We can calculate the growth rate more explicitly.

Growth rate of the homology

Corollary

Over a field, for any i, dim $H_i(B_k(\Gamma))$ is eventually polynomial in k.

We can calculate the growth rate more explicitly.

Theorem (Ramos; An–D.–Knudsen)

The polynomial degree is equal to a certain connectivity invariant of Γ .

The invariant is roughly the maximum number of connected components of the complement of i vertices in Γ .

Formality over the stabilization ring

The chain module is richer than the homology module.

Theorem (An–D.–Knudsen)

The chains $C_*(B_*(\Gamma))$ are formal as a $\mathbb{Z}[E]$ -module if and only if Γ is a disjoint union of connected small graphs.

Formality over the stabilization ring

The chain module is richer than the homology module.

Theorem (An–D.–Knudsen)

The chains $C_*(B_*(\Gamma))$ are formal as a $\mathbb{Z}[E]$ -module if and only if Γ is a disjoint union of connected small graphs.

(homeomorphism classes of) connected small graphs

Formality over the stabilization ring

The chain module is richer than the homology module.

Theorem (An–D.–Knudsen)

The chains $C_*(B_*(\Gamma))$ are formal as a $\mathbb{Z}[E]$ -module if and only if Γ is a disjoint union of connected small graphs.

(homeomorphism classes of) connected small graphs

Non-formality means the homotopy type of the homology module is not the same as the homotopy type of the chain module.

- 4 回 ト 4 ヨ ト 4 ヨ ト

An important tool is a chain model for configurations near a vertex v.

3

< □ > < 同 > < 回 > < 回 > < 回 >

An important tool is a chain model for configurations near a vertex v.

Construction-Definition: S(v)

Consider the free bigraded $\mathbb{Z}[e_1, \ldots, e_n]$ -module S(v) on the generators:

- 4 個 ト 4 ヨ ト 4 ヨ

An important tool is a chain model for configurations near a vertex v.

Construction-Definition: S(v)

Consider the free bigraded $\mathbb{Z}[e_1, \ldots, e_n]$ -module S(v) on the generators:

• the symbol \emptyset in bidegree (0,0),

An important tool is a chain model for configurations near a vertex v.

Construction-Definition: S(v)

Consider the free bigraded $\mathbb{Z}[e_1, \ldots, e_n]$ -module S(v) on the generators:

- the symbol \emptyset in bidegree (0,0),
- the symbol v in bidegree (0,1), and

An important tool is a chain model for configurations near a vertex v.

Construction-Definition: S(v)

Consider the free bigraded $\mathbb{Z}[e_1, \ldots, e_n]$ -module S(v) on the generators:

- the symbol \emptyset in bidegree (0,0),
- the symbol v in bidegree (0, 1), and
- the symbols h_1, \ldots, h_n in bidegree (1, 1)

An important tool is a chain model for configurations near a vertex v.

Construction-Definition: S(v)

Consider the free bigraded $\mathbb{Z}[e_1, \ldots, e_n]$ -module S(v) on the generators:

- the symbol \emptyset in bidegree (0,0),
- the symbol v in bidegree (0, 1), and
- the symbols h_1, \ldots, h_n in bidegree (1, 1)

An important tool is a chain model for configurations near a vertex v.

Construction-Definition: S(v)

Consider the free bigraded $\mathbb{Z}[e_1, \ldots, e_n]$ -module S(v) on the generators:

- the symbol \emptyset in bidegree (0,0),
- the symbol v in bidegree (0, 1), and
- the symbols h_1, \ldots, h_n in bidegree (1, 1)

An important tool is a chain model for configurations near a vertex v.

Construction-Definition: S(v)

Consider the free bigraded $\mathbb{Z}[e_1, \ldots, e_n]$ -module S(v) on the generators:

- the symbol ∅ in bidegree (0,0),
- the symbol v in bidegree (0, 1), and
- the symbols h_1, \ldots, h_n in bidegree (1, 1)

An important tool is a chain model for configurations near a vertex v.

Construction-Definition: S(v)

Consider the free bigraded $\mathbb{Z}[e_1, \ldots, e_n]$ -module S(v) on the generators:

- the symbol \emptyset in bidegree (0,0),
- the symbol v in bidegree (0, 1), and
- the symbols h_1, \ldots, h_n in bidegree (1, 1)

An important tool is a chain model for configurations near a vertex v.

Construction-Definition: S(v)

Consider the free bigraded $\mathbb{Z}[e_1, \ldots, e_n]$ -module S(v) on the generators:

- the symbol \emptyset in bidegree (0,0),
- the symbol v in bidegree (0, 1), and
- the symbols h_1, \ldots, h_n in bidegree (1, 1)

Equip this module with the differential $d(h_j) = e_j - v$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A finitely generated chain model

Theorem (Świątkowski; Lütgehetmann; Chettih–Lütgehetmann; An–D.–Knudsen)

There is a finitely generated bigraded differential $\mathbb{Z}[E]$ -module $S_{*,*}(\Gamma)$ weakly equivalent to $C_*(B_*(\Gamma))$.

A finitely generated chain model

Theorem (Świątkowski; Lütgehetmann; Chettih–Lütgehetmann; An–D.–Knudsen)

There is a finitely generated bigraded differential $\mathbb{Z}[E]$ -module $S_{*,*}(\Gamma)$ weakly equivalent to $C_*(B_*(\Gamma))$.

This model can can be constructed by tensoring together our local vertex models over the stabilization ring.

A finitely generated chain model

Theorem (Świątkowski; Lütgehetmann; Chettih–Lütgehetmann; An–D.–Knudsen)

There is a finitely generated bigraded differential $\mathbb{Z}[E]$ -module $S_{*,*}(\Gamma)$ weakly equivalent to $C_*(B_*(\Gamma))$.

This model can can be constructed by tensoring together our local vertex models over the stabilization ring.

< □ > < □ > < □ > < □ > < □ > < □ >

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

Many things can be built from a kind of local class we call a star class.

Definition

A class pushed forward from the cycle in $H_1(B_2(Y))$ is a star class.

Lemma

Star classes are nontrivial (they may be 2-torsion).

Recall that over a field, dim $H_i(B_k(\Gamma))$ is eventually polynomial in k.

э

Image: A match a ma

Recall that over a field, dim $H_i(B_k(\Gamma))$ is eventually polynomial in k. Write N_{Γ}^i for the degree of this polynomial.

A (10) N (10) N (10)

Recall that over a field, dim $H_i(B_k(\Gamma))$ is eventually polynomial in k. Write N_{Γ}^i for the degree of this polynomial.

Definition (Ramos' invariant [all vertices valence \geq 3 case])

$$\Delta^i_{\mathsf{\Gamma}} = \max_{\substack{W \subset V(\mathsf{\Gamma}) \ |W| = i}} |\pi_0(\mathsf{\Gamma} \setminus W)|$$

Recall that over a field, dim $H_i(B_k(\Gamma))$ is eventually polynomial in k. Write N_{Γ}^i for the degree of this polynomial.

Definition (Ramos' invariant [all vertices valence \geq 3 case])

$$\Delta_{\Gamma}^{i} = \max_{\substack{W \subset V(\Gamma) \\ |W| = i}} |\pi_{0}(\Gamma \setminus W)|$$

Theorem (Ramos)

For Γ a tree, $N_{\Gamma}^{i} = \Delta_{\Gamma}^{i} - 1$.

くぼう くほう くほう しほ

Recall that over a field, dim $H_i(B_k(\Gamma))$ is eventually polynomial in k. Write N_{Γ}^i for the degree of this polynomial.

Definition (Ramos' invariant [all vertices valence \geq 3 case])

$$\Delta_{\Gamma}^{i} = \max_{\substack{W \subset V(\Gamma) \\ |W| = i}} |\pi_{0}(\Gamma \setminus W)|$$

Theorem (Ramos)

For
$$\Gamma$$
 a tree, $N_{\Gamma}^{i} = \Delta_{\Gamma}^{i} - 1$.

Theorem (An–D.–Knudsen)

For
$$\Gamma$$
 a graph, $N_{\Gamma}^{i} = \Delta_{\Gamma}^{i} - 1$

イロト 不得 トイラト イラト 一日

Examples of Ramos' invariant

3

A D N A B N A B N A B N

Examples of Ramos' invariant

3

A D N A B N A B N A B N

3

A D N A B N A B N A B N

Example

i	Δ_i^{I}	N_i^{I}	dim $H_i B_k(\Gamma)$	valid for
0	1	0	1	all <i>k</i>
1	1	0	4	$k \ge 2$
2	2	1	6k - 15	$k \ge 3$

æ

A D N A B N A B N A B N

Example

 i	Δ_i^{I}	N_i^{I}	dim $H_i B_k(\Gamma)$	valid for
0	1	0	1	all <i>k</i>
1	1	0	4	$k \ge 2$
2	2	1	6 <i>k</i> – 15	$k \ge 3$
3	4	3	$4\binom{k-3}{3}$	all <i>k</i>

An-Drummond-Cole-Knudsen

Edge Stabilization

June 25, 2018 15 / 25

(日) (四) (日) (日) (日)

2

Example

i	Δ_i^{Γ}	N_i^{Γ}	dim $H_i B_k(\Gamma)$	valid for
0	1	0	1	all <i>k</i>
1	1	0	4	$k \ge 2$
2	2	1	6 <i>k</i> – 15	$k \ge 3$
3	4	3	$4\binom{k-3}{3}$	all <i>k</i>
4	6	5	$\binom{k-3}{5}$	all <i>k</i>

æ

(日) (四) (日) (日) (日)

Example

i	Δ_i^{Γ}	N_i^{Γ}	$\dim H_i B_k(\Gamma)$	valid for
0	1	0	1	all <i>k</i>
1	1	0	4	$k \ge 2$
2	2	1	6 <i>k</i> – 15	$k \ge 3$
3	4	3	$4\binom{k-3}{3}$	all <i>k</i>
4	6	5	$\binom{k-3}{5}$	all <i>k</i>
\geq 5	$-\infty$	$-\infty$	0	all <i>k</i>

A D N A B N A B N A B N

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

э

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

Lower bound:
$$N_{\Gamma}^{i} \geq \Delta_{\Gamma}^{i} - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

Lower bound:
$$N_{\Gamma}^{i} \geq \Delta_{\Gamma}^{i} - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

a torus
$$\alpha$$
 with $|W| = 1$
a torus α with $|W| = 2$

Lemma

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

Image: A image: A

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

(not rigid) a torus
$$\alpha$$
 with $|W| = 1$
a torus α with $|W| = 2$

Lemma

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

3

Image: A image: A

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

(not rigid) a torus
$$\alpha$$
 with $|W| = 1$
a torus α with $|W| = 2$

Lemma

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

I.e., every representative of α contains generators blocking all of W.

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

(not rigid) a torus
$$\alpha$$
 with $|W| = 1$
a torus α with $|W| = 2$

Lemma

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

I.e., every representative of α contains generators blocking all of W.

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

(not rigid) a torus
$$\alpha$$
 with $|W| = 1$
a torus α with $|W| = 2$

Lemma

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

I.e., every representative of α contains generators blocking all of W.

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

(not rigid) a torus
$$\alpha$$
 with $|W| = 1$
a torus α with $|W| = 2$

Lemma

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

I.e., every representative of α contains generators blocking all of W.

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

(not rigid) a torus
$$\alpha$$
 with $|W| = 1$
a torus α with $|W| = 2$

Lemma

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

I.e., every representative of α contains generators blocking all of W.

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

Find a torus α of star classes at $W \subset V$ whose stabilizations grow quickly.

(not rigid) a torus
$$\alpha$$
 with $|W| = 1$
a torus α with $|W| = 2$

Lemma

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

I.e., every representative of α contains generators blocking all of W.

Lemma

The stabilizations of rigid α look like polynomials in $\pi_0(\Gamma \setminus W)$.

An-Drummond-Cole-Knudsen

イロト 不得 トイラト イラト 一日

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

Lemma

The stabilizations of rigid α look like polynomials in $\pi_0(\Gamma \setminus W)$.

イロト イポト イヨト イヨト 一日

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

Lemma

The stabilizations of rigid α look like polynomials in $\pi_0(\Gamma \setminus W)$.

$$\begin{array}{ll} \text{(reminder)} & \Delta_{\Gamma}^{i} = \max_{\substack{W \subset V(\Gamma) \\ |W| = i}} |\pi_{0}(\Gamma \setminus W)| \end{array}$$

イロト イポト イヨト イヨト 一日

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

Lemma

The stabilizations of rigid α look like polynomials in $\pi_0(\Gamma \setminus W)$.

$$\begin{array}{ll} (\text{reminder}) & \Delta_{\Gamma}^{i} = \max_{\substack{W \subset V(\Gamma) \\ |W| = i}} |\pi_{0}(\Gamma \setminus W)| \end{array}$$

Proof of lower bound.

For $|W| \neq 1$, if W realizes this maximum then every vertex of W touches two or more components of $\Gamma \setminus W$.

3

イロト イポト イヨト イヨト

Lower bound:
$$N_{\Gamma}^i \ge \Delta_{\Gamma}^i - 1$$

If each star touches two or more components of $\Gamma \setminus W$, then α is rigid.

Lemma

The stabilizations of rigid α look like polynomials in $\pi_0(\Gamma \setminus W)$.

$$\begin{array}{ll} \text{(reminder)} & \Delta_{\Gamma}^{i} = \max_{\substack{W \subset V(\Gamma) \\ |W| = i}} |\pi_{0}(\Gamma \setminus W)| \end{array}$$

Proof of lower bound.

For $|W| \neq 1$, if W realizes this maximum then every vertex of W touches two or more components of $\Gamma \setminus W$. Then we can build a rigid torus α .

A D N A B N A B N A B N

Idea to prove upper bound

Use rigidity at vertices to decompose $H_i(B(\Gamma))$.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Idea to prove upper bound

Use rigidity at vertices to decompose $H_i(B(\Gamma))$.

э

< ∃⇒

▲ 同 ▶ → 三 ▶

Idea to prove upper bound

Use rigidity at vertices to decompose $H_i(B(\Gamma))$.

э

< ∃⇒

Idea to prove upper bound

Use rigidity at vertices to decompose $H_i(B(\Gamma))$.

• The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.

< (回) < (三) < (三) < (二) < (二) < (二) < (二) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-)

Idea to prove upper bound

Use rigidity at vertices to decompose $H_i(B(\Gamma))$.

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Idea to prove upper bound

Use rigidity at vertices to decompose $H_i(B(\Gamma))$.

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Idea to prove upper bound

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Idea to prove upper bound

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Idea to prove upper bound

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-v-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{(v)}))$.

Idea to prove upper bound

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-v-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Idea to prove upper bound

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-v-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Proof outline.

Recursively we can reduce to

$$\bigoplus H_0(B_{k-i}(\Gamma_{w_1,\ldots,w_i}^{\langle v_1\rangle,\ldots\langle v_j\rangle})).$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Proof outline.

Recursively we can reduce to

$$\bigoplus H_0(B_{k-i}(\Gamma_{w_1,\ldots,w_i}^{\langle v_1\rangle,\ldots\langle v_j\rangle})).$$

The Γ_W^V summand grows like

 $(k-i)^{|\pi_0(\Gamma\setminus W)|-1}.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Proof outline.

Recursively we can reduce to

$$\bigoplus H_0(B_{k-i}(\Gamma_{w_1,\ldots,w_i}^{\langle v_1\rangle,\ldots\langle v_j\rangle})).$$

The Γ_W^V summand grows like

 $(k-i)^{|\pi_0(\Gamma\setminus W)|-1}.$

One problem with this approach

< □ > < □ > < □ > < □ > < □ > < □ >
- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Proof outline.

Recursively we can reduce to

$$\bigoplus H_0(B_{k-i}(\Gamma_{w_1,\ldots,w_i}^{\langle v_1\rangle,\ldots\langle v_j\rangle})).$$

The Γ_W^V summand grows like

 $(k-i)^{|\pi_0(\Gamma\setminus W)|-1}.$

One problem with this approach

I'm totally lying about the decomposition.

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Proof outline.

Recursively we can reduce to

$$\bigoplus H_0(B_{k-i}(\Gamma_{w_1,\ldots,w_i}^{\langle v_1\rangle,\ldots\langle v_j\rangle})).$$

The Γ_W^V summand grows like

 $(k-i)^{|\pi_0(\Gamma\setminus W)|-1}.$

One problem with this approach

I'm totally lying about the decomposition. The real groups involved are too hard to calculate explicitly.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- The *v*-rigid part of $H_i(B_k(\Gamma))$ grows like $H_{i-1}(B_{k-1}(\Gamma_v))$.
- The non-*v*-rigid in $H_i(B_k(\Gamma))$ grows like $H_i(B_k(\Gamma^{\langle v \rangle}))$.

Proof outline.

Recursively we can reduce to

$$\bigoplus H_0(B_{k-i}(\Gamma_{w_1,\ldots,w_i}^{\langle v_1\rangle,\ldots\langle v_j\rangle})).$$

The Γ_W^V summand grows like

 $(k-i)^{|\pi_0(\Gamma\setminus W)|-1}.$

One problem with this approach

I'm totally lying about the decomposition. The real groups involved are too hard to calculate explicitly.

But with the lies I told, you can do well enough to get an upper bound.

< < >> < <</p>

Theorem

 $C_*(B_*(\Gamma))$ is $\mathbb{Z}[E]$ -formal if and only if Γ is small.

æ

A D N A B N A B N A B N

Theorem

 $C_*(B_*(\Gamma))$ is $\mathbb{Z}[E]$ -formal if and only if Γ is small.

Question

• Why do we care?

3

A D N A B N A B N A B N

Theorem

 $C_*(B_*(\Gamma))$ is $\mathbb{Z}[E]$ -formal if and only if Γ is small.

Question

• Why do we care?

Answer

• Computation: assembling graphs

An-Drummond-Cole-Knudsen

June 25, 2018 20 / 25

3

A D N A B N A B N A B N

Theorem

 $C_*(B_*(\Gamma))$ is $\mathbb{Z}[E]$ -formal if and only if Γ is small.

Question

• Why do we care?

Answer

- Computation: assembling graphs
- Higher invariants

An-Drummond-Cole-Knudsen

3

・ 何 ト ・ ヨ ト ・ ヨ ト

(Non)-formality and graph assembly

3

- ∢ ⊒ →

Image: A match a ma

(Non)-formality and graph assembly

If we had formality, we could conclude:

$$H_*B(\Gamma_1 \sqcup_{E'} \Gamma_2) \cong \operatorname{Tor}_*^{\mathbb{Z}[E']}(H_*B(\Gamma_1), H_*B(\Gamma_2)).$$

An-Drummond-Cole-Knudsen

3 N 3

< A > < E

(Non)-formality and graph assembly

$$\overbrace{S(\Gamma_1 \sqcup_{E'} \Gamma_2)} \overset{\frown}{=} \overbrace{S(\Gamma_1)} \overset{\odot}{\otimes_{\mathbb{Z}[E']}} \overset{\frown}{=} S(\Gamma_2)$$

If we had formality, we could conclude:

$$H_*B(\Gamma_1 \sqcup_{E'} \Gamma_2) \cong \operatorname{Tor}_*^{\mathbb{Z}[E']}(H_*B(\Gamma_1), H_*B(\Gamma_2)).$$

Instead this is just page two of a Künneth spectral sequence in general.

Ideology

• Locally star classes are not in the image of the H_* stabilization maps.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star *cycles* are always in the image of the S_* stabilization maps.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star cycles are always in the image of the S_* stabilization maps.
- Therefore star classes obstruct formality locally.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star cycles are always in the image of the S_* stabilization maps.
- Therefore star classes obstruct formality locally.
- Therefore rigid star classes obstruct formality globally.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star *cycles* are always in the image of the S_* stabilization maps.
- Therefore star classes obstruct formality locally.
- Therefore *rigid* star classes obstruct formality globally.
- Rigidify a star class at v by combining it with a "top class" in $S(\Gamma_v)$.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star cycles are always in the image of the S_* stabilization maps.
- Therefore star classes obstruct formality locally.
- Therefore rigid star classes obstruct formality globally.
- Rigidify a star class at v by combining it with a "top class" in $S(\Gamma_v)$.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star cycles are always in the image of the S_* stabilization maps.
- Therefore star classes obstruct formality locally.
- Therefore rigid star classes obstruct formality globally.
- Rigidify a star class at v by combining it with a "top class" in $S(\Gamma_v)$.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star cycles are always in the image of the S_* stabilization maps.
- Therefore star classes obstruct formality locally.
- Therefore *rigid* star classes obstruct formality globally.
- Rigidify a star class at v by combining it with a "top class" in $S(\Gamma_v)$.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star cycles are always in the image of the S_* stabilization maps.
- Therefore star classes obstruct formality locally.
- Therefore *rigid* star classes obstruct formality globally.
- Rigidify a star class at v by combining it with a "top class" in $S(\Gamma_v)$.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star *cycles* are always in the image of the S_* stabilization maps.
- Therefore star classes obstruct formality locally.
- Therefore *rigid* star classes obstruct formality globally.
- Rigidify a star class at v by combining it with a "top class" in $S(\Gamma_v)$.

- Locally star classes are not in the image of the H_* stabilization maps.
- But star *cycles* are always in the image of the S_* stabilization maps.
- Therefore star classes obstruct formality locally.
- Therefore rigid indecomposable star classes obstruct formality globally.
- Rigidify a star class at v by combining it with a "top class" in $S(\Gamma_v)$.

Definition

A surgery replaces a subgraph attached at two vertices with a single edge.

Definition

A surgery replaces a subgraph attached at two vertices with a single edge.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

A surgery replaces a subgraph attached at two vertices with a single edge.

Lemma

Surgery reflects non-formality.

• • = • • = •

Definition

A surgery replaces a subgraph attached at two vertices with a single edge.

Lemma

Surgery reflects non-formality.

Lemma

Any large graph can be surgered to one of the following.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

A surgery replaces a subgraph attached at two vertices with a single edge.

Lemma

Surgery reflects non-formality.

Lemma

Any large graph can be surgered to one of the following.

Definition

A surgery replaces a subgraph attached at two vertices with a single edge.

Lemma

```
Surgery reflects non-formality.
```

Lemma

Any large graph can be surgered to one of the following.

Definition

A surgery replaces a subgraph attached at two vertices with a single edge.

Lemma

```
Surgery reflects non-formality.
```

Lemma

Any large graph can be surgered to one of the following.

< □ > < □ > < □ > < □ > < □ > < □ >

э

Lemma

Lemma

Lemma

Lemma

Lemma

In all three cases we can build a rigid indecomposable star class.

Corollary

Large graphs are non-formal.

An–Drummond-C	ole–Knudser
---------------	-------------

→ ∃ →

Thank you for your attention.

э