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Configuration spaces

Definition (Configuration spaces)

Let X be a space. The ordered configuration space Fy(X) of X is the
space of k-tuples of distinct points in X:

Fi(X) = {(x1,...,xk) € XX|x; # x; for i # j}.

F3T2
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Configuration spaces

Definition (Configuration spaces)

Let X be a space. The ordered configuration space Fy(X) of X is the
space of k-tuples of distinct points in X:

Fi(X) = {(x1,...,xk) € XX|x; # x; for i # j}.

The unordered configuration space By(X) is the quotient of Fy(X) by the
symmetric group action.

Bk(X) = Fk(X)/Sk
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Configuration spaces of graphs

This talk is about the unordered configuration space of a graph TI'.

BsKa
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Theorem (Ghrist; Abrams)
Let I be a connected graph. The space By (') is a K(m,1) space. J
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Configuration spaces of graphs

This talk is about the unordered configuration space of a graph TI'.

BsKa

Theorem (Ghrist; Abrams)
Let I be a connected graph. The space By (') is a K(m,1) space.

Motivating question

Let I be a graph. Calculate the bigraded groups H;(B(I)).

(bigrading by homological degree and cardinality).
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Stabilization phenomena

Stabilization at boundary components

Let M be a manifold with a boundary component 0.
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There is a O-stabilization operation from By (M) to Byx11(M).
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Stabilization phenomena

Stabilization at boundary components

Let M be a manifold with a boundary component 0.
There is a O-stabilization operation from By (M) to Byx11(M).

\
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Stabilization phenomena

Stabilization at boundary components

Let M be a manifold with a boundary component 0.
There is a O-stabilization operation from By (M) to Byx11(M).

o .
e<—new point

We stabilize at 9 by deforming a cylindrical end near 0 inwards from the
boundary and adding a new point.
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Stabilization phenomena

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space.
For example, we can stabilize at a leaf of a graph.

(leaf length exaggerated for emphasis)
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Stabilization phenomena

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space.
For example, we can stabilize at a leaf of a graph.

(leaf length exaggerated for emphasis)

o S U VR B By (T
newtoint 7( )

An—-Drummond-Cole-Knudsen Edge Stabilization June 25, 2018 5/25



Stabilization phenomena

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space.
For example, we can stabilize at a leaf of a graph.

(leaf length exaggerated for emphasis)
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newtoint 7( )

An alternative parameterization for graphs J

Idea: use midpoints between configuration points in the leaf.
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Stabilization phenomena

Stabilization at cylindrical ends

We can always stabilize at a cylindrical end in any space.
For example, we can stabilize at a leaf of a graph.

(leaf length exaggerated for emphasis)
Be(T) I Se—e—e
l Se—eee—9 Br(I")
T T
new point new point?

An alternative parameterization for graphs J

Idea: use midpoints between configuration points in the leaf.
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Midpoint stabilization

Key observation

The midpoint parameterization is (basically) insensitive to the presence of
configuration points at the vertices.
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Edge stabilization

Consequence J

We can stabilize at any edge, not just at leaves.

before stabilization: M
after stabilization: M
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Edge stabilization: framework

Fix a graph ' with edges E.
Proposition (An—D.—Knudsen)
The singular chains C.(B.(I')) are a differential bigraded Z[E]-module.
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Fix a graph ' with edges E.

Proposition (An—D.—Knudsen)

The singular chains C.(B.(I')) are a differential bigraded Z[E]-module.
There is an equivalent finitely generated Z[E]-linear chain model.

This makes contact with earlier work at the level of homology.
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An—-Drummond-Cole—Knudsen Edge Stabilization June 25, 2018 8 /25



Edge stabilization: framework

Fix a graph ' with edges E.

Proposition (An—D.—Knudsen)

The singular chains C.(B.(I')) are a differential bigraded Z[E]-module.
There is an equivalent finitely generated Z[E]-linear chain model.

This makes contact with earlier work at the level of homology.

Proposition (Ramos; An—D.—Knudsen)

The homology groups H.(B.(I)) are (naturally) a bigraded Z[E]-module.

Finite generation has the following consequence.

Corollary
Over a field, for any i, dim H;(Bk(T")) is eventually polynomial in k. J
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Growth rate of the homology

Corollary
Over a field, for any i, dim H;(Bk(T")) is eventually polynomial in k. J

We can calculate the growth rate more explicitly.
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Growth rate of the homology

Corollary
Over a field, for any i, dim H;(Bk(T")) is eventually polynomial in k. J

We can calculate the growth rate more explicitly.

Theorem (Ramos; An—D.—Knudsen) J

The polynomial degree is equal to a certain connectivity invariant of T.

The invariant is roughly the maximum number of connected components
of the complement of i vertices in I'.
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Formality over the stabilization ring

The chain module is richer than the homology module.
Theorem (An—-D.—Knudsen)

The chains C.(B.(T")) are formal as a Z[E]-module if and only if
I" is a disjoint union of connected small graphs.
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Formality over the stabilization ring

The chain module is richer than the homology module.

Theorem (An—-D.—Knudsen)

The chains C.(B.(T")) are formal as a Z[E]-module if and only if
I" is a disjoint union of connected small graphs.

.1098%

(homeomorphism classes of ) connected small graphs

Non-formality means the homotopy type of the homology module is not
the same as the homotopy type of the chain module.
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A local chain model

An important tool is a chain model for configurations near a vertex v.
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Construction-Definition: S(v)

Consider the free bigraded Z]ey, . .., e5]-module S(v) on the generators:
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A finitely generated chain model

Theorem (Swiqtkowski; Litgehetmann; Chettih—Liitgehetmann;
An-D.—Knudsen)

There is a finitely generated bigraded differential Z[E]-module S, .(I)
weakly equivalent to C,.(B.(I)).
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This model can can be constructed by tensoring together our local vertex
models over the stabilization ring.
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A finitely generated chain model

Theorem (gwiqtkowski; Litgehetmann; Chettih—Liitgehetmann;
An-D.—Knudsen)

There is a finitely generated bigraded differential Z[E]-module S, .(I)
weakly equivalent to C,.(B.(I)).

This model can can be constructed by tensoring together our local vertex
models over the stabilization ring.

@€ >

(M= S(v) Ozpgxx) S(w)

Example
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Star classes

Many things can be built from a kind of local class we call a star class.
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Definition J

A class pushed forward from the cycle in Hi(B2(Y)) is a star class.
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Star classes

Many things can be built from a kind of local class we call a star class.

s PP Y
v R O S

Definition J

A class pushed forward from the cycle in Hi(B2(Y)) is a star class.
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Star classes

Many things can be built from a kind of local class we call a star class.

s PP Y
v R O S

Definition
A class pushed forward from the cycle in Hi(B2(Y)) is a star class.

S

Lemma J

Star classes are nontrivial (they may be 2-torsion).
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Ramos’ connectivity invariant

Recall that over a field, dim H;(Bk(I"))) is eventually polynomial in k.
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Ramos’ connectivity invariant

Recall that over a field, dim H;(Bk(I"))) is eventually polynomial in k.
Write N}' for the degree of this polynomial.

Def|n|t|0n (Ra mOS, inVariant [all vertices valence > 3 case])

Al = r\ w
r Wrg%)lwo(\ )1
|W|=i
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Ramos’ connectivity invariant

Recall that over a field, dim H;(Bk(I"))) is eventually polynomial in k.
Write N}' for the degree of this polynomial.

Def|n|t|0n (Ra mOS, inVariant [all vertices valence > 3 case])

Al = r\ w
r Wrg%)lwo(\ )1
|W|=i

Theorem (Ramos)

ForT a tree, Nf = A} — 1.
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Ramos’ connectivity invariant

Recall that over a field, dim H;(Bk(I"))) is eventually polynomial in k.

Write N}' for the degree of this polynomial.
Def|n|t|on (RamOS, inVariant [all vertices valence > 3case])

AF = max_|mo(T\ W)|

WcVv(r)
|W|=i
v
Theorem (Ramos)
ForT a tree, Nf = A} — 1.
v
Theorem (An—-D.—Knudsen)
ForT" a graph, Nf = A —1 )
June 25,2018 14 / 25



Examples of Ramos’ invariant

Example

i AT N dimH;By(T) valid for

I
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Examples of Ramos’ invariant

Example
i AU NI dim H;By () valid for
0 1 0 1 all k
/‘\ 1 1 0 4 k>?2
/—\ 2 2 1 6k-—15 k>3
3 4 3 4" all k
4 6 5 (3 all k
>5 —oc0 - 0 all k
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Lower bound: Nf > AL —1

Idea to prove lower bound

Find a torus « of star classes at W C V whose stabilizations grow quickly.
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Idea to prove lower bound

Find a torus « of star classes at W C V whose stabilizations grow quickly.J

a torus o with |[W| =1

a torus a with |[W| =2

Lemma

If each star touches two or more components of I \ W, then « is rigid. J

An-Drummond-Cole—Knudsen Edge Stabilization June 25, 2018 16 / 25



Lower bound: Nf > AL —1

Idea to prove lower bound

Find a torus « of star classes at W C V whose stabilizations grow quickly.J

(not rigid) a torus o with |[W| =1 (rigid)
a torus a with |[W| =2

Lemma

If each star touches two or more components of I \ W, then « is rigid. J

An-Drummond-Cole—Knudsen Edge Stabilization June 25, 2018 16 / 25



Lower bound: Nf > AL —1

Idea to prove lower bound

Find a torus « of star classes at W C V whose stabilizations grow quickly.J

(not rigid) a torus o with |[W| =1 (rigid)
a torus a with |[W| =2

Lemma

If each star touches two or more components of '\ W, then « is rigid. J

l.e., every representative of « contains generators blocking all of W.

An—-Drummond-Cole—Knudsen Edge Stabilization June 25, 2018 16 / 25



Lower bound: Nf > AL —1

Idea to prove lower bound

Find a torus « of star classes at W C V whose stabilizations grow quickly.J

(not rigid) a torus o with |[W| =1 (rigid)
a torus a with |[W| =2

Lemma

If each star touches two or more components of '\ W, then « is rigid. J

l.e., every representative of « contains generators blocking all of W.

An—-Drummond-Cole—Knudsen Edge Stabilization June 25, 2018 16 / 25



Lower bound: Nf > AL —1

Idea to prove lower bound

Find a torus « of star classes at W C V whose stabilizations grow quickly.J

(not rigid) a torus o with |[W| =1 (rigid)
a torus a with |[W| =2

Lemma

If each star touches two or more components of '\ W, then « is rigid. J

l.e., every representative of « contains generators blocking all of W.

An—-Drummond-Cole—Knudsen Edge Stabilization June 25, 2018 16 / 25



Lower bound: Nf > AL —1

Idea to prove lower bound

Find a torus « of star classes at W C V whose stabilizations grow quickly.J

(not rigid) a torus o with |[W| =1 (rigid)
a torus a with |[W| =2

Lemma

If each star touches two or more components of '\ W, then « is rigid. J

l.e., every representative of « contains generators blocking all of W.

An—-Drummond-Cole—Knudsen Edge Stabilization June 25, 2018 16 / 25



Lower bound: Nf > AL —1

Idea to prove lower bound

Find a torus « of star classes at W C V whose stabilizations grow quickly.J

(not rigid) a torus o with |[W| =1 (rigid)
a torus a with |[W| =2

Lemma

If each star touches two or more components of '\ W, then « is rigid. J

l.e., every representative of « contains generators blocking all of W.

An—-Drummond-Cole—Knudsen Edge Stabilization June 25, 2018 16 / 25



Lower bound: Nt > AL —1

Idea to prove lower bound J

Find a torus « of star classes at W C V whose stabilizations grow quickly.

(not rigid) a torus « with |[W| =1 (rigid)

a torus a with |[W| =2

Lemma J

If each star touches two or more components of '\ W, then « is rigid.

l.e., every representative of « contains generators blocking all of W.

Lemma
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Lower bound: Nf > AL —1

Lemma

If each star touches two or more components of '\ W, then « is rigid.

Lemma

The stabilizations of rigid « look like polynomials in 7o(T"\ W).
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Lower bound: Nf > AL —1

Lemma

If each star touches two or more components of '\ W, then « is rigid.

Lemma

The stabilizations of rigid « look like polynomials in 7o(T"\ W).

(reminder) Air = Wrg\a/?r) [mo (I \ W)
\Wi=i
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Lower bound: Nf > AL —

Lemma

If each star touches two or more components of I \ W, then « is rigid.

Lemma

The stabilizations of rigid o look like polynomials in mo(I" \ W).

(reminder) Air = ma)Er |mo(I\ W)
|W|=i

Proof of lower bound.

For |[W| # 1, if W realizes this maximum then every vertex of W touches
two or more components of '\ W.
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Lower bound: Nt > AL —

Lemma
If each star touches two or more components of I \ W, then « is rigid.

Lemma

The stabilizations of rigid o look like polynomials in mo(I" \ W).

(reminder) Air = ma)Er |mo(I\ W)
|W|=i

Proof of lower bound.

For |[W| # 1, if W realizes this maximum then every vertex of W touches
two or more components of '\ W.
Then we can build a rigid torus c. O

An—-Drummond-Cole—Knudsen Edge Stabilization June 25, 2018 17 / 25



Upper bound: N} < Af —1
Idea to prove upper bound

Use rigidity at vertices to decompose H;(B(I)).
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Upper bound: N} < Af —1
Idea to prove upper bound
Use rigidity at vertices to decompose H;(B(I)). J

ry

SRV

@ The v-rigid part of H;(By(I')) grows like H;_1(Bk—1('v)).
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@ The v-rigid part of H;(Bk(I')) grows like Hi_1(Bk-1(l'v)).
@ The non-v-rigid in H;(B(I)) grows like H;(B(I"))).

An—-Drummond-Cole-Knudsen Edge Stabilization June 25, 2018 18 / 25



Upper bound: N} < Af —1
Idea to prove upper bound
Use rigidity at vertices to decompose H;(B(I)). J

ry

AL

large blue vertices are sinks;
multiple points can coincide at them <V>

@ The v-rigid part of H;(Bk(I')) grows like Hi_1(Bk-1(l'v)).
@ The non-v-rigid in H;(B(I)) grows like H;(B(I"))).

An—-Drummond-Cole-Knudsen Edge Stabilization June 25, 2018 18 / 25
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@ The v-rigid part of H;(Bk(I')) grows like Hi_1(Bk-1(l'v)).
o The non-v-rigid in H;(Bk(T")) grows like H;(By(I'")).
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@ The v-rigid part of H;(Bk(I')) grows like Hi_1(Bk-1(l'v)).
o The non-v-rigid in H;(Bk(T")) grows like H;(By(I'")).

Proof outline.

Recursively we can reduce to

P Ho(Bu- AT =),
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@ The v-rigid part of H;(Bk(I')) grows like Hi_1(Bxk—_1(I'v)).
o The non-v-rigid in H;(Bk(T")) grows like H;(By(I'")).

Proof outline.
Recursively we can reduce to

D Ho(Bi—i(T W),

The FVV summand grows like

(k — i)lm(MW)I-1, m

One problem with this approach

I'm totally lying about the decomposition.
The real groups involved are too hard to calculate explicitly.

But with the lies | told, you can do well enough to get an upper bound.
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Formality

Theorem

C.(B«(I)) is Z|E]-formal if and only if T is small.

.IQ?SQ_Q

=] & = E DA
An—-Drummond-Cole—Knudsen Edge Stabilization




Formality

Theorem

C.(B«(I)) is Z|E]-formal if and only if T is small.
Question

-1 Y Y oo
o Why do we care?
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Formality

Theorem
C.(B«(I)) is Z|E]-formal if and only if T is small. J

.IQ?SQ_Q

Question
@ Why do we care?

Answer
o Computation: assembling graphs
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Formality

Theorem
C.(B«(I)) is Z|E]-formal if and only if T is small. J

.IQ?SQ_Q

Question
@ Why do we care?

Answer
o Computation: assembling graphs

@ Higher invariants
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(Non)-formality and graph assembly

r]_ Lg rz) = 5 rl) ®Z[E’]

S(T2)
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(Non)-formality and graph assembly

A

S(Miug M) = 5(M)  @zien  S(I)

If we had formality, we could conclude:

H,B(1 Ug o) = Tor“E(H, B(T1), H.B(T)).
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(Non)-formality and graph assembly

o C—>

S(Miug M) = 5(M)  @zien  S(I)

If we had formality, we could conclude:
H,B(1 Ug o) = Tor“E(H, B(T1), H.B(T)).

Instead this is just page two of a Kiinneth spectral sequence in general.
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Local and global nonformality

Ideology
@ Locally star classes are not in the image of the H, stabilization maps.
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Local and global nonformality

Ideology
@ Locally star classes are not in the image of the H, stabilization maps.
@ But star cycles are always in the image of the S, stabilization maps.
@ Therefore star classes obstruct formality locally.

@ Therefore rigid star classes obstruct formality globally.
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Local and global nonformality

Ideology
@ Locally star classes are not in the image of the H, stabilization maps.
@ But star cycles are always in the image of the S, stabilization maps.
@ Therefore star classes obstruct formality locally.

@ Therefore rigid star classes obstruct formality globally.

o Rigidify a star class at v by combining it with a “top class” in S(I'}).

v
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Local and global nonformality

Ideology
@ Locally star classes are not in the image of the H, stabilization maps.
@ But star cycles are always in the image of the S, stabilization maps.
@ Therefore star classes obstruct formality locally.
@ Therefore rigid star classes obstruct formality globally.
o Rigidify a star class at v by combining it with a “top class” in S(I'}).

v

Counterexample

b

v
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Local and global nonformality

Ideology
@ Locally star classes are not in the image of the H, stabilization maps.
@ But star cycles are always in the image of the S, stabilization maps.
@ Therefore star classes obstruct formality locally.
@ Therefore rigid star classes obstruct formality globally.
o Rigidify a star class at v by combining it with a “top class” in S(I'}).

v

Counterexample

O 566664

v
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Local and global nonformality

Ideology
@ Locally star classes are not in the image of the H, stabilization maps.
@ But star cycles are always in the image of the S, stabilization maps.
@ Therefore star classes obstruct formality locally.
@ Therefore rigid star classes obstruct formality globally.

o Rigidify a star class at v by combining it with a “top class” in S(I'}).

v

Counterexample

b 6466604

What goes wrong? The star class is a combination of stabilized classes.
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Local and global nonformality

Ideology
@ Locally star classes are not in the image of the H, stabilization maps.
@ But star cycles are always in the image of the S, stabilization maps.
@ Therefore star classes obstruct formality locally.
@ Therefore rigid star classes obstruct formality globally.

o Rigidify a star class at v by combining it with a “top class” in S(I'}).

v

Counterexample

S SRR

What goes wrong? The star class is a combination of stabilized classes.
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Local and global nonformality

Ideology
@ Locally star classes are not in the image of the H, stabilization maps.
@ But star cycles are always in the image of the S, stabilization maps.
@ Therefore star classes obstruct formality locally.
@ Therefore rigid star classes obstruct formality globally.

o Rigidify a star class at v by combining it with a “top class” in S(I'}).

v

Counterexample

stabilized loop

S YA YR

\ stabilized loop /

What goes wrong? The star class is a combination of stabilized classes.
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Local and global nonformality

Ideology

@ Locally star classes are not in the image of the H, stabilization maps.
@ But star cycles are always in the image of the S, stabilization maps.
@ Therefore star classes obstruct formality locally.

@ Therefore rigid indecomposable star classes obstruct formality globally.

@ Rigidify a star class at v by combining it with a “top class” in S(I'y).

Counterexample

5 b

What goes wrong? The star class is a combination of stabilized classes.

X

\ stabilized loop /

stabilized loop

X

S
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Building rigid indecomposable star classes
Definition

A surgery replaces a subgraph attached at two vertices with a single edge.

J
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A surgery replaces a subgraph attached at two vertices with a single edge. J
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Building rigid indecomposable star classes

Definition

A surgery replaces a subgraph attached at two vertices with a single edge. J

S e -

Lemma
Surgery reflects non-formality. J
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Building rigid indecomposable star classes

Definition ]

A surgery replaces a subgraph attached at two vertices with a single edge.

S e -

Lemma
Surgery reflects non-formality.

Lemma
Any large graph can be surgered to one of the following.
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Definition J

A surgery replaces a subgraph attached at two vertices with a single edge.
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Building rigid indecomposable star classes

Definition

A surgery replaces a subgraph attached at two vertices with a single edge. J

S e -

Lemma
Surgery reflects non-formality.

Lemma
Any large graph can be surgered to one of the following.

@ ﬁ /\ } at least 3 distinct vertices
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Using surgery

Lemma
Any large graph can be surgered to one of the following.

@ a n%\ } at least 3 distinct vertices
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Any large graph can be surgered to one of the following.

@ a n/\ } at least 3 distinct vertices

Lemma

In all three cases we can build a rigid indecomposable star class.
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Using surgery

Lemma
Any large graph can be surgered to one of the following.

@ ﬁ '4\" } at least 3 distinct vertices
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Using surgery

Lemma
Any large graph can be surgered to one of the following.

@ ﬁ .4\" } at least 3 distinct vertices

Lemma

In all three cases we can build a rigid indecomposable star class.

Corollary

Large graphs are non-formal.
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Thank you for your attention.
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