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Configuration spaces
Definition (Configuration spaces)
Let X be a space. The ordered configuration space Fk(X ) of X is the
space of k-tuples of distinct points in X :

Fk(X ) := {(x1, . . . , xk) ∈ X k |xi 6= xj for i 6= j}.

The unordered configuration space Bk(X ) is the quotient of Fk(X ) by the
symmetric group action.

Bk(X ) := Fk(X )/Sk

F3T2

B3T2
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Configuration spaces of graphs

This talk is about the unordered configuration space of a graph Γ.

B5K4

Theorem (Ghrist; Abrams)
Let Γ be a connected graph. The space Bk(Γ) is a K (π, 1) space.

Motivating question
Let Γ be a graph. Calculate the bigraded groups Hi (Bk(Γ)).

(bigrading by homological degree and cardinality).
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Stabilization phenomena

Stabilization at boundary components
Let M be a manifold with a boundary component ∂.

There is a ∂-stabilization operation from Bk(M) to Bk+1(M).

new point

We stabilize at ∂ by deforming a cylindrical end near ∂ inwards from the
boundary and adding a new point.
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Stabilization phenomena

Stabilization at cylindrical ends
We can always stabilize at a cylindrical end in any space.
For example, we can stabilize at a leaf of a graph.

B6(

Γ

)

(leaf length exaggerated for emphasis)

new point

B7(Γ)
new point?

An alternative parameterization for graphs
Idea: use midpoints between configuration points in the leaf.
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Midpoint stabilization

Key observation
The midpoint parameterization is (basically) insensitive to the presence of
configuration points at the vertices.
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Edge stabilization

Consequence
We can stabilize at any edge, not just at leaves.

before stabilization:

after stabilization:
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Edge stabilization: framework

Fix a graph Γ with edges E .

Proposition (An–D.–Knudsen)
The singular chains C∗(B∗(Γ)) are a differential bigraded Z[E ]-module.

There is an equivalent finitely generated Z[E ]-linear chain model.

This makes contact with earlier work at the level of homology.

Proposition (Ramos; An–D.–Knudsen)
The homology groups H∗(B∗(Γ)) are (naturally) a bigraded Z[E ]-module.

Finite generation has the following consequence.

Corollary
Over a field, for any i, dimHi (Bk(Γ)) is eventually polynomial in k.
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Growth rate of the homology

Corollary
Over a field, for any i, dimHi (Bk(Γ)) is eventually polynomial in k.

We can calculate the growth rate more explicitly.

Theorem (Ramos; An–D.–Knudsen)
The polynomial degree is equal to a certain connectivity invariant of Γ.

The invariant is roughly the maximum number of connected components
of the complement of i vertices in Γ.
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Formality over the stabilization ring

The chain module is richer than the homology module.

Theorem (An–D.–Knudsen)
The chains C∗(B∗(Γ)) are formal as a Z[E ]-module if and only if
Γ is a disjoint union of connected small graphs.

(homeomorphism classes of) connected small graphs

Non-formality means the homotopy type of the homology module is not
the same as the homotopy type of the chain module.
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A local chain model

An important tool is a chain model for configurations near a vertex v .

Construction-Definition: S(v)
Consider the free bigraded Z[e1, . . . , en]-module S(v) on the generators:

the symbol ∅ in bidegree (0, 0),
the symbol v in bidegree (0, 1), and
the symbols h1, . . . , hn in bidegree (1, 1)

Equip this module with the differential d(hj) = ej − v .
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A finitely generated chain model

Theorem (Świątkowski; Lütgehetmann; Chettih–Lütgehetmann;
An–D.–Knudsen)
There is a finitely generated bigraded differential Z[E ]-module S∗,∗(Γ)
weakly equivalent to C∗(B∗(Γ)).

This model can can be constructed by tensoring together our local vertex
models over the stabilization ring.

Example

S∗,∗(Γ)∼= S(v) ⊗Z[x1,x2,x3] S(w)
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Star classes

Many things can be built from a kind of local class we call a star class.

− +

− + −

− +

− + −B2(Y )

Y

Definition
A class pushed forward from the cycle in H1(B2(Y )) is a star class.

Lemma
Star classes are nontrivial (they may be 2-torsion).
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Ramos’ connectivity invariant

Recall that over a field, dimHi (Bk(Γ))) is eventually polynomial in k.

Write N i
Γ for the degree of this polynomial.

Definition (Ramos’ invariant [all vertices valence ≥ 3 case])

∆i
Γ = max

W⊂V (Γ)
|W |=i

|π0(Γ \W )|

Theorem (Ramos)
For Γ a tree, N i

Γ = ∆i
Γ − 1.

Theorem (An–D.–Knudsen)
For Γ a graph, N i

Γ = ∆i
Γ − 1
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Examples of Ramos’ invariant

Example

i ∆Γ
i NΓ

i dimHiBk(Γ) valid for

0 1 0 1 all k

1 1 0 4 k ≥ 2

2 2 1 6k − 15 k ≥ 3

3 4 3 4
(k−3

3
)

all k

4 6 5
(k−3

5
)

all k

≥ 5 −∞ −∞ 0 all k
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Lower bound: N i
Γ ≥ ∆i

Γ − 1

Idea to prove lower bound
Find a torus α of star classes at W ⊂ V whose stabilizations grow quickly.

a torus α with |W | = 1(not rigid)

a torus α with |W | = 2

(rigid)

Lemma
If each star touches two or more components of Γ \W, then α is rigid.

I.e., every representative of α contains generators blocking all of W .

Lemma
The stabilizations of rigid α look like polynomials in π0(Γ \W ).
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Lemma
The stabilizations of rigid α look like polynomials in π0(Γ \W ).

(reminder) ∆i
Γ = max

W⊂V (Γ)
|W |=i

|π0(Γ \W )|

Proof of lower bound.
For |W | 6= 1, if W realizes this maximum then every vertex of W touches
two or more components of Γ \W .
Then we can build a rigid torus α.
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Upper bound: N i
Γ ≤ ∆i

Γ − 1
Idea to prove upper bound
Use rigidity at vertices to decompose Hi (B(Γ)).

large blue vertices are sinks;
multiple points can coincide at them

Γv

Γ〈v〉

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

The v -rigid part of Hi (Bk(Γ)) grows like Hi−1(Bk−1(Γv )).
The non-v -rigid in Hi (Bk(Γ)) grows like Hi (Bk(Γ〈v〉)).
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The v -rigid part of Hi (Bk(Γ)) grows like Hi−1(Bk−1(Γv )).
The non-v -rigid in Hi (Bk(Γ)) grows like Hi (Bk(Γ〈v〉)).

Proof outline.
Recursively we can reduce to⊕

H0(Bk−i (Γ〈v1〉,...〈vj 〉
w1,...,wi )).

The ΓV
W summand grows like

(k − i)|π0(Γ\W )|−1.

One problem with this approach
I’m totally lying about the decomposition.
The real groups involved are too hard to calculate explicitly.

But with the lies I told, you can do well enough to get an upper bound.
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Formality

Theorem
C∗(B∗(Γ)) is Z[E ]-formal if and only if Γ is small.

Question
Why do we care?

Answer
Computation: assembling graphs
Higher invariants
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(Non)-formality and graph assembly

S(Γ1 tE ′ Γ2) ∼= S(Γ1) ⊗Z[E ′] S(Γ2)

If we had formality, we could conclude:

H∗B(Γ1 tE ′ Γ2) ∼= TorZ[E ′]
∗ (H∗B(Γ1),H∗B(Γ2)).

Instead this is just page two of a Künneth spectral sequence in general.
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Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.

But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.
Therefore rigid star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample

stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.

Therefore star classes obstruct formality locally.
Therefore rigid star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample

stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.

Therefore rigid star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample

stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.
Therefore rigid star classes obstruct formality globally.

Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample

stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.
Therefore rigid star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample

stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.
Therefore rigid star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample

stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.
Therefore rigid star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample

stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.
Therefore rigid star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample

stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.
Therefore rigid star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample

stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.
Therefore rigid star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample
stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.

An–Drummond-Cole–Knudsen Edge Stabilization June 25, 2018 22 / 25



Local and global nonformality
Ideology

Locally star classes are not in the image of the H∗ stabilization maps.
But star cycles are always in the image of the S∗ stabilization maps.
Therefore star classes obstruct formality locally.
Therefore rigid indecomposable star classes obstruct formality globally.
Rigidify a star class at v by combining it with a “top class” in S(Γv ).

Counterexample
stabilized loop

stabilized loop

What goes wrong? The star class is a combination of stabilized classes.
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Building rigid indecomposable star classes

Definition
A surgery replaces a subgraph attached at two vertices with a single edge.

Γ′ ⇒

Lemma
Surgery reflects non-formality.

Lemma
Any large graph can be surgered to one of the following.

· · · } at least 3 distinct vertices...
...

...
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Using surgery

Lemma
Any large graph can be surgered to one of the following.

· · · } at least 3 distinct vertices...
...

...

Lemma
In all three cases we can build a rigid indecomposable star class.

Corollary
Large graphs are non-formal.
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Thank you for your attention.
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