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1. April 22: Kathryn Hess: Creating and exploiting model categories
I

I’d like to thank the organizers and professor Oh. This is my first time in Korea
and I’ve been here for approximately 15 hours. I hope that between jet lag and
an allergy pill, this goes okay. I’ll start with an introduction. We have some high
level homotopy theorists here but also people who do low dimensional topology so
I want to not assume people know too much.

I want to start, then, with an introduction, what model categories are, why we
care about them, and so on. Then about creation of them, tips and tricks for
showing that they exist and so on. Then I want to talk about exploiting model
categories in all kinds of contexts, in topology, in algebra, in algebraic geometry.
If this subject intrigues you, I’d be happy to provide references afterwards, Dwyer
and Spalinski, a wonderful book by Emily Riehl, and so on.

I will assume that you know something about categories. I’ll assume some very
basic category theory. So C will be a category with object class ObC and morphisms
MorC. Then given c and d in ObC, I will write C(c, d) for the set of morphisms
from c to d.

1.1. Section 0: Motivation. So I’ll start with section 0, which is why we care
about this at all. So I’ll start with the classical homotopy theory of topological
spaces. If I start with two continuous maps f and g in Top(X,Y ), then I say that
f ≅ g, that f is homotopic to g, if, well, there are two options. You could write
these two as X∐X

f+g
ÐÐ→ Y , and if I look at the inclusion of X∐X →X × I, where

I is the interval, that there exists an extension making the diagram commute:

X∐X Y

X × I

i

f+g

∃H

but I could also use the path object, Map(I, Y ) and ask for existence of a lifting

X Y × Y

PY

∃K

(f,g)

p=(ev0,ev1)

Let me make some observations about this. The maps i0 ∶ X → X × I which
takes x to (x,0) and the similar map i1 are Hurewicz cofibrations. That is, we say
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j ∶ A→ Z is a Hurewicz cofibration if there always exists a lift H in any diagram of
the following sort (homotopy extension):

A PY

Z Y

j ev0
∃H

Or dually, ev0 and ev1 are Hurewicz fibrations: we say that p ∶ E → B is a Hurewicz
fibration if there is a lifting in any diagram of the following sort (homotopy lifting):

X E

X × I B

i0 p
∃K

Note that we have a factorization

X∐X X

X × I

Hurewicz cofibrationhomotopy equivalence

and dually
X X ×X

PX

homotopy equivalenceHurewicz fibration

I want to mention a theorem of Strøm. Let me use↠ to denote a Hurewicz fibration
and ↣ to denote a Hurewicz cofibration. So Strøm noted that you can factor any
math into a cofibration followed by a homotopy equivalence that is a fibration or a
homotopy equivalence which is a cofibration followed by a fibration.

●

X Y

●

≅≅

f

It turns out that the Hurewicz cofibrations have the left lifting property with respect
to all Hurewicz fibrations that are homotopy equivalences, not just these path ones.
Dually, the Hurewicz fibrations satisfy the right lifting property with respect to all
Hurewicz cofibrations that are homotopy equivalences. So you start with things
that lift against a very small class of maps and then show that they lift against a
much larger class.

Let me show how similar notions arise in a different context. To keep things
simple, let’s specialize to chain complexes (unbounded) over a field K. I’ll call that
ChK. If I have f and g in ChK(C,C

′
), then f ≅ g, they are “chain homotopic”, if I

have some maps {hn ∶ Cn → C ′
n+1} for n ∈ Z such that dn+1hn +hn−1dn = fn − gn for

all n.
That’s the usual definition. One reason it’s not entirely satisfactory is that this

is not actually a map of chain complexes. How do you put this in the world of chain
complexes? You could take the direct sum C ⊕C and get a map f + g to C ′, and
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factor this through C ⊗ I (let me tell you what I is in a second) and then ask for a
factorization

C ⊕C C ′

C ⊗ I

∃H

Here In is K ⋅ a ⊕K ⋅ b in n = 0, is K ⋅ t in degree n = 1, and is otherwise 0. It’s an
exercise to see that a chain map as described there is the same as a chain homotopy.

You can also do a path version, so you ask for K:

C C ′
×C ′

Hom(I,C ′
)

(f,g)

∃K

Let’s make some observations. The analogues of Hurewicz cofibrations (respectively
Hurewicz fibrations) are degreewise injective (degreewise surjective) chain maps.
The analogues of all the other observations in the topological context hold. For
example, not to belabor the point, but, for all f we have two factorizations

●

X Y

●

≅≅

f

via chain versions of the mapping cylinder and mapping path space.
This all works in this algebraic context, all of the constructions are similar. So

you can ask what is the bigger picture, what is the common context, the common
framework, for both of these, and can it be generalized or formulated to apply to
chain complexes with structure, differential graded algebra or commutative algebra
or Lie algebra or whatever, so for example if you are interested in differential graded
categories, operads in chain complexes, or to algebraic varieties or manifolds, et
cetera.

So I’d like to tell you about the framework of model categories, one of the frame-
works that lets people talk about homotopy theory in a wide variety of contexts
using the same machinery, that really generalizes the classical picture that I just
reminded you of.

1.2. Model categories. My career is long enough that when I was a graduate
student, I had to explain to homotopy theorists what model categories were. Now
you’ll hear from Dominic and maybe Aaron that these are sort of old-fashioned. I
think there is still room for both.

The goal is to define a homotopy-like equivalence relation on morphisms in a
category. We’ll need extra structure on the category to get the extra structure, and
we’ll use that to “invert” the homotopy equivalences, and if we have two categories
with this kind of structure we’ll compare them.

So I need to introduce some categorical notions. The first one is one that came
up implicitly, the left and right lifting properties. Let C be a category and S a class
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of morphisms S ⊂ MorC, and then LLP(S) is the set of morphisms where for every
commuting diagram like this, there is a commuting lift:

● ●

● ●

f s∈S
∃

Similarly, we say RLP (S) is the set of f such that there is always a lift as follows:
● ●

● ●

s∈S f
∃

Definition 1.1. Let C be a category. A weak factorization system in C consists of
a pair of classes (L,R) of morphisms, so that every f in C can be factored

● ●

●

∀f∈MorC

∃`∈L∃r∈R

and moreover L = LLP (R) and R = RLP (L).

This is what we saw in the topological case, with the Hurewicz fibrations and
cofibrations.

Now we can define what a model category is.

Definition 1.2. A model category consists of a category M that is bicomplete
(has all limits and colimits)—sometimes you don’t need all limits and colimits, but
let’s take the strong definition for now, along with three classes of distinguished
morphisms (W,C,F), the weak equivalences, cofibrations, and fibrations, satisfying
the following axioms.

(1) The class of weak equivalences satisfies “2 out of 3”, meaning that if I have
two composable morphisms f and g, and two of f , g and the composite gf
are weak equivalences, then so is the third.

(2) We have two weak factorization systems (C,F ∩W) and (C ∩W,F).

If you look at the classical article by Dwyer and Spalinski, you’ll see unfoldings
of what all of these things mean. This is a compact description, due to Joyal and
Tierney, I believe.

Remark 1.1. ● The classes LLP(S) and RLP(S) are closed under retracts,
which implies that F , C, F ∩W, and C ∩W are closed under retracts.

● In general LLP(S) is closed under pushouts along morphisms in the under-
lying category, whence C and C ∩W. There is a dual result for RLP that
works for F and F ∩W.

● The classes RLP(S) and LLP(S) contain isomorphisms.

A bit of terminology and notation. I’ll use the same kind of arrows as before,
so that ↣∈ C and ↠∈ F , and

∼
Ð→ for weak equivalences. I’ll call a morphism that

is a weak equivalence and a cofibration an acyclic cofibration and similarly for
fibrations.

Given X in M , if the unique map from the initial object ∅→X is a cofibration,
then X is called cofibrant and similarly if the unique map from X → e (the terminal
object) is a fibration, then X is fibrant.
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One thing that will be important to compute is the fibrant and cofibrant objects
in your category.

One more thing. A model category is a category with certain structure, so
(W,C,F) is a model structure onM.

It’s an exercise to see that any two of the classes here determine the third. It’s
easy to see that W and C determine F , and that W and F determine C. What’s a
little more difficult is that C and F determine W.

This overdetermination gives you a lot of control.
There are variations, fibration categories, cofibration categories, when your struc-

ture is less rich.
We had a model structure on topological spaces with homotopy equivalences and

the Hurewicz fibrations and cofibrations.
You could put other model structures on topological spaces, you could put a

structure where the weak equivalences are weak homotopy equivalences, and use
Serre fibrations and cofibrations, where these are maps with a lifting property
against cylinders on spheres and respectively retracts of cell attachments. This is
more commonly used.

I advertised this as a way to get a homotopy relation. So what I want to do is
try to get a definition analogous to what we had in topological spaces and chain
complexes. So now I’ll fix (M,W,C,F).

We can do this two ways. Let me do it with cylinders. Let X be an object of
M. A cylinder is a factorization of the fold map X∐X →X into a map j followed
by a weak equivalence p. If j ∈ C we call this a good cylinder. If in addition p ∈ F
we call this a very good cylinder.

We can define homotopy now in terms of cylinders. We say that f and g are left
homotopic if and only if there is a cylinder on X and a morphism from Cyl(X)→ Y
such that

X∐X Y

Cyl(X)

f+g

j H

commutes. This left homotopy is good or very good if the cylinder is good or very
good. This is just following our noses and doing an abstract analogue of what we
did in topological spaces.

A couple of properties. We’d like this relation to be well-behaved.

● If f and g are left homotopic, then there exists a good left homotopy from
f to g, and it’s even very good if Y is fibrant. This is not a very hard
exercise.

● The second property is that, it’s not hard to see that this relation is reflexive
and symmetric. If X is cofibrant, then left homotopy is an equivalence
relation onM(X,Y ) for all Y .

This allows us to talk about the set of left homotopy classes. If X is cofibrant, we
write π`(X,Y ) =M(X,Y )/ ∼

`.

Remark 1.2. It turns out for example, that if I have a cofibrant object X and an
acyclic cofibration p ∶ E → B, then postcomposition induces an isomorphism on left
homotopy classes π`(X,E)→ π`(X,B) which takes [f] to [pf].
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There is a dual situation in terms of path objects. If I start with an object Y ,
then a path object on Y is an object PY factoring Y → Y ×Y into a weak equivalence
j ∶ Y → PY followed by a map p ∶ PY → Y × Y . Just as in the other context, if
p ∈ F we call this good, and if p ∈ F and j ∈ C we call it very good. Then we can
define right homotopy as the existence of a path object on Y along with a map H
fitting into

X Y × Y

PY

(f,g)

H p

Dually, if Y is fibrant then ∼
r is an equivalence relation, which gives a notion of

right homotopy classes of morphisms πr(X,Y ) =M(X,Y )/ ∼
r.

Moving back to the topological context, when X is cofibrant and Y is fibrant
then everything agrees.

Proposition 1.1. If X is cofibrant and Y is fibrant then the notions of right and
left homotopy are exactly the same.

This is reassuring. You want to think that X is projective and Y is injective
or that X is a cell complex and Y is anything. So when X is cofibrant and Y is
fibrant, then we will write ∼ for both ∼

` and ∼
r, for the homotopy classes, either

left or right, for maps from X to Y . So at least when X and Y are nice enough
you get homotopy classes.

Just to conclude I’ll give one example of this, an abstract version of the White-
head lemma.

Let X and Y be both cofibrant and fibrant. These are particularly nice objects
in a model category. Then f ∶ X → Y is a weak equivalence if and only if it’s
a homotopy equivalence, i.e., there is a homotopy inverse g ∈M(Y,X) such that
gf ∼ IdX and fg ∼ IdY .

So being a weak equivalence is the same as being a homotopy equivalence for
these fibrant and cofibrant objects. I’ll talk about inverting them next time and
comparing them. Then we’ll start talking about creating them.

2. April 24: Kathryn Hess II

Two line reminder of where we were yesterday. I defined the notion of a model
category, consisting of a bicomplete categoryM along with three classes satisfying
certain axioms. This led to two distinct notions of homotopy between morphisms
in the category, left and right homotopy, using cylinders and path objects. At the
end I mentioned that looking at bifibrant objects you end up with an equivalence
relation. If f and g go from X to Y where X is cofibrant and Y is fibrant, then
f ∼` g if and only if f ∼r g, and so we get a unique equivalence relation when we
are looking at morphisms from a cofibrant to a fibrant.

So now what I want to do is use the structure of a model category and the
homotopy that we have to formally invert all the weak equivalences. I want to
create a category where these are all isomorphisms. I really want to invert them.

The goal now is to invert the class of weak equivalences formally inM, forming
some sort of localization of the category M at W. The notation will be either
HoM or M[W

−1
]. This is a generalization of localization of a ring. This is the

homotopy category ofM. I need to demonstrate existence.
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I want to show that this depends only on the class of weak equivalences. But it
will use the cofibrations and the fibrations.

We’ll use what are called fibrant and cofibrant replacements. If I have an ar-
bitrary object, I need to talk about taking that object and replacing it with an
object which is weakly equivalent but of the right type. You can think of these
replacements as something like injective and projective resolutions of modules.

How do we get these? The idea is the following. I start with an object X inM
and look at the unique morphism ∅ → X, and one of my factorizations gives me
∅↣Xc

↠X with the second map a weak equivalence. So this gives me Xc which
is equivalent to X and cofibrant. On the other hand I can factor X → e, the unique
map, into X ↣ Xf

↠ e where the first map is a weak equivalence. So the first of
these Xc is a cofibrant replacement, and Xf is a fibrant replacement.

Sometimes one asks for these to be functorial, and I might not do that. But
even without functoriality, given g ∈M(X,Y ), I can consider the following. I want
a map from Xc to Y c.

∅ Y c

Xc X Y

∃gc

g

because ∅ → Xc is a cofibration and Y c → Y is an acyclic fibration. So this might
not be unique but I have it. It’s unique “enough” i.e. up to homotopy in an
appropriate sense.

Similarly, I have a lift

X Y Y f

Xf e

g

∃gf

Some properties, gc is a weak equivalence if and only if g is if and only if gf is, by
two out of three.

Also, they “behave well” with respect to left and right homotopy and with respect
to composition (up to homotopy). I don’t want to make these statements precise.

This says we can take a morphism between objects and replace it with a mor-
phism between cofibrant objects or between fibrant objects, or we can do first one
and then the other replacement.

Now I’ll give one possible construction of this homotopy category. What will
I do? I’ll have the objects be the objects of M. I’ll say that the morphisms
HoM(X,Y ) are π(Xcf , Y cf). Note that if X is already cofibrant, then the com-
posite X →Xf will still be a cofibration. So Xcf will be both cofibrant and fibrant
(and the same for Y ).

This is well defined, composition works well, composition in this category, if I
have a homotopy class of g and a homotopy class of h, then I compose them to
the homotopy class of h ○ g. The properties that I didn’t spell out exactly tell us
that this is well-defined, it’s nice and associative, and the identity is the class of
the identity of the fibrant cofibrant replacement.

You’d like a way to compare this to the original category. There is a comparison
functor γ ∶M → HoM, where γ(X) = X and γ(g) = [γcf ]. More explicitly, what
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am I doing here?

Xcf Y cf

Xc Y c

X Y

gcf

gc

∼

∼

∼

∼

g

What are the properties of γ that show it is a localization?
First note that γ(W) ⊂ Iso HoM. This is not hard once you see where these

maps come from. The Whitehead lemma says a weak equivalence between Xcf

and Y cf is a homotopy equivalence and becomes an isomorphism in the homotopy
category.

What is the universal property in this context? If I have a functor F ∶M → D

sending W to isomorphisms in D, then there should be a unique extension F̂ of F
over the homotopy category to make the diagram commute: F̂ γ = F .

It’s a little work to show that, but it’s not ridiculously difficult. That’s the sense
in which this category is actually a localization.

The reason it’s useful to depend on the cofibrations and fibrations is that it lets
you get around the normal way you might want to think to do this, which is to
write down chains of maps and formal inverses. You don’t know if you have a set of
morphisms like that. This lets you get around that without going through a formal
process of inversion.

I talked about model categories and getting a homotopy category, we want to
compare two of these now. I’ll have some sort of functor between the categories,
and I’d ask what kind of properties this should satisfy in order to preserve these
homotopy categories.

I won’t go into too much detail, but will only give some basic compatibilities so
I can get to creating model structures.

Theorem 2.1. Let (M,W,C,F) and (M
′,W ′,C′,F ′) be model categories. I’ll

start with an adjunction F ∶M→M
′ andM←M

′
∶ G be an adjoint pair. I want

to give conditions on when this induces an adjunction of homotopy categories.
If F preserves cofibrations and G preserves fibrations, then there is an induced

adjunction on the level of homotopy categories, then there is an induced adjunction
LF ∶ HoM⇆ HoM′RG, the total left derived functor of F and total right derived
functor of G.

Let me say a word about what these do on objects, LF (X) = F (Xc
) and

RG(Y ) = G(Y f). These are examples of left and right derived functors. If you
have a functor sending weak equivalences to weak equivalences, then γ′ ○ F (W) ⊂

Iso(HoM′
) where γ′ ∶M′

→ HoM′ and we know LF = F̂ . Similarly for G.
We’re interested in when we have two different categories which will have equiv-

alent homotopy categories.
So if in addition, for every cofibrant object X ofM and every fibrant object Y in

M
′, if you consider a map inM′ from F (X) to Y , that map is a weak equivalence

if and only if the transpose is also a weak equivalence. So I’m saying g ∶ F (X)→ Y
is a weak equivalence if and only if g#

∶X → G(Y ) is a weak equivalence inM.
Under these hypotheses, the adjunction LF ⊣ RG is an equivalence of categories.

So you get an equivalence of homotopy theories.
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Because we have an adjunction, there are actually alternative formulations that
can be useful for doing this kind of verification.

Remark 2.1. Since F ⊣ G and we have the lifting conditions, the first condition
(and this is a nice little exercise), this is equivalent to F preserving both cofibrations
and acyclic cofibrations, and this is equivalent to the dual condition on the other
side, that G preserves fibrations and acyclic fibrations.

This is something you can get your hands dirty on.
Let me give one example. Let R be a commutative ring. I am going to consider

the category of chain complexes over R this time, unbounded chain complexes, this
is a slightly more delicate situation, there are various model categories one can con-
sider. I’ll use the model structure where weak equivalences are quasi-isomorphisms
(there are also ones where the weak equivalences are chain homotopy equivalences),
F will be degreewise surjective and C degreewise injective maps with degreewise
projective cokernel. [sic]

This is not a terribly difficult thing to prove, that this gives a model structure.
Let’s consider the following functor, − ⊗RM for M a left R-module. This has a
right adjoint, and for N a right R-module, let N[0] be the chain complex with N
in degree 0. I evaluate and get

Hi(L(− ⊗RM)(N[0])) = TorRi (M,N).

I can’t stop without mentioning one of my favorite examples, ∣ ∣ ∶ sSet ⇆ Top ∶ S∗
gives an equivalence of homotopy categories. If I have a pair F ⊣ G which satisfies
the condition in the first part of the theorem, I call it a Quillen pair, an adjunction
which induces one at the level of homotopy categories. If it satisfies the second
condition as well, it’s a Quillen equivalence.

A lot of what goes on here is the search for Quillen pairs that are actually Quillen
equivalences.

Are there any more questions on this particular chapter before I go on to creation
of model structures?

2.1. Creation of model structions. I hope I’ve convinced you that these are
interesting to study. If so you’ll be excited to see more. For motivation, for example,
if you care about differential graded things, then you might be interested not just
in chain complexes, but in algebras or modules over them, or coalgebras. I have
ChR, and I could be interested in dg algebras over R. I have a free forgetful
adjunction. I have an adjunction, can I bring the model structure from chains to
algebras. For coalgebras, you have a cofree functor which turns out to be right
adjoint to the forgetful functor, so if you want to use this adjunction, you have a
different adjunction you could work with. So you could say, what about differential
graded Hopf algebras? There it’s not even directly related to chain complexes, you
have to pass through first algebras (or coalgebras) and then to Hopf algebras by an
adjunction with the opposite handedness.

You have two ways of doing that, can you say something about the two different
ways, if it’s possible to get model category structures going both ways around, will
it give the same thing?

Fix an algebra, a differential graded algebra and look at modules or a differential
graded coalgebra and look at comodules over it. Then you have an adjunction with
chain complexes over R and A-modules, tensoring with A or forgetting, and you
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could ask about whether you can move the model structure along that adjunction.
Dually, you could look at comodules, where forgetful is the left adjoint and tensoring
is the right adjoint.

This is related to the next point. If you think about homotopy descent theory,
which is what motivated me to think about this kind of creation, restrict to chain
complexes to keep it simple, but given a morphism of differential graded algebras,
you could consider the construcution, looking at B ⊗A B, which is a B-bimodule.
This has a comultiplication, a diagonal or coproduct, in the world of B-bimodules,
and this thing is isomorphic to B ⊗A A ⊗A B, and then I can use ϕ to get to
B ⊗A B ⊗A B and then this is isomorphic to (B ⊗A B) ⊗B (B ⊗A B). This seems
kind of stupid but it gives a coproduct, this is a B-coring.

But this plays an essential role in descent theory. We have an adjunction between
A-modules and B-modules, where these are −⊗AB and ϕ∗, forgetting. You compare
[missed] to the category of descent data, Desc(ϕ), where here we have, well, you
have a canonical comparison functor, which is the category of B modules together
with a coaction of this B-coring.

So this is the category of (B ⊗A B)-comodules in ModB . Let me spell this out
a little more explicitly. You have M (a B-module), and ρ ∶M →M ⊗B (B ⊗A B),
satisfying some sort of coassociativity and counitality. If you look at the standard
definition of descent data, this is an action of this coring. The descent data takes
N to N ⊗A B, along with the canonical action ρN which takes

N ⊗A B ≅ N ⊗A A⊗A B → N ⊗A B ⊗A B ≅ (N ⊗A B)⊗B (B ⊗A B)

and the descent theory problem asks when this is equivalent to the category of
modules. You can ask when this gives an equivalence of the respective homotopy
categories if you have a model structure on both sides.

The standard (classical) descent question asks when the canonical comparison
functor is an equivalence of categories, and the homotopical version asks, if ModA
and Desc(ϕ) are model categories, you can ask when this is part of a Quillen
equivalence.

It’s a very natural way of loosening up the approach to descent. This can be
moved far beyond chain complexes to other ground categories, but we will always
need a comodule context.

Okay, and before I finish today, I want to give one more motivational example.
This is when you are thinking about categorise of diagrams in a model category.
You might want a nice homotopy invariant way to compute limits and colimits in the
model category. Then you need a nice model structure on the category of diagrams
in a model category so that you can come up with good definitions. If I have D a
small category and (M,W,C,F) a model category, I want to put a model category
structure on functors from D to M. Let D0 be the discrete category underlying
D. The objects are the same and I only have identity morphisms. In that case,
the functors give me a product of mode structures component by component. This
is easy. Then let ι denote the inclusion of D0 to D. ThenMD0 has both left and
right adjoints via Kan extension. You can ask whether either of these adjunctions
gives a model structure onMD.
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3. April 25: Joan Licata: Front projection via Morse theory and
monodromy

The question I want to talk about is a small part of a big question. If you start
with an understanding of something in R3, do you understand it in other three-
manifolds? The part of this I want to address is about Legendrian knot theory. It’s
convenient for me to follow Youngjin’s talk yesterday. I can treat it as motivation.
If you start with a Legendrian knot in a three-manifold, how do you study it? You
have a nice projection in R3 that lets you do some nice algebraic invariants, so I’ll
talk some about front projections and then use that to give me an angle on other
three-manifolds.

So in R3 we have a one-form dz − ydx, and we’re not interested in the form
so much but rather its kernel, and together these two things make up a contact
manifold. So what’s the kernel of this one-form? It’s a 2-plane field, but it’s a
non-integrable 2-plane field. It’s not the tangent plane of any surface. Unlike for a
vector field, where you can always do this locally, you can’t always do this, and in
this case this is completely non-integrable, there is no small open set where this is
possible. So whenever we have such a thing we call it a contact structure.

Inside a manifold with a contact structure you can find a knot theory that is
compatible. We’re interested in the case where the curve is tangent to the plane at
every point. So K is Legendrian inside a contact manifold if TK is always in the
plane field, and that’s another way of saying that α(TK) = 0.

When you have a Legendrian knot you immediately get a special projection that
makes it easy to study. What we saw yesterday is that when you take the projection
to the xz plane, you get a “front projection” and the curves you get are smooth
except for isolated cusps, and when you look at α(TK) = 0, we find out that we can
recover the y coordinate exactly from the projection, from the dz/dx slope. This
is great. The question I have, if you’re studying knots in a 3-manifold, I want a
projection that has the same property, I want to be able to recover the knot exactly.

So this is our motivating question, the question of front projections in an arbi-
trary contact M3.

In some settings there is a more general notion of front projection. There are
a whole family of 3-manifolds that are jet spaces. This works in jet spaces in odd
dimensions in general. I want something in arbitrary contact manifolds. There are
reasons that such things shouldn’t exist, because there are non-jet space contact
manifolds. But there are also reasons that such things should exist because things
like this work for S3 which is not a jet space. So this is joint with Gay, with
Mathews, and some with Durst-[unintelligible].

So I want to start with a description of a way to construct arbitrary three-
manifolds, through an open book construction. A beautiful theorem says that
when you construct a 3-manifold by this construction you are getting a contact
manifold. I want to add a little bit of extra data, introducing Morse structures,
and then we get nice structures, front projections. This is a broad audience so I
want to draw a lot of pictures and so on, if you want details talk to me after.

So now I’ll sneak in some Lagrangian geometry. I want to give a model of knot
projection as hitting a fly with a flyswatter. You push it with a flyswatter until it
hits a wall and then it becomes flat. I can decompose R3 as the disjoint union of
z = c for c ∈ R. If we look at these slices we get dα∣z=c which is a symplectic form.
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There is a part of this which is not unique, but y∂y is a Liouville vector field for
dα∣z=c and d(ω(v, ⋅)) = ω, this is a Liouville vector field.

When I think about my front projection, instead of thinking of it as an abstract
plane, I want to think of it as a constant. So y∂y is every transverse to y = c. We
have some, so front projection is the image of my knot under this flow to the plane
y = c. What this is supposed to hint at is that if you have the right kind of flow,
you get a nice projection.

An open book is transverse to a 3-manifold. An open book is, I’ll start with a
surface, I have a surface Σ2 and no boundary. I have a homemomorphism φ from
Σ2 to itself which is the identity on the boundary. So I’ll take this crossed with the
interval. I have a manifold with boundary, I have this map that lets me glue the
bottom to the top by identifying (x,1) with (φ(x),0), now I’ve take the boundary
component and crossed it with I. So I have a toroidal boundary component. If I
change my t parameter, I move around the outside of the tube [pictures] and to get
a closed 3-manifold I collapse this to a single curve, and I get a closed 3-manifold.
Now I get a collection of closed curves which is the binding, and the rest of this is
the pages.

We say a contact form α is supported by this open book structure if we have two
properties. We want α(TB) > 0 (this is oriented), compatibility with the binding,
and dα∣Σt is a symplectic form, an area form.

What prevents a plane field from being integrable is twisting. Your contact planes
twist when you go along any curve in the y direction. You can’t have tangent planes
to the pages, [missed some], and what the open book does is gather all the twisting
into a neighborhood of the binding.

Let’s put in an important theorem.

Theorem 3.1 (Thurston–Winkelnkempen, Giroux). If you have an open book, you
can always find a compatible contact form.

We have the Giroux correspondence which we don’t need today that lets us pass
back and forth between contact manifolds and open books.

Anyway I want to move to the unit sphere in R4, which is {(r1, θ1, r2, θ2) ∶

r2
1 + r

2
2 = 1}. If r1 is zero, you get a circle, and then you get a family of tori, and

then when you get to r1 = 1, you go back to a circle component. So if you just take
a half-interval then you get a solid torus. So {0 ≤ ri ≤

1√
2
} is a solid torus.

This is a Heegaard splitting, and what we’d like to do is choose a standard contact
form. So α is r2

1dθ1 + (1 − r2
1)dθ2 and the contact structure, we can understand it

very concretely in terms of these [unintelligible]. So these contact planes meet the
core curves transversally. If you stop at a fixed torus, then your dθ1-dθ2 slope will
be constant. As you move from one of these curves to the other curve inside S3,
I can picture these as embedded as the Hopf link, and as I move along this radial
line, we can see that dθ2

dθ1
of kerα varies with r1, and this sholud remind you of what

we’ve already seen.
If I drow the Hopf link like this, you can see a surface bounded by these two

curves [picture] and an open book for this manifold is given as follows. Start with
an annulus, cross it with the interval, and glue the top to the bottom, and the
gluing map will be a positive Dehn twist, where we wrap once around in the right-
handed direction. If we apply this map and do this collapsing operation, we get
these annuli which are the annuli which give the pages in the decomposition.
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If we have a Legendrian curve in this manifold, it already gives us a hint as
to what we can do. So you can push it away from the binding, and then we can
project it to the torus, r1 =

1√
2
, let me cut this torus open for you, this is our

r1 = 1/
√

2-torus, and we get something that looks very much like the pictures we’ve
already seen. [pictures].

Here you’ll see slopes bounded between 0 and −∞. This was exploited by
Oszvath–Szabo and Thurston to give some Heegaard–Floer homology. Getting
back to the flyswatter model, I want to say that you’re going along vector field
parallel to [unintelligible].

Theorem 3.2 (Gay–L.). Every contact three-manifold is a compactification of solid
tori each contactomorphic to {0 ≤ r1 <

1√
2
}.

If you are willing to glue together along a more complicated map than a home-
omorphism, you can get any contact 3-manifold.

As a consequence of the theorem, we get the front projections we wanted. If we
identify the front projections, for each of my solid tori, I get a projection to a torus
that acts just like what I had in R3.

So let me explain a little bit about where this comes from. Given a three-manifold
with an open book structure, we add a little bit of extra structure, (F,V ), so F
is a function from M to R, with a variety of conditions that I won’t write down,
going for the big picture. So F restricted to a page is Morse. So V is gradient-like
for this Morse function, so I mean that it could be the gradient vector field for
restriction to a page, and is also the Liouville vector field for dα∣Σt . When you have
an open book and move through it with this t structure, we get an evolving family
of Weinstein structures on the pages. So dα∣Σt is a symplectic form, and any time
you have a contact manifold presented as an open book, you can always find an F
and V that realizes it in this way.

The upshot is that we get a one-parameter family of Weinstein structures, of
Morse functions on the pages, with a gradient-like vector field, and so I get a one-
parameter family. So getting back to S3, I want my Morse function to have a single
index 0 critical point, it should be Morse–Smale, no index 2-critical points, this is
not so hard to arrange. So I can write the flowlines on the page. I can draw in the
other flowlines and they aren’t interesting. The other flow lines go from the index
0 point to the boundary. We care that we have a graph embedded on our surface.
Let t evolve, and what could happen? I encode this with the one-parameter family
of graphs. [pictures]

Define the skeleton of the manifold as the union of flow-lines from index 0 to
index 1. So now what if we have a Legendrian knot in the 3-manifold.

We don’t have a condition that the binding is connected. We can look at the
preimage of the flow by V back in the manifold. So now M ∖ Skel is the disjoint
union over preimages under the flow by V to Bi. So what you get is this open
solid torus. In infinite time you get this skeleton, which compactifies this otherwise
disjoint pieces. You want to translate this into something for front projections.

But I’ll pause and tell us something about how this lets us study 3-manifolds.
What I’d like to do is build a torus which is a place we’ll do a front projection
to. Take a curve near each boundary component, and what I end up with is two
circles, and I record the intersection with the flow lines from the index 1 points
to the boundary. Now we let t vary, and since the monodromy is constant at
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the boundary, these circles persist as t changes, and one one of the components
[pictures] nothing interesting happens. So what happens is that the point moves
along the curve and you get, in general, collections of tori with pictures on them,
you call this a Morse diagram. We can give a combinatorial characterization of the
kind of drawing that give you a Morse diagram. The proposition is that up to a
reasonable notion of isotopy, the Morse diagram determines the contact manifold,
so if I just draw you something like [pictures].

You have these decorated tori, and I want to think that projection is pushing a
knot until you hit a surface. So these tori are the boundary of specific components.
If I push my Legendrian until it lands on this surface, that’s my front projection.

[pictures]
You get pictures and the slopes are between 0 and negative ∞, the curves are

smooth with cusps, and this is exactly motivated by and in parallel to the usual
version.

Proposition 3.1 (with Gay, Mathews, Durst, Kegel). In a manifoldM(Σ, φ,F, V )

we have front projections for Legendrian knots, tangles, that completely determine
the original Legendrian,

● We have a Reidemeister theorem
● We can compute various things, [K] ∈ H1(M), and if it is nulhomologous,
you can compute tb(K) and you can get rot(K)

I think I’ll stop there.

4. Chang-Yeon Chough: The comparison theorem for algebraic
stacks

Thanks to the organizers, to bringing me to this meeting of two different hemi-
spheres. Before you get annoyed by the term algebraic stacks, I need to explain
some background materials. Today I’ll begin with something like this. I’ll explain
the comparison theorem for schemes first, which uses model category theory a lot.

So if you have a scheme over C another thing you can do is you can look at C
points, X(C), and you get, you have a theorem, the Riemann existence theorem,
which tells us the comparison between the geometry on X which is algebraic, and
this topological space, there is an equivalence of categories between finite étale cov-
erings of my scheme X and the finite coverings of the usual topological space X(C).
When it comes to étale topology this tells you how to recover the finite coverings of
this object. In terms of fundamental groups, this tells you that πét1 ≅ π1(X(C)), and
when you think of a multiplicative group scheme on the algebraic side correspond-
ing to the circle, this is given by an exponential which is not algebraic, and so you
should take the profinite completion on the right hand side. You look at the collec-
tion of these finite quotients. So this other π1 is in the sense of [unintelligible]and
Grothendieck.

We also know that the étale cohomology of X recovers the Betti cohomology
of X(C). We wonder if we can generalize this to higher data, but we don’t have
higher πn to attach to a scheme. So instead we’ll give a space which captures the
homotopy of the scheme you start with.

So the statement is, on the one side you have this topological space X(C) and on
the other side you have some “space” associated to X, which I’ll call Artin–Mazur’s
étale homotopy type. There is a map from X(C) to this Artin–Mazur space. This
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becomes an equivalence after profinite completion. Let’s name this (this is not the
original notation) ĥAM(X).

So what I’m going to do is lift this comparison theorem to algebraic stacks.
If you unravel what this means, this amounts to this algebraic data giving you
something on π1, on the profinite completions, and that the homology groups, with
finite coefficients, give you an isomorphism.

The goal is to extend this equivalence to algebraic stacks. Since we’ll work at
the level of “spaces” we’ll attach some space. Let me fix a scheme X, and I’ll show
you how Artin and Mazur constructed an object capturing the homotopy of X. For
that I’ll bring it down to topological spaces.

The Cech nerve of my covering, which has ∐Ui in degree 0, has ∐Ui ∩ Uj in
degree 1, and these are related by maps, and this is organized into a simplicial
topological space. Then you take the connected component functor to this picture,
and get π0(NU), this is functorial and at each level you get a set, so this is a
simplicial set. Then you take the geometric realization to get a topological space.

Theorem 4.1. (Borsuk) Let X be a paracompact topological space. Let’s say I’m
given U = {Ui →X}, a good cover of X where good means that a finite intersection
of Ui is empty or contractible (you can’t always do this). Then X ≅ ∣π0(NU)∣.

From a computational point of view this might not be easy to understand, but
we can approximate this space with something combinatorial.

Now we leave topological spaces for algebraic geometry and try to mimic this for
my scheme. Every scheme will be locally Noetherian and every morphism locally
of finite type. So replace the space with a scheme. You need a covering, of course
you use an étale cover. You try to get an object, you want something like going
from étale coverings of X to simplicial sets, something like U ↦ π0(NU).

From now on I will be a little vague about the difference between topological
spaces and simplicial sets. So hopefully this captures the homotopy of X, but this
fails, you can make whatever you want, but this should work, for example, you will
try to check the cohomology attached to this gadget, and when you compute the
cohomology, this is the Cech cohomology of your scheme. This, then, fails. Even
at the level of cohomology, we want sheaf cohomology, not Cech cohomology, and
they don’t always coincide.

The failure is that when you look at this formation of π0(NU), this object is
somehow rigid in the following sense. What happens in degree zero determines
all the higher behavior of your simplicial scheme. So your cover might be nice,
but the intersections might not be nice. An étale cover, the Ui are good, but the
intersections might not be. So you need to fix the failure on the intersections, and
one way to do that, you start with the same object, but to fix the failure on the
intersections, think about the unit circle and the covering by two sets.

So you refine this cover, and so get an étale cover of the étale cover. And you
do this in a compatible manner, replacing the nerve with a new thing. So this is
organized with hypercovers. You roughly understand it as some kind of covering
which rectifies the failures on these intersections.

A hypercover will be a simplicial scheme satisfying certain properties. So you
replace this with hypercoverings, and take π0, and this is where we are using the
locally Noetherian assumption.

You do this thing and for some technical reason you should mod out by simplicial
homotopies between hypercoverings, HR(X) is the category of hypercoverings of
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X modulo simplicial homotopies. If you do that, this index category becomes
cofiltered, this is a theorem in Artin–Mazur, but you pay something, you mod
out up to homotopy, and the price is that the target is the homotopy category
of simplicial sets. And this one works. This is the so-called Artin–Mazur étale
homotopy type of the scheme X. Remember space means simplicial set, this is not
really a space but a collection of spaces.

As always, you want to check cohomology first. If you compute cohomology of
this gadget,

colim
V ∈HR(X)

Hn
(π0(V ),A)

is isomorphic to the étale cohomology of the scheme X, Hn
ét(X,A).

This is the Verdier hypercovering theorem.
So Artin–Mazur’s étale homotopy type, it has the right cohomology. The π1 is

really not a group but a pro-group, and the higher πn will be a pro-Abelian group.
The profinite completion will recover the étale fundamental group of the scheme.

I understand this functor as a space which recovers well-known algebraic invari-
ants, this functor attached to my scheme.

So let’s come back to the goal of the talk, which is to extend this equivalence to
algebraic stacks.

You first need to attach a space to algebraic stacks.
Of course the very first thing you’re going to try is to mimic Artin–Mazur’s idea.

There are a couple of issues. The first one is that it’s heavily dependent on the
small étale topology, if you start with a Deligne–Mumford stack, there’s no problem,
but for algebraic stacks this small étale topology is obsolete. The other thing, this
object is in the pro category of the homotopy category of simplicial sets. Instead
of this, if you want to do homotopy theory, you’d like to land in the homotopy
category of something, maybe the homotopy category of pro-simplicial sets, to land
in the derived category of a certain object.

After this seminal work, Friedlander developed a kind of étale homotopy theory
for schemes and simplicial schemes. He used the notion of rigid hypercoverings to lift
this object to pro-simplicial sets, and lifted the theory to simplicial schemes, around
1982. But not for algebraic stacks. For them, I’ll used a modern reformulation of
the Artin–Mazur theory due to Bornea and Tomer Schlank. Here is a 21st century
thing. Say T is Xét, the category of small étale sheaves on X. Thanks to the locally
Noetherian assumption, you can take T

π0
Ð→ Set, and if your scheme is represented

this is the usual thing.
Then you enlarge the category to the category of simplicial objects on each site,

and this functor extends, and enlarge these categories further into pro-categories

Pro(T∆op

)
π0
Ð→ Pro(Sset)

The upshot is that there are model category structures on both of these in such a
way that this π0 becomes left Quillen. They start with some sort of category of
fibrant objects, actually something a little stronger, a weak fibration category, and
you start with weak equivalences and fibrations, but your category with those two
classes cannot be extended to a model category, you get a model category on the
pro-category.

The reason why we have to go to the pro-category is, there are so many things
to say, I told you you are going to start with the weak equivalences and fibrations,
I’ll choose the local ones, so when you pull back to stalks you get normal weak
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equivalences and Kan fibrations, and I’ll say it’s a local weak equivalence (fibration)
if it is so on every stalk, at least if you have enough points.

Look at a certain simplicial sheaf F , there is a unique map to the final ob-
ject, a local weak equivalence and local fibration simultaneously, this generalizes
hypercoverings as used before.

If you take the local weak equivalences and local fibrations as your choices for the
model category structure, it won’t work. There’s a counterexample, with a finite
group, using BG for a profinite group which is not finite. You cannot take these
two classes as part of your model category structure. These are enough to get you
the structure you want on the pro-category.

The upshot is that Lπ0(∗) (where ∗ is the final object, the scheme X), this
recovers the Artin–Mazur étale homotopy type.

This is more than a reformulation of Artin–Mazur’s theory. All the technical
things and the magic are in the model structure. When you take the cofibrant
replacement of this final object, the hypercovering is encoded there.

That’s the case for schemes. Now you want to do it for stacks, and here comes
my part. Let me fix a base scheme X, well, maybe I don’t have enough time. They
started with the small étale topos of this scheme X. You could use a different
topology, like the big étale topos. You can still use the machinery of Bornea–
Schlank to develop a homotopy theory, and generalize this to simplicial schemes
and simplicial spaces. I’ll try to explain that part in the proof of the theorem.

Let’s say X is an algebraic stack. Recall what we are trying to do, establish a
comparison theorem for algebraic stacks. I’ll use their machinery. You apply the
machinery to the big étale topos on the stack X . There’s the big étale topology,
the objects are [unintelligible]certain scheme to X and the topology is the usual
topology on schemes, and you look at the associated topos, and that’s T .

If you use the big étale topology, you can attach a certain topology to your stack
to get a certain topos, and apply the same procedure. This one still works and the
connected component functor, you derive this and you’ll get something. You’ll get
an object related to the stack X and define this to be the homotopy type of the
stack X .

In this case I define the homotopy type of X to be this derived object Lπ0(∗),
with respect to this topos. So the question is whether this is the right answer.

There are many nice properties, even at the level of topoi. For simplicial objects
in a topos you already have some homotopy theory, developed in my paper.

So so far what we’ve done is, given an algebraic stack we’ve attached a space, and
now we go into a goal, which is to establish the comparison theorem for algebraic
stacks, and I’ll show you why this object is reasonable, or is on the right track.

Here’s your étale homotopy type h(X ) in that sense, and you compare that
to h(X ⊺

), the homotopy type of the topological stack. You can get a stack by
[unintelligible], and there’s a map from h(X ⊺

) → h(X ), and the claim is that this
is an equivalence after profinite completion. There is a category of profinite spaces
and a model category structure in the sense of Quick, and I’ll say that this map
induces a weak equivalence of profinite spaces, and you try to reduce this question
to that of schemes. Say you choose a smooth hypercover of the stack X , just like
you do cohomological descent for your stack X . That kind of thing is okay, you
can apply that kind of idea to simplicial objects, and on the left side you had, say
h(U(C)), and for simplicity you could imagine you had a simplicial scheme, and
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so you get an equivalence, and a map at the level of schemes, and you reduce the
question from the bottom to the top level

h(U(C)) h(U)

h(X ⊺
) h(X ).

∼ ∼

and how do you deal with this? These should be hocolims of the pieces in each
degree. These exist thanks to the way I developed the theory. This is simplicial
descent so you reduce further to schemes.

hocolimh(Un(C)) hocolim(h(Un))

h(U(C)) h(U)

h(X ⊺
) h(X ).

∼ ∼

∼ ∼

and you want the equivalence up to profinite completion. But you need to inter-
change the profinite completion and the hocolim.

hocolim ĥ(Un(C)) hocolim(ĥ(Un))

hocolimh(Un(C))
∧ hocolim(h(Un))

∧

ĥ(U(C)) ĥ(U)

ĥ(X ⊺
) ĥ(X ).

Artin–Mazur∼

∼ ∼

In my other paper I proved that this profinite completion admits a right adjoint, so
this homotopy colimit in this simplicial model category can be described as colimits,
and then left adjoints commute with colimits and you get the isomorphism of the
top vertical maps.

Or the way that this is left adjoint to something can be stated at the level of
model category structures, and these commutativities are interchange of the left
derived functor of completion and the homotopy colimit. That’s a general result in
model category theory.

These model category statements and methods are hidden in all of these vertical
equivalences, which let us reduce this equivalence at the level of stacks, which might
be nasty, to the level where it’s not so hard to understand where we have an answer
from Artin–Mazur.

In the remaining three minutes I’ll give an example, otherwise people will be
upset. So for example, think about the multiplicative group scheme Gm and its
classifying stack. This is algebraic but not Deligne–Mumford. So you try to com-
pute h(BGm), and roughly you look at Gm(C), and this is S1 up to homotopy,
and so this is the classifying space of that, so this should be K(Z,2) up to finite
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completion. So if you compute H∗
(BGm,Q`), this should be H∗

(BS1,Q`) and this
is the polynomial ring Q`[c] where c is the universal Chern class in degree 2. Both
sides I think are well-known to topologists, algebraic geometers, whoever.

Okay, I’ll stop here.

5. April 26: Kathryn Hess III

This is joint with Kędziorek, Riehl, and Shipley, and we have sort of described
a common way of creating model sturctures through an adjunction on either side.
I want to talk about a necessary condition and show that the necessary condition
is very often sufficient.

I made a mistake about model categories for chain complexs over a commutative
ring. The cofibrations are not degreewise injections with projective cokernel but
are contained in that class.

Okay, let’s start with some terminology. Let (M,W,C,F) be a model category,
and let N and K be bicomplete categories. I’ll suppose that I have adjunctions
F ∶ M → N (the left adjoint to U) and G ∶ M → K (right adjoint to V ). A
model structure (WN ,CN ,FN ) is right-induced by F ⊣ U if WN = U−1

(W) and
FN = U−1

(F).
We say that a model structure (WK,CK,FK) is left-induced by V ⊢ G if WK =

V −1
(W) and CK = V −1

(C).
Thanks to results of Kan from way back, there are well-known conditions on

which we have the right-induced structure in the case whenM is “cofibrantly gen-
erated.” But nothing is fibrantly generated so you don’t really have the dual thing.

I want to say that the simplicial set structure is left induced from topological
spaces either from the Hurewicz or the Serre structure.

Let me note a consequence. If the right induced structure on N exists, then
we know that its acyclic fibrations are the things in the preimage of the acyclic
fibrations of M, U−1

(F ∩W). Oops, that’s not what I wanted to say, true but
irrelevant. The acyclic cofibrations have the left lifting property with respect to
FN which is U−1

(FM). In particular it follows that things with the left lifting
property with respect ot U−1

F are necessarily in U−1
W.

Dually, if the left-induced structure on K exists, then the maps with the right-
lifting property with respect to the new cofibrations are necessarily in the preimage
of the weak equivalences.

We call these the acyclicity conditions. These are a necessary consequence of the
existence of these structures.

My goal right now is to tell you under what conditions these are not only neces-
sary but sufficient to conclude the existence of these model structures.

One remark I want to make before saying the theorem that answers this ques-
tion. If you have the right or left induced structures, then the adjunctions you
started with become Quillen pairs. With respect to the right induced structure on
N , the pair F ⊣ U is a Quillen pair which then induces an adjunction on the ho-
motopy categories. We’ve defined things so that U preserves fibrations and acyclic
fibrations.

Similarly with respect to the left-induced structure on K, the other adjunction
V ⊣ G is a Quillen pair.

Okay, so what does the acyclicity theorem say?
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Theorem 5.1 (HKRS, 2017). Assume the model category is accessible (I’ll say this
in a minute, but many of our favorite categories are accessible, so this isn’t a strong
restriction). So (M,W,C,F) is an accessible model category and let N and K be
locally presentable categories. Locally presentable means locally small, bicomplete,
and with a set of small objects which generate all the objects under filtered colimits
of a maximal size.

Consider adjunctions F ⊣ U and V ⊣ G. If the acyclicity conditions are satisfied,
then the desired model categories exist.

(1) If LLP (U−1
(F)) ⊂ U−1

(W) then the right induced structure on N exists.
(2) If RLP (V −1

(C)) ⊂ V −1
(W) then the left induced model structure on K

exists.

Proving the existence of the necessary weak factorization systems is the hard
part. Once you’ve done that the rest is, well, not an exercise, but not particularly
difficult. It’s hard work that was done originally by Bourke and Garner, and Emily
realized what we did in the article is not quite right, and so Garner with Kędziorek
and Riehl fixed this in a preprint on the arxiv.

Proposition 5.1. Suppose (M,W,C,F) is a model category and let N and K
be bicomplete categories, with the same adjunctions F ⊣ U and V ⊣ G as before,
satisfying the acyclicity conditions.

If you have the weak factorization systems, then you’re in business. So,

(LLP (U−1
(F ∩W)), U−1

(F ∩W)) and (LLP (U−1
(F)),F);

if these are weak factorization systems, then the right induced model structure exists.
One of these is usually for free and the other is usually pretty darn hard.
For the other side, if you have weak factorizations

(V −1
(C ∩W),RLP (V −1

(C ∩W)) and (V −1
(C),RLP (V −1

(C));

then the left-induced structure on K exists.

Remark 5.1. The model category (M,W,C,F) is accesible if M is locally pre-
sentable and (here’s where accesibility comes in) the weak factorization systems are
functorial, naturally in the morphism you’re factoring, via functors that are them-
selves accessible (I need to say what that means). You want to preserve λ-filtered
colimits for some regular cardinal λ.

It’s a reasonable sort of property. For some examples for those familiar with
the model category literature, this contains all the examples we’re used to except
topological spaces. This includes any locally presentable (enriched) cofibrantly
generated model category. So all combinatorial model categories are accessible.

One thing I didn’t mention when I stated the theorem, these structures are also
accessible, so you can iterate the process.

Remark 5.2. The model structures obtained by the acyclicity theorem are acces-
sible. So you can iterate this process.

This turns out to be something that one does. You use one adjunction to get a
model structure, and then you can do this again et cetera, and lead things along
this way.

In order to show the existence of these model structures, you have what look like
these simple kinds of conditions to chck. The apparent simplicity is only apparent,
so I want to give a couple of tools for establishing acyclicity.
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The first one is a generalization of (a dual of) Quillen’s path object argument.
This is one particular criterion given by Quillen maybe fifty years ago to prove the
existence of model structures.

Since we’re principally interested in left induction, we formulate it in that context
but it can be easily dualized. Let me call this the cylinder object argument.

Suppose we have (M,W,C,F) a model category, and some adjunction V ⊣ G
to K. If the following conditions hold then we get an acyclicity condition:

(1) For every X in the objects of K, I want a map εX ∶ QX → X such that
V (QX) is cofibrant inM and V (εX) is a weak equivalence. If I were trying
to get a model structure, then this would be a cofibrant replacement. So
this is “some sort of” cofibrant replacement. I don’t ask about functoriality.

(2) For every f ∈ K(X,Y ), there exists some Qf ∈ K(QX,QY ) such that the
diagram

QX QY

X Y

Qf

εX εY

f

commutes.
(3) For every X in K there exists a factorization of the fold map

QX∐QX QX

Cyl(QX)

j

∇

p

Then the acylicity condition holds: RLP (V −1
(C)) ⊂ V −1

(W).
If we’re in the situation whereM is accessible, K is locally presentable, then we

have the factorization system and the model structure exists.

Corollary 5.1. Under the conditions above, if (M,W,C,F) is accessible and K
locally presentable, then the left-induced structure exists.

There’s one more tool that we have that is also quite useful, related to bialgebras
and Hopf algebras, where you have two ways to get there from chain complexes.
There is a nice general framework that we call the square theorem. Again, the
proof of the cylinder object argument is something I’d be happy to show somebody
during the lunch break. The proof is not very hard.

Theorem 5.2 (The square theorem). Let a square of adjunctions be given.

M K

N P

F

V

F ′

V ′

[ed.: only left adjoints pictured for my ease in TeX]
Suppose all categories are locally presentable, that (M,W,C,F) is accessible,

that there is a right-induced structure on N , a left-induced structure on K, and we
have some compatibility:

V U ′
= UV ′ and FV = V ′F ′,
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then there exist right and left induced model structures on P and moreover these
two are Quillen equivalent via the identity functor Pright ⇆ Pleft.

Note that they have the same weak equivalences. They are in the preimage of
V U ′ or UV ′ but these composites are the same.

Sometimes they are the same and sometimes they are different.

I have thirteen minutes. I’ll take audience requests. I can give some applications
to how we create them in various situations. There are three things I can talk about
in twelve minutes. I can talk about model structures on categories of diagrams. I
can talk about examples related to chain complexes, and the third thing I could talk
about is simplicial presheaves, finding a framework for homotopical Galois theory
for motivic spaces and spectra.

[informal poll]
One should always listen to students. So I’ll say something, a brief statement

about diagram categories and then something about this last version.
So for any small category D and any accessible model category (M,W,F ,C), we

have adjunctions comparingMD0 andMD, and we can think of ι∗ as a left adjoint
to right Kan extension or right adjoint to left Kan extension. These give you the
injective and projective model structures. The acyclicity conditions are not hard
to show in this case.

This is a well-known result for the projective structure for cofibrantly generated,
it’s due to Lurie for the injective case at least in certain cases, and we’ve pushed
the boundaries of this in some cases.

So one more remark, if this D is what’s called a Reedy category, then you could
start inM as the discrete, and then put in the positive and negative structures as
your K and N , and then the induced structures on P coincide and are the Reedy
structure.

Okay, presheaf categories. I said this was motivated by a desire to talk about
motivic Galois theory. This part of the work is joint with Beaudry–Hess–Kędziorek–
Merling–Stojanoska. This was great, some of us brought more experience with
model categories and some of us with computations.

For C a small category, you want not the injective structure but some sort of left
Bousfield localization of this injective structure on simplicial presheaves. The sort
of question we had to answer was this. Since we were interested in Galois theory,
we wanted both homotopy orbits and homotopy fixed points of certain actions. We
fixed G a group, and got from the group a pair of adjunctions

sPre(C)inj G − sPre(C)??
Triv

(−)G

(−)G

and it turns out that you have two different model structures, one the proper one
for homotopy orbits and the other appropriate for homotopy fixed points.

You homotopy orbits will be (−)hG = L(−)G and your homotopy fixed points is
(−)

hG
= R(−)

G.
We get these model structures from the right and left induction. Actually, not

from right and left induction from this, but another pair of adjunctions, you can also
cross a presheaf with G, and you have a forgetful functor, using another adjunction
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U ∶ G − sPre(C) → sPre(C) which has both adjoints G × − and Hom(G,−). These
turn out to be the ones that give the things we want.

So if you’ve looked at the paper, you see that there are many other variations
there, algebras and so on, and some of those use the square theorem.

6. Jae Choon Cha: Whitney towers in a rational homology 4-ball

Thank you to the organizers to arrange this very nice conference.
Usually the speaker says thanks for inviting me, but I’m from just across the

hall. I appreciate the efforts of the organizers bringing the people from opposite
side of the world, I’m glad that local people that you are visiting here and enjoying
your stay here at Postech and in Pohang.

Today I’ll talk about low dimensional topology, mostly in dimension 4. I’m
thinking about disk embedding in a 4-manifold X. After the recent advances in
dimension 3, this is the least understood question. The high dimensional approach
uses disk embeddings, and the failure of this is what makes 4-manifolds hard. We
have modern developments from gauge theory and Floer theory for smooth cases,
and these are wonderful to detect difference, but it’s hard to imagine that they will
give us classifications. If we can get disk embeddings, then we can hope to get a
classification, like Freedman. So understanding this failure precisely is more or less
the same as classifying 4-manifolds. I’m thinking of a link L, a disjoint union of
circles, in the boundary of X, and this is called slice in X if this link bounds a
disjoint union of disks in X itself.

To avoid local issues we usually want to extend this to a tubular neighborhood,
so regard this as D2

× {0} and then we want to embed D2
×D2 in this way. This is

different in the smooth and topological case; one is automatic but the other is an
extra condition.

Usually I’ll think of ∂X = S3, so for instance if X = D4, then link slicing corre-
sponds to a solution to “topological surgery.” It means that the high dimensional
surgery techniques work in dimension 4 if and only if a certain specific family of
links is slice in some nice way. If you have a topological surgery technique, you can
find embedded disks like this.

So I’d say that understanding these disks is at least morally equivalent to un-
derstand 4-manifolds.

The fundamental technology is tower constructions. What does that mean? Let
me start with a Casson tower. What he did was, I have the boundary, and I have a
link here, and we want to find a disjointly embedded disk, but if it’s not possible,
let’s find immersed disks. Then why don’t we find, for each double point, we get
some other link, and then maybe find a secondary disk. So we can find a solution if
we can find a second stage disk, and that might also be immersed, and you try to
proceed like this, if my “yellow loop” is not nullhomotopic then that’s important.

The really wonderful theorem of Freedman says that if you have a Casson tower
of height 6 (the meaning of height must be clear) then this gives us an embedded
disk bounded by the same boundary in X. This was the key technology for the
classification of simply connected 4-manifolds in the topological category.

If you have height six, then you can raise the height as much as possible and get
an infinite height thing, which is a Casson handle.

Another technique uses a grope, so if you have an embedded surface, not just a
disk. If I can find a secondary disk along a cutting circle, then I could turn this
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surface into a disk. In general the second stage might be a surface and then you
could proceed further. [pictures]

This is much more useful in dealing with non-simply connected cases, and the
best, the strongest known theorem, for the current status let me mention some
results

Theorem 6.1 (Cha–Powell). A Casson tower of height four is sufficient.

Theorem 6.2. A grope of height 1.5 with properly immersed caps gives embedded
disks in general if π1(X) is “good”.

What does it mean? On one side height one and the other height zero. A cap
is immersed at the top stage and they may intersect each other but not the body
below. There’s some question of whether all groups are “good” or not. But I won’t
talk about that.

So another thing is Whitney towers, and this is related to gropes and to some
classical techniques. Let me draw some pictures. [Pictures]

So in a famous paper of Cochran–Orr–Teichner in 2003, they gave obstructions
for a Whitney tower when they are symmetric. So Conant–Scheiderman–Teichner
developed the asymmetric theory, where the higher stage can intersect the lower
stage. I want to remark that thinking of Whitney towers is almost the same as
thinking of gropes. [pictures]

So what I want to do is study links bounding asymmetric Whitney towers in
rational homology 4-balls. I want to define the number of stages in an explicit way,
because the shorter it is, the closer to embedded.

So let me define this precisely.

Definition 6.1. A Whitney tower in X bounded by L ⊂ ∂X consists of immersed
disks T = D1 ∪ ⋯ ∪Dm if ∪∂Di = L. These are order zero disks. Then if T is a
Whitney tower and D is a Whitney disk pairing two intersections in T then T ∪D
is a Whitney tower.

Then order, an intersection point between D and D′ has order k + ` if D and D′

have order k and `. A disk D which pairs two intersections p and q of order k has
order k + 1.

A Whitney tower T has order n if all intersections of order less than n are paired
off by disks in T . [pictures]

This notion of order measures how good of an approximation to a disk this is.
Let’s fix for now a number of components of L, call it m, and let’s define the

following. W appeared a lot of times in the last lecture series. I’m using a different
W , this is for Whitney. So W̄ has an ∞ which means not infinity but “twisted” and
we define W̄∞

n as the set of links in S3 such that L bounds a twisted Whitney tower
of order n in some X, a rational homology 4-ball.

In four dimensions, we have some framing that is very important. We get a
framing of the disk uniquely and another nearby, induced, and if these are allowed
to be incompatible then we call this twisted (otherwise they are framed). A tower
is twisted if all disks of order less than n/2 are framed.

So this gives us a filtration. A slice link has a tower of arbitrary height so we get

{slice link} ⊂ ⋯ ⊂ W̄∞
n+1 ⊂ W̄∞

n ⊂ ⋯ ⊂ W̄∞
0 = {all links}.

I’d like to take successive quotients, but these are not groups. Now for L and L′ in
W̄∞
n , I can define L ∼ L′ if L#β −L

′ (where β is the choice of ribbon for the connect
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sum) is in W̄∞
n+1 for some β. Now I can define W̄∞

n as W̄∞
n / ∼ and can make the

framed analogues W̄n and W̄n.
Now I can state a theorem.

Theorem 6.3. (1) The set W̄∞
n is an Abelian group under connect sum, so

part of this is that β was irrelevant.
(2) The group W̄∞

n is isomorphic to ZM(m,n) where M(m,n) = mR(m,n +
1) − R(m,n + 2), where R(m,n) is the rank of the degree n part of the
free Lie algebra on m variables. A classical result of Witt says that this is
1
n ∑d∣n φ(d)m

n
d .

Theorem 6.4. W̄n is an Abelian group under #β, and

W̄n =

⎧
⎪⎪
⎨
⎪⎪
⎩

ZM(m,n) ⊕ZR(m,`+1)
2 n = 2` + 1

ZM(m,n) n even.

So let me say something about the Milnor invariont. Let ππ1(S
3
−L) and let πk

be [π,πk−1]. Let F be the free group of rank m.
When λi (the longitude of L) is in πn+1, then πn+1/πn+2 ≅ Fn+1/Fn+2 = Ln+1.

Now his invariant
µn(L) =∑

i

Xi ⊗ λi ∈ Li ⊗Ln+1

and he wanted to understand if these things vanish, and this is the longitude in the
free Lie algebra, and this is essentially what the Milnor invariant is, but it’s the
modern version.

So if µn+2(L) = 0 then Milnor showed that λi ∈ πn+2. This is the same as
π/πn+3 = F /Fn+3. [ed: I think there are typos in this line but they were copied
faithfully from the board.]

This is letting you improve your isomorphism along the next level of the lower
central series.

So a question is, “which geometric property does µn detect?” So Igusa–Orr
have deep work on the k-slice conjecture or theorem (since they proved it), which
involves, still, the lower central series.

Theorem 6.5. µ≤n(L) = 0 if and only if L ∈ W̄∞
n+1 i.e., L = ∂T in a rational

homology D4, so T is twisted and order n + 1.

So one more further thing I can state, is, I discussed rational coefficients, what
about other coefficients, what if R ⊂ Q is a subring containing 1

2
. Then L bounds a

Whitney tower of order n in an R-coefficient homology D4 if and only if L bounds a
Whitney tower of the same order in a rational homology D4. So we have a complete
classification for such more general coefficients containing 1

2
.

So given that I stated those theorems, maybe I should discuss a little bit of the
idea of the proof. Maybe I should discuss some trees. If I have a Whitney tower T ,
then I associate trees, uni-trivalent trees t∞(T ), I can have trivalent vertices and
univalent vertices at the end. If you are familiar with quantum invariants or the
Kontsevich integral, then these are like Jacobi diagrams, you have some boundary
circles there, these are related to Milnor invariants, and these are extracted from
[unintelligible], and in our context it can be described very explicitly. Define ∂Di

as the ith component of L, for such an order 0 disk, I get a root, and an i denoting
the component number. If I have a Whitney disk, I always think of this picture.
[picture]
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So for this thing, tD is defined to be the rooted tree which combines the two
trees associated to the earlier stage of Whitney disk. This is the same as bracket
arrangements for your Lie algebra.

From this the Milnor invariant is obtained. That in particular, if I have order
n tower, then this tree gives us the Milnor invariant of order n, and [missed some
argument about vanishing of up to order n].

So the algebraic side is coming from the tree, the free Abelian group generated
by “order n trees” (those which are order n Whitney towers, modded out by equiv-
alence relations IHX, AS, some others). This is an Abelian group, and in case
of the standard four-space, earlier than my work, Conant–Schneiderman–Teichner
extracted from these trees something like this. Start from the tree and W∞

n is the
analog of W̄∞

n where we require B4. Then there is a realization theorem, you can
find a link realizing any tree, so you have a surjective map from our group to W∞

n ,
and the Milnor invariants are obtained from tree information which give a factor-
ization of the Milnor invariants through the tree information. They conjectured
that the tree group was an isomorphism to W∞

n , the higher order Arf invariant
conjecture. We do not know the kernel. So in case of rational coefficients, now
we have, this factorization, and this is the natural map W∞

n → W̄∞
n , and then I

showed the key new thing, that the kernel of the map from the tree group to L1⊗Ln
vanishes under the map to W̄∞

n .
So that’s brief and too fast, let me stop here.

7. April 27: Jessica Purcell: Uniqueness of plat diagrams

Thank you for the invitation to come. It has been great to renew some discussion
with people in Australia and Korea. Everything today is joint with Moriah.

This is a broader topic. We’ll start out with classical knot theory. The question
that I’m interested in is how to classify knots. Today I will focus on one answer.
Peter Guthrie-Tate was one of the first to classify knots, in the 1870s, he classified
prime knots with up to seven crossings. Basically he looked for 4-valent graphs
with over-under information, and he used moves that didn’t have names at the
time. Basically since Tate, knot theorists have been enumerating knots by crossing
number.

There are some problems with enumerating by crossing number. First of all there
is exponential growth when you increase crossing number by one. Another problem
is that there’s no natural way to organize diagrams. There’s only one knot with
one, three, and four, but then you have two choices for knots with five crossings.
There’s not a natural way to put these in a list.

It’s also difficult to read other properties off of a list from crossing number. I
said, Tate was classifying prime diagrams. If you start with four-valent graphs, it’s
hard to tell if one is prime. Are there essential meridinal annuli? Can it be reduced.

It’s been about 150 years since Tate got started, a little less than that. We
can only classify knots with up to 17 crossings, and only 16 crossings have been
published. We’re talking about millions of knots here.

This is one way to organize knots. This is fun. Ben is working on a project
that does that now. But if we want to talk about knots more broadly, we might
want to organize them differently. So in the 1950s, Schubert completely classified
an (infinite) family of knots. These were two-bridge knots, which are also 4-plats.
He actually classified links of this sort as well. This kind of knot has two bridges,
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a twist region, and then closes up. If you label the twist regions by the number
of crossings, then you obtain a rational number, given by the continued fraction
expansion, which completely determines a two-bridge knot and vice versa.

This is a very nice theorem. It also turns out that these two-bridge knots are
very useful in saying things about knots. Algebraic and geometric, if you have a
conjecture about knots, the first thing to do is throw the two-bridge knots at it,
and that works. We know how to tell if these are hyperbolic, what the essential
surfaces in the complements are, and so on.

So the idea of this talk is to follow Schubert and look at knots in terms of a plat
diagram.

Let me say what that is. We’ll start with the braid group on 2m− 1 generators,
generated by σ1, . . . , σ2m−1 where σ1 is just a crossing in the first two strands, and
so on. Then we’ll look at a particular element B = b1b2⋯bn−1 which has the form

(1) If i is odd, then bi is a product of towers of the even generators bi =

σ
ai,1
2 ⋯a

ai,m−2

2m−2

(2) if i is even then bi is a product of the odd generators in the same way.
[picture]

Then at the top and the bottom we connect the strands by “bridges”. [picture]

Theorem 7.1 (Alexander). Every knot or link admits a plat diagram.

The idea for this talk is, let’s enumerate links by plat diagram. You pick integers
for the coefficients.

The question is whether that’s any better, and one question is how unique these
diagrams are.

Let me give a few more terms. So m is the width of the diagram and n, the
number of rows plus one, is the length. If the number of rows is even, then our last
row will look like [picture], and your bridges look like this [picture]. Otherwise your
last row looks like [picture] and your bridges look like [picture]. Those are the two
options, and they are slightly different. The first is called a plat diagram and the
other is called an even plat. I’ll call everything a plat.

Note that a plat can be converted into an even plat and vice versa. [pictures].
So if you have lots of 0s and 1s, these are often not unique in obvious ways. That
being the case, what we did was restrict to diagrams where the ai,j have absolute
value at least 3.

Definition 7.1. A plat or even-plat is said to be c-highly twisted if ∣aij ∣ ≥ c for all
i and j, i.e., at least c crossings per twist region.

All right, so here is our theorem.

Theorem 7.2. Let K be a knot or link with plat projections K ′ and K where
● K ′ has width m′

≥ 3 and length n′ > 4m′
(m′

− 2) and is 3-highly twisted,
● K has width m and is at least 1-highly twisted.

Then m ≥m′ and if m =m′ then K ′
=K up to obvious rotations.

A few comments.
● If you look at the restrictions here. The restriction should be m′

≥ 4 for
even plats, to be completely honest. I think I know how to fix that but I
haven’t written it down.
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● The length requirement is an artifact of the way we prove this. It’s probably
not required, I’m not sure what the correct length bound is, maybe there
is no restriction.

● The three-highly twisted, there’s work of Wu where there is three-highly
twisted things around the border, and we conjecture that 3’s on the top,
bottom, left, and right and then 1’s in the interior suffice.

I want to make a few more comments about these types of plats. My collaborator
had been looking at these from a topological and algebraic point of view and I’d
been looking at them from a hyperbolic point of view.

Some nice properties of this form:
(1) there are known essential surfaces in the knot complement, due, for exam-

ple, to Finkelstein–Moriah and Wu.
(2) you can read the rank (minimal number of generators) of the fundamental

group off of the diagram. This is due to Lustig and Moriah.
(3) such links are hyperbolic; if c-highly twisted for c ≥ 6 there are no excep-

tional fillings (Bachman–Schleimer; Futer–Purcell)
(4) There are bounds on volumes if c ≥ 7 (Futer–Kalfagianni–Purcell).

So these are nice, this is much better than crossing number, lots of geometric
information.

Now let me move to part two, which is about surfaces in plat diagrams.

Definition 7.2. An m-bridge sphere for K ⊂ S3 is a 2-sphere in S3 meeting K
transversally in 2m points and cuts (S3,K) into two trivial tangles (B1, T1) and
(B2, T2), so Bi is a ball and Ti are m arcs that can be simultaneously isotoped to
the boundary, fixing the boundary.

[picture]
So any horizontal line in a plat diagram gives you an m-bridge sphere. All such

bridge spheres are isotopic. Schubert used this in the 1950s to define the bridge
number of a knot.

Definition 7.3 (Schubert 1956). The bridge number #b(K) is the minimal number
m such that K has an m-bridge sphere.

Typically it’s difficult to get the actual bridge number of a knot. It’s not so hard
to get an upper bound but it’s hard to get the exact number.

We’ll heavily use a theeorem of Johnson–Moriah and Tomova, which says that a
3-highly twisted plat with width m and n > 4m(m− 2) has bridge number m, with
a unique m-bridge sphere up to isotopy.

In this plat diagram we have a 3-bridge sphere, and all the horizontal ones are
isotopic to it. Maybe there’s another one that is hiding here that is not the same
kind. But this says the only ones there are horizontal.

Definition 7.4. A horizontal bridge sphere meets the plane of projection in a
horizontal line.

That’s one type of surface that we’re going to be looking at. The other type of
surface is vertical.

Definition 7.5. A vertical 2-sphere S(α1, . . . , αn) is constructed as follows. [pic-
ture]
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You pick an arc running from the top to the bottom, with αi twist regions to
the left in row i. Each row has at least one twist region on either side of α. Then
connect the ends in a closed curve through the unbounded region to get a closed
curve and cap off. This is a sphere that meets the knot n times.

Theorem 7.3 (Finkelstein–Moriah; Wu, 80s–90s). Vertical 2-spheres are essential
in odd plats.

We have bridge spheres that are unique, the vertical spheres are essential in the
odd case, and why they are useful, you can pick two that are exactly the same
except they differ in one twist region. [missed something]

Proposition 7.1. Suppose K ′ and K are two plat projections of the same link
with the same conditions as before, m ≥ 3, the length n > 4m(m − 2) for K ′ and
K ′ is 3-highly twisted, while K is 1-highly twisted. Then there exists an isotopy
φ ∶ (S3,K ′

)→ (S3,K) such that
(1) horizontal bridge spheres will go to horizontal bridge spheres.
(2) vertical two-spheres map to vertical two-spheres.

Corollary 7.1. “Isolating spheres” bounding tangles map to isolating spheres under
such an isotopy. Then you have an isolating sphere that will be adjacent to another
isolating sphere, and they agree and patch up together, so at the most what you
could have done was rotated.

Then the big theorem follows. I’ll stop there.

8. Sang-hyun Kim: Diffeomorphism groups of critical regularity

Thank you very much for the invitation. It is my pleasure to visit IBS and
this city. I’ve been coming here every year in the third week of April. In every
year I talked about the answer to a question I raised the year before. This is
about diffeomorphism groups of one-manifolds. So I want to think about M = I
or M = §1

= R/Z. My main object as a geometric group theorist is Diffk+(M), the
Ck diffeomorphism group. This is the collection of Ck diffeomorphisms, these are
Ck maps such that f ′ is positive and f is bijective. In the circle this might not be
globally injective.

So this is a group. You have Diff0 which is Homeo, and Diff1, Diff2, and so on,
and you can talk about the intersection which we call Diff∞. If you have a real
number τ between 0 and 1, then you can define a norm, if f ∶ M → R, you can
define [f]τ as supx≠y

∣fx−fy∣
∣x−y∣2 . If τ is 1 it’s Lipzchitz.

So this gives a further stratification, you can define Diffk+τ+ M which is f ∈

Diffk+M such that [f (k)]τ < ∞. So then you have this very refined stratification,
and you can do even more. If α ∶ [0,∞) → [0,∞) is a concave homeomorphism
then you can define Diffk,α which uses the norm sup ∣fx−fy∣

α(x−y) . But I’ll just use this
quadratic version.

So my theme is the question, which finitely generated groups arise as subgroups
of Diffr+(M) for r ∈ [1,∞]. [Some motivation that I missed] Especially people are
interested in manifold groups.

You have Diffω, the analytic ones, inside Diff∞, and then inside that PSL2(R).
A very concrete question: let k ∈ N. Does there exist a finitely generated group

Gk ≤ Diffk+ so that G fails to embed into Diffk+1
+ M? Or ask this for a countable

simple group.
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Let me talk a little bit about the history. One of the most surprising results
about this diffeomorphism group is the Mather–Thurston theorem, from the 70s.

Theorem 8.1. The group Diffrc(Rn) is simple for all real r ∈ [1,∞] except for n+1.

The k = 0 case is known, also due to Thurston in 1974: Whenevr you have a
nontrivial finitely generated subgroup of Diff1 I then H1

(H,Z) ≠ 0 so H ↠ Z. So
such a thing cannot be a perfect group (trivial Abelianization).

So for example, take G = ⟨a, b, c∣a2
= b3 = c7 = abc⟩, this surjects onto the orbifold

fundamental group of the (2,3,7)-hyperbolic orbifold. Since this is in PSL2R, we
can lift it to the cover, and this is a subgroup of the cover. This is subgroup of the
homeomorphisms of the real line. So this group G acts faithfully on the real line,
and embeds into Homeo(I) ≅ Homeo(R). But by computation, one can check that
G/[G,G] = 1 so H1

(G;Z) = 1. So G does not embed into Diff1. This is Thurston’s
observation.

That’s an example of a topological but not C1-smooth action.
There is an example by Calegari in 2006, which is yes for k = 1 and the circle.

So the k = 1 case, we’re happy.
The next question is k = 2, also by Thurston, the Plante–Thurston theorem,

about 1976, which is that nilpotent subgroups of Diff2
(M) is Abelian. So in partic-

ular, the Heisenberg group
⎛

⎜

⎝

1 Z Z
0 1 Z
0 0 1

⎞

⎟

⎠

does not embed in Diff2. But Farb–Franks

in 2003 showed that every finitely generated torsion free nilpotent group embeds
into Diff1

+M . So the Heisenberg group is an example. A C2-faithful group is not
possible.

So you con replace things in Farb–Franks with residually nilpotent, so you can
do right angled Artin groups, pure braid groups, and so on.

So our question reduces to k ≥ 3. I’d like to talk about our results. Let me
introduce some notation. If r ≥ 1, then we define Gr(M) as the set of scountable
subgroups of Diffr+(M) up to isomorphism.

So we know that G0
(M)∖G

1
(M) and G1

(M)∖G
2
(M) contain finitely generated

groups.
The theorem is as follows

Theorem 8.2 (K.–Koberda). For all real numbers r ∈ [1,∞) each of the sets

G
r
(M) ∖ ⋃

s>r
G
s
(M)

and
⋂

s<r
G
s
(M) ∖ G

r
(M)

contain finitely generated groups and also simple groups.

Let me make some remark regarding these conditions. You might wonder why
the interval [0,1] is missing, there is a result of Deroin–Nanas–Rivas that for all
G countable and contained in Homeo(M), we have G embeds into DiffLip

+ (M), so
these all go to almost 1-smoothable.

You also might want to consider the difference between Diffr I and Diffrc R for
r ≥ 1. In the former you don’t need to be tangent to the identity near the end-
points. In the latter you have this Cr tangency at the endpoints. There is an
embedding from the latter to the former. What is interesting, the other direction
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has a monomorphism, there’s a trick by Müller and independently by Tsuboi, which
says that Diffr+ I embeds into Diffrc R, you mollify the endpoints to make it flat. You
think of a very flat map, that looks like e−

1
x near 0, nad you map g to ϕ−2gϕ2 and

then this makes everything flat near the endpoints. You have to show that it has
the desired regularity.

Corollary 8.1. For every real r ≥ 1, and every closed oriented 3-manifold M with
H2(M,Z) ≠ 0 admits a transversally oriented codimension 1 Cr-foliation which is
not isomorphic to a ⋃s>r Cs-foliation.

This is a very direct consequence if you are familiar with foliation theory. We
have some subgroup G ↪ Diffr+ I but doesn’t go into any infinitesimally better
diffeomorphism group. Then you get some map of π1Σg onto the free group F free

g

and then from there to our diffeomerphism group. This determines a foliation on
Σg × I, and ϕ is not conjugate into the infinitesimally better group. This is a much
weaker conclusion than the main theorem because the main theorem doesn’t use
conjugacy.

The second corollary is more group theoretic. You can find the critical regularity
of a group, Crit RegM G which is defined as

sup{r ∈ [1,∞) ∶ G↪ Diffr+M}

Corollary 8.2. The set of critical regularities exhausts {−∞} and [1,∞].

There are outstanding questions.
(1) (well-known) Does there exist a finitely generated simple subgroup of the

C0 group Homeo I? This exists for the circle, it’s called Thompson’s group.
(2) Does there exist a group which embeds into Diffk+ I for all k but it’s never

C∞ realizable.
(3) This should be quite hard. Does there exist a group Gk contained in

Diffk+Lip
+ M such that Gk cannot be realized as Diffk+1

+ M . You cannot
distinguish Lipschitz and this +1 smoothability. There are famous exam-
ples from real analysis. I don’t know how to group theoretically distinguish
these.

(4) How about DiffrM and DiffsM for all smooth manifolds?
My argument, many arguments are specific to one dimension.

So let’s see. I’d like to talk a little bit about the proof. The first ingredient
is centralizer theory. This is well-studied by dynamicists, [unintelligible], or even
Smale, or [unintelligible]. The things that we need is a disjointness condition. If you
have two commuting C2 diffeomorphisms f and g, let me talk about the interval for
brevity, and U ∈ π0f̃ and V ∈ π0g̃, here f̃ is the complement of the fixed points of
f . Then they are equal or disjoint. This is a feature of C2-diffeomorphisms. This
is not true for C1. There are Pixton–Tsuboi examples. [pictures].

This is a non-commutativity certificate. If the support intersects but does not
coincide then you get noncommutativity.

I’d like to attack the case of regularity C1. Then there’s a similar version to that
theorem, due to Bonatti–Monteverde–Navas–Rivas. Consider the group BS(1,2) =
⟨a, e∣aea−1

= e2
⟩. If ⟨c⟩ ×BS(1,2) ↪ Diff1

+ I, then c̃ ∩ ẽ = ∅. The idea is that this
BS group can be affinely realized, a ∶ x ↦ 2x and ∶ x ↦ x + 1. Then the idea is
that the C1 action should look like the affine action. Suppose the contrary of the
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conclusion, and you have your support c̃ and ẽ, then the BS group acts on these
intervals like the affine action. [pictures].

This is a very brief explanation of the idea. The second idea is about covering
distance. The difficulty for us to prove this theorem is the s part. You can just
concretely construct a group. And you want to show that an arbitrary map to Diffs

is not injective. There are so few structures that we can employ. In particular,
suppose you have a generator v, it might have lots of support in the intervals. So
ψ̃v might have lots of accumulation points. We want a connection between topology
and group theory. We can measure some kind of energy. We consider an open set U
which is the union of the connected components π0ψ̃v. Then you have some kind of
distance defined topologically. Say dψ(x, y) for x < y in the interval, is the minimum
number of intervals to cover them: it’s the infimum ` such that [x, y] ⊂ u1 ∪⋯∪U`
with Ui ∈ U .

The key lemma which is simple to prove is the following.

Lemma 8.1. (1) If x < y and ` is the covering distance dψ(x, y), then there is
a word in G such that

∣∣w∣∣syl = inf{k∣w = vp11 ⋯vpkk }

is precisely ` and ψw(x) > y.
(2) For any word in G with syllable length less than `, then we have ψW (x) < y.

My time is almost over, I’ll just briefly mention about the last link. We have a
group theoretic condition related to the toplogical condition. What is the relation
between topology and geometry and regularity, analysis? We have this connection:

group theory

topology

geometry

analysis

covering distance

smoother is slower

So if f has regularity s = k + ε and we want to measure for x ∈ Ji, the difference
∣fx−x∣
∣Ji∣ , but

∣fx − x∣ ≤ ∫ ⋯∫

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

∣f (k)(t) − id(k)(t)∣ ≤ ∣Ji∣
k
[f (k)]ε∣Ji∣

ε

by Hölder continuity.

9. Dominic Verity: Synthetic ∞-category theory and ∞-cosmology
(Part III)

[note: the first two talks were slide talks]
Thank you very much and thanks again to the organizers. I promised I would

say something about stable∞-categories. Maybe I’ll just get on with the next topic
instead. Have a look in the book if you want to see it.
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So what I want to do today is to talk about monads and monadicity in this
framework. As I move along we’ll see some of the reasons that will be interesting.
I’ll tell you a story about 2-category theory that will turn into a story about ∞-
category theory. I’ll use K for, I’ll just assume it’s a 2-category, and I’ll suppose
I have an adjunction inside K. This consists of a pair of objects A and B, a pair
of arrows u ∶ A → B and f ∶ B → A, and a pair of 2-cells ε and η that look like the
counit and unit that satisfy the triangle equalities.

I want to understand what the generic 2-category that contains an adjunction
looks like. If we look at Categories for the Working Mathematician, we think there’s
a category which contains a generic monoid, ∆+, and any other monoid in any other
monoidal category, I can find a functor, unique, which takes my special monoid in
∆+ to that monoid.

So I’ll find a special 2-category Adj, so that for any other adjunction in K there
is a unique 2-functor carrying Adj to that adjunction in K.

It was shown, this category Adj was constructed by Street and Schanuel some
time in the 1980s. They give a simple description. I have to tell you the objects
and the hom categories. It will have an object for each end of the adjunction, −
and +. We know that given an adjunction, and this going back again to Categories
for a Working Mathematician, then you get a monad at one end whose underlying
functor is the composite in one direction and a comonad at the other end. These
are just monoids for the composition, so we can make a good guess at the hom
categories at − and +. So Hom(+,+) is ∆+, so finite ordinals and order preserving
maps, and Hom(−,−) is ∆op

+ . Then there’s a question about what’s going between
+ and −, and one thing that irritated me is that they kind of dream up what goes
between them. They don’t quite prove it’s the right thing. It turns out that the
categories going between − and + are Hom(−,+) = ∆� and Hom(+,−) = ∆⊺ both
of which are subcategories of ∆, and ∆� is the subcategory of maps that preserve
minimal elements. So 0 maps to 0. Then ∆⊺ preserves maximal elements. Then
they describe composition. The composition on + is a nice thing, ordinal ∗, the
dual at the −, and we won’t worry about what is going on with ∆� or ∆⊺. There’s a
special adjunction sitting there. There’s a pair of objects, which are − and +. Then
we have the arrows [0] and [0] between them, and there are units and counits, and
you can prove that there is a unique 2-functor from this into K which carries this
special adjunction to the one I thought of in K. So you can interpret a lot of the
theory of monads and adjunctions in terms of this category.

So is it possible to do something like this in ∞-cosmoi? The first thing we might
ask is, is there a simplicially enriched category that contains a generic adjunction.
If I have an adjunction in a quasi-categoric-enriched category, then I want to extend
that to a simplicial functor out of this simplicial category. There are lots of ideas
of how you might construct this kind of thing. It turns out to be really easy to
construct this thing.

The first thing to notice is that this thing can be made simplicially enriched
just by applying the nerve to the hom categories. In fact it’s quasi-categorically
enriched, since the hom spaces are already nerves of categories.

When I want to think of it as a simplicial category, this presentation I’ve given
isn’t so useful. I want some kind of direct description of the structure here.

I know it has two objects − and +. I have a simplicial set of maps from − to
+ and from + to − and I need to tell you what the simplices look like. I told you
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about objects and arrows but I didn’t give any higher structure. Over here I need
to give you more details about the simplices.

The way to understand the simplices from − to + or + to −, and an n-simplex,
we might call it an n-arrow, the clue to me for understanding this is to go back to
the string diagrams we drew in the first lecture [picture] and it turns out that we
can describe the simplices, we might be given an example where we’re composing
together a bunch of εs and ηs and we can interpret this by writing down levels, and
it turns out that we can draw the simplices or n-arrows in terms of this kind of
diagram.

[pictures]
It turns out that there is a theorem mirroring the theorem of Schanuel and Street

Theorem 9.1. Suppose that we have an adjunction f ∶ B → A ∶ u in an ∞-cosmos
K. Then I can construct a simplicial functor A from Adj into K which carries the
generic adjunction to the chosen adjunction in K.

The proof is, well, I have these pictures. Since this is about quasi-categories—
I’ve hidden a couple of important points. The information that I gave before,
we presented adjunctions in the homotopy 2-category so the unit and counit were
homotopy classes, and I have to make a somewhat careful choice. The result says
that I can extend as long as I’m willing to throw away either the unit or the counit
and replace it with something equivalent.

The second thing I should say, in the two-category case, there was a unique 2-
functor. We have something similar, but now there’s a contractible space of such
things, rather than a unique one.

[pictures]
So how might we use this? What we’ve shown here, we’ve taken a kind of

2-dimensional structure and used a universal property to complete this up to a
homotopy coherent structure, we have homotopies going through every dimension.
What we might call a simplicial functor out of Adj into K where K is an∞-cosmos,
a natural thing to call this is a homotopy-coherent adjunction.

Once we have homotopy coherent adjunctions, we can say we knew classically
that we goet a monad at one end and a comonad at the other end and the whole
ponit of this picture was to make this easy to see. If you’re given a homotopy
coherent adjunction, complete it up to something called, something from A → K,
now we can extract the monad. I have two ends of my category Adj. The plus
thing has, well, let’s let Mnd be the full simplicial subcategory on +. I could call
the full simplicial subcategory on the object − by the name Co Mnd if I wanted to.

If I want to do something with a monad induced by an adjunction, I precompose
by the inclusion of Mnd into Adj. I will call this thing from Mnd to K a monad.
You might ask what these kinds of thengs look like.

This gives a strict monoid map of simplicial monoids from (∆+,∗, [−1]) to
(FunK(B,B), ○, idB). This might seem strict, this is a rectification theorem. These
monads are the strict thing.

I have to show you that this is the right thing to do. How do we go about doing
that? What we do is think about the kinds of things we might have done with
monads when we first met them.

So I think about whether I can create an adjunction from a monad, we know we
get a monad from an adjunction, and of course there are two extremally different
answers. A monad is a functor from Mnd to K, and the Eilenberg–Moore object
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is a limit construction. To understand it, we should understand the cones for that
limit notion. There’s a category A with a functor T on it, and if I had cones that
look like

X A

A

x

T

and I ask for a two-cell there. So I have something that looks like Tx ⇉ x, and in
a 2-category the correct notion is to take the lax limit of the diagram from Mnd to
K. The basic properties follow from that.

So we might ask if we can do a similar sort of thing in the ∞ version. We have
the diagram

Mnd Adj

K

T

and we ask if we have a right Kan extension there. So because this is a computad,
you turn out to be able to form this thing. You need a “weight” and this is “pro-
jectively cofibrant” and in particular cellular. The construction process we have
is [unintelligible]so I can form this Kan extension, and I call this AT. So from a
monad, by Kan extension, I have an adjunction, which is a good thing.

Here I started with a monad and extended to an adjunction. But what happened
if I started with an adjunction in the first place? Then I’d have two triangles of the
same basic form. Then since this is the Kan extension, I get a map A to AT, and
maybe this is a simplicially enriched natural transformation. Also, when I restrict
back to Mnd this becomes an identity.

Now we have two adjunctions, one between A and B, and one between AlgT(B)

and B, and I have a comparison k which commutes with the functors going up, the
functors going down, and with the unit and counit.

This is the same as in the classical case.
An important question, if I’m given a monad, I have this Eilenberg–Moore cate-

gory, and I also have the Kleisli category, which is a lax colimit, and maybe there’s a
comparison between these things. There may be a lot of other adjunctions between.
How do I tell if an adjunction is monadic?

When we dig into the characterization, there are connections to important things
in other parts of mathematics. Beck pointed out that there are questions about
connections between monadicity and descent or effective descent. To be a 2-category
theorist, two-dimensional monads are an important part of coherence. We can do
similar things in (∞,2)-category. Beck gives some conditions having to do with this
functor having a left adjoint. He observes that alegbras for a monad is a colimit
of free algebras. A group is a coequalizer of two free groups. Beck worked these
things out.

To get this thing to have a left adjoint I’ll need ceration left limits. In this
context, you need to be a little more wily because coequalizers won’t be enough,
but we can use the kind of colimit notions we talked about before to touch what it
means to be the geometric realization of a [unintelligible]object. Maybe I’ll conclude
the talk by drawing this for you. The kind of things you find in Beck monadicity,
he’ll draw diagrams like this, for reflexive coequalizers, or at least special ones,
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those which when I map to B by the forgetful functor is a slightly more special
case, it’s a split coequalizer downstairs.

In fact what we have is a lot more structure upstairs, we have not just splittings
at the first two levels but at all dimensions. The amazing thing about this is that
you can pretty much, once you’ve understood a bit of formal structure of Adj, it’s
easy to mimic the popular proof of monadicity. It asks you for colimits of a shape
which give you an adjunction, and then we ask for something else to get this to be
fully faithful, and then if u is conservative, then we get that this is an equivalence.

10. Benjamin Burton: The computational complexity of the
HOMFLY-PT polynomial

Thanks, so, we were talking in the lift yesterday night. I say I do abstract
nonsense at home, but here I feel like a proper applied guy. I write software, look
at computational complexity, and so on. Can I thank the Koreans here for supplying
actual blackboards. I love it. Let me talk about tables of knots. Jessica was talking
about better, brighter ways of tabulating knots, but I’m talking about the old stale
way, and I think Stavros has done up to 17, if you email him. I’m working on the
18-crossing tables. There’s two parts to building a table. You need every knot to
appear and you need no duplicates. They’re two different problems, quite hard.

Making sure everything there, that’s a combinatorial enumeration problem. To
give a timeline, from November, in around a few weeks, the enumeration was done.
There are very fancy algorithms behind it. If you do it right, the computation
takes a few weeks. What do you have at this point? roughly 58 million knots, and
you have to tell them apart. So then you have from then until April, finding the
right invariants, and computing them, computing them on an enormous scale. If
there’s an invariant that takes you a day to compute, you can’t do it here. Most of
these 58 million knots seem to be distinct. So what kind of invariants can you use.
For the census, I’ve been using things that range from easy to slow to crazy slow.
For easy, I mean things like the Jones and HOMFLFY-PT polynomials. I don’t
actually need Jones. You can run it over 58-million knots, but it’s exponential.
Topologists should not listen to computer scientists when they say something is
intractable because everything is.

So for slow, I mean things like algebraic invariants of the fundamental group,
finite presentations, finite subgroups, things that are stronger as the index increases,
and the bulk of the time between November and April is computing subgroups of
index five. I can’t possibly do index six, which still leaves you with more things
to distinguish. For crazy slow I mean genus, crosscaps, you’re running a super-
exponential thing, Jae Choon Cha and Livingston have knotinfo, which has 70
invariants or so for knots up to 12 crossings, but there are only thousands of these.
I want to focus here on the easy case.

So having said that, you do the enumeration, and then you do a breadth search
via Reidemeister moves. So the motivation then is computing HOMFLY-PT poly-
nomials, I computed these in November, this result is from December. Can I assume
that people have heard of HOMFLY-PT? It’s a two-variable polynomial invariant,
that’s all you need to know for now. This is #P -hard to compute. What do I mean?
You have NP -complete, which means that unless you can solve Hamiltonian cir-
cuits and university timetabling, you can’t do these in polynomial time. Make a bet
that something NP -complete has no polynomial algorithm. So NP is about yes or
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no problems. A problem is NP hard if it is at least as hard as NP -complete things.
The #P problems are counting problems so they are sometimes much harder. They
are at least as hard as NP things.

The best algorithm is exponential, this is O(cn), and I’ll talk about the Kauffman
skein-template which is 2n times polynomial in n. For the 58 million knots, let me
plug Regina, a piece of software, and if you get it from the working repository
you’ll get knots, and it has Kauffman’s algorithm with some careful optimization.
All 58-million knots, you take about 60 hours in total. It mean it’s doing around
269 knots for second. So this is a 2n algorithm that is taking milliseconds for the
largest knots in the census.

So this is not about practicality. This is about understanding the computational
complexity of these knot polynomials. There are some big open questions. If I
ask you if a knot is the unknot, it’s unknown if this is polynomial time. The
best algorithm is exponential. This is what computer scientists and topologists are
getting together and thinking about.

Of the 58 million, the HOMFLY-PT makes about half of these unique. So it’s a
good first pass.

So I want to talk about complexity. One of the theorems, let me give you the
spoilers now. Kauffman’s algorithim is exponential, and what you can prove is the
following.

(1) It is fixed parameter tractable in tree width. I’ll explain what this means.
But if you measure, if I draw the knot, I get a 4-valent graph in the plane.
I can measure the tree width of this graph, and it’s polynomial times a
function of the tree width. All the hardness is encapsulated in the tree
width. If I give you an infinite family of knots with tree width bounded
then I can give you a polynomial time algorithm.

(2) You can do better than exponential. In fact it is eO(
√
n logn). This is bigger

than polynomial but less than exponential. This is a one line corollary, but
it’s the first subexponential algorithm.

What I find particularly interesting is that the second result is a one-line corollary.
So build this thing using the measurement of the graph. The algorithm is tailored
to the tree structure of the graph. But then you bound the tree width and this
just falls out. So you use parameterized complexity and use it to get a complexity
result.

Any questions before I start defining the things. I think—
So parameterized complexity. This came out of work by Downey and Fellows

in the 80s and 90s. In traditional computer science you measure the complexity
as a function of n, whatever the input size is. What they do is not just measure
it in terms of n, but do a more refined version. The simplex method for linear
programming is what everyone uses, even though it’s exponential. It’s average
polynomial time, generic polynomial time, smooth polynomial time, so this is an
example of an algorithm that is fast in practice but traditional complexity doesn’t
see that.

Let me give you a toy problem which is vertex cover. The input is a graph.
What you need to do is find a cover, which is a selection of vertices so that every
edge meets one of the vertices that you chose. Every edge touches a yellow vertex
[pictures]. The input is a graph and a number k. The output is a yes or no problem.
Does there exist a cover of size less than or equal to k. There is an easy algorithm of
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size 2n, in fact (
n
k
), but let me give you something better. So traditional complexity

says this is 2n times some polynomial in n.
But this time we’ll measure the complexity not just in terms of n but also in

terms of k. Choose an edge that does not touch any vertices. So choose either the
left or the right. Now choose another uncovered edge. At each node of this search
tree we get one of the vertices to include. This does not need to go beyond depth
k, because then we’ve chosen too many vertices. You make different choices on
different sides of the search tree.

So you follow this search tree to depth k and either find a solution or you don’t.
So if there is one, you find it in the search tree. It has size 2k. So what is the
running time? It’s 2k times however long it takes you to find the next edge, which
is like n or n2. So this is a function of k times polynomial. So if I want a fixed
cover size, then I can let the graphs get as large as I want but it’s polynomial. If k
is small then it’s fast and if k is fixed then it’s quadratic.

What does it mean to be fixed parameter tractable? It means O(f(k)poly(n)).
This lived in theory in graph theory, factorials, exponentials, towers of expo-

nentials in k. This vertex cover is the poster child for a case where it actually
works.

But people in other fields have started to use these algorithms, and they have
started to become tractable. In actual software in biology they’ve used these. For
me, more interesting, in topology, to compute the Turaev–Viro invariants, they
have a traditional backtracking and also a fixed parameter thing, and the surpris-
ing thing, we implemented it and found out that it’s faster, sometimes orders of
magnitude faster. If you want to find a [unintelligible]structure, there’s a couple
of people here who know what that is, but it’s faster. I don’t know yet about the
HOMFLY-PT. Maybe backtracking is fast enough for 18 crossings but not for 45.

So that’s parameterized complexity. The next thing is tree width. Any questions
about parameterized complexity. This also comes from graph theory. I give you a
graph and you want to measure how much soju you have to drink to make it look
like a tree. A complete graph has tree width n − 1. A graph made out of cycles
joined together in a tree-like fashion is tree width 2.

The idea is that I give you a graph, and what you want to do is group the vertices
into bags. YOu want to group them together in clumps so that the bags are hooked
together like a tree. [pictures]

The tree width, you arrange things so that the maximum bag size is as small as
possible:

tw = min max ∣bag∣ − 1

You choose the bags, you choose the tree, and you want to make it as small as
possible. This is a property of a graph. It’s hard to compute, but we’ll come back
to that. This will be our parameter.

I first encountered tree width because it turns out, well [anecdote about boats
in Darwin], Dehn fillings give you long chains of tetrahedra, and these tree-like
structures are quite natural.

There is a theorem, Lipton–Tarjan that have a theorem on planar graphs, which
says that the tree width of a planar graph is O(

√

n), and for a knot this is the
4-valent graph. If you can find the tree width, it’s guaranteed to be small. There’s
this Haken picture of an unknot, I put this into Regina by hand, and it has tree
width 12 but 141 crossings. Regina with greedy heuristics found a decomposition
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with bag size 13. If you have a knot where the tree width is large, you can move
things around and try to make it smaller. You can just try again.

Okay, so any questions about tree width?
Let me give you the basic idea behind this algorithm. First of all, let me show

you why the Jones polynomial is fixed parameter tractable in tree width, this is
around 2005, Makowsky. He also showed the Tutte polynomial is fixed parameter
tractable in tree width. You can compute this with the Kauffman bracket, you
undo the crossing in one of two ways, for the first direction you get the bracket
polynomial of a smaller knot and multiply them by something. Also if there’s an
unknot you peel it off and multiply by some factor. You build a tree of resolutions,
undoing each crossing in turn and at the bottom you get a collection of unknots
and work your way back up the tree. How do you make this fixed point tractable?

So what’s the idea, we think each bag, we have these bags that make up the
knot. If I give you a knot, it’s the projection. Every crossing is a vertex, every arc
is an edge. So work one end of the tree to another. Look at the stuff that happens
in here. In the intersection, there are some crossings. All the crossings that appear
in your bag alone you will never see again. What it means is that all the vertices
that you see to the left in this picture, you aggregate and forget. If there are B
vertices in the bag, you compute a partial polynomial inside the bag. You don’t
know how to connect these up to the rest of the world. You don’t know what’s
going to happen. For every crossing in the bag, you look at all the ways they travel
out and return. For each different way, you compute a subtree. [pictures] You
have something like 2b(2b)! from partial resolutions and pairings. This is n times
something in the tree width, which controls the size of the bags b.

For HOMFLY-PT you try to play the same game, but the skein relation is
not so nice. It’s a polynomial in α and z. If you have some knot with three
different resolutions, you zoom in and change in three ways, and the skein relation
relates these [pictures]. So this is enough information to compute, but in the Jones
polynomial, at every stage the knot gets smaller. If you resolve K+, one gets smaller
but the other one has fewer crossings. So Kaufmann’s algorithm, you use this to
switch crossings that gets you closer to unknots and unlinks. You know that any
knot can be turned into the unknot by changing crossings.

So Kauffman says, traverse the knot and at each stage arrange it to go over, and
then when you come back you go under. We’re not reducing exponentially, so you
don’t get the neat aggregation. Because Kauffman wants you to follow from start
to finish, you need to know whether things are the first or the second time you’ve
seen it. You don’t know what order you’ll visit in. So actually the bulk of the work
is moving around this so that you can work this out. If you need the starting points
it starts involving n. You want the starting ponit for the traversals to determine an
ordering on the strands of the knot which tells you where to start for subtraversals,
so that you don’t need a superpolynomial function of n here.

That’s how it’s working. Are there any questions before I say a couple more
things? Maybe I’ll just give some references. If you want to read about this, it’s
in SoCG 2018 (pronounced “sausage”), this is for computer scientists, the preprint
is on the arXiv. What i want to show you is that the algorithms can be tractable.
This is the Turaev–Viro, this is looking at hundreds of thousands of manifolds.
This is a log log plot of the running time. [pictures]


