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1. May 1: Yong-Geun Oh, Lagrangian Floer theory and mirror
symmetry on toric manifolds I

Thanks to the organizers for this wonderful event. I hope that this kind of
exchange between Australia and Korea continues beyond this year. I want to talk
about, in this series of lectures, a brief introduction to homological mirror symmetry
in toric manifolds. In the first lecture I’ll overview Lagrangian Floer theory. In the
second lecture I’ll talk about Floer theory on toric manifolds. In the third lecture
I’ll talk about (homological) mirror symmetry between toric A-models and Landau–
Ginzburg B-models.

Okay, so let me say that (M,ω) is a symplectic manifold. So M may not be
compact in general. ω is a nondegenerate closed 2-form. There is a special kind
of dynamics on symplectic manifolds, called Hamiltonian dynamics. The way this
goes is as follows. Let h be a smooth function M → R. By nondegeneracy we can
define a vector field

Definition 1.1. A vector field X is called Hamiltonian if it solves the following
equation X⌟ω = dh, uniquely solvable by nondegeneracy.

If H = H(t, x) is a time-dependent Hamiltonian, then we can write Hamilton’s
equations

ẋ =XHt(x)
On the phase space R2n with symplectic form ω0 = ∑dqi ∧ dpi, the Hamilton equa-
tions can be written

q̇i =
∂H

∂pi

ṗi = −
∂H

∂qi

Then one can easily see that d(Xh
⌟ω) = 0 by closed-ness of ω, and this is equivalent

to LXh
ω = 0 by Cartan’s magic formula, which means that this vector field preserves

the symplectic form. So Xh is an (infinitesimal) automorphism of ω.

Definition 1.2. The symplectic automorphism group (of symplectomorphisms)
Symp(M,ω) consists of diffeomorphisms ϕ of M so that ϕ∗(ω) = ω. We can define
a subset Ham(M,ω) of Hameomorphisms which are symplectomorphisms ϕ equal
to ϕ1

H , the time one flow for some time dependent Hamiltonian H(t, x), where ϕt
H

is the flow of ẋ =XHt(x).

When M is compact, ϕt
H is alwyas defined. When M is not, we impose some

conditions at infinite on H, say, compact support or asymptotic control (linear, say,
1
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or quadratic). Then an interesting exercise is that Ham(M,ω) is in fact a subgroup
of Symp(M,ω). This is an important object of study for sympletic topologists.

One important problem is to study or develop some intersection theory that is
invariant under the action of this group Ham(M,ω). It turns out that there is some
nice structure on Hamilton’s equations which allows us to study this problem in
some effective way, having to do with some variational structures of these equations
ẋ =XHt(x).

What do I mean by this? Let me start with the classical case, (R2n, ω0) where ω0,
defined before, is d(−∑pidqi). The same property holds, in fact, for any cotangent
bundle, with M = T ∗N . Here you have ω0 = −dθ where θ = ∑pidqi in canonical
coordinates. This is called the “Liouville 1-form.”

Then we have a classical action functional on the path space. So this is AH ∶
P([0,1];T ∗N)→ R defined as

AH(γ) = ∫ γ∗θ − ∫
1

0
H(t, γ(t))dt

where in canonical coordinates this is

∫
γ
∑pidqi − ∫

1

0
H(t, q(t), p(t))dt.

Under suitable boundary conditions, or instead by restricting AH to a subset of
P([0,1], T ∗N), the equation’s—the solutions to the boundary value problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ =XHt(x)
x(0) ∈??
x(1) ∈??

are in bijection with critical points of the action functional evaluated somewhere.
To make this statement actually precise we need to specify the boundary condi-

tions. There are two boundary conditions used commonly by physicists and math-
ematicians these days. The most natural boundary conditions are the following.
Look at some relations Λ ⊂ (M,ω) × (M,ω). We call this relation, well, we want it
to satisify a “Lagrangian” condition,

Definition 1.3. Let (M,ω) be symplectic. A submanifold L ⊂ M is called La-
grangian if dimL = 1

2
dimM , and i∗(ω) = 0. The natural boundary condition is

a Lagrangian submanifold in the product. The Lagrangian boundary condition, is
that x(0) and x(1) are in a Lagrangian submanifold Λ. For example,

(1) we can take periodic boundary conditions corresponding to Λ the diagonal.
(2) We can take a two-point boundary condition on T ∗N , which says that

q(0) and q(1), the projections, are fixed. From the point of view of the
Lagrangian boundary conditions, this means that q(0) = T ∗q0N and q(1) ∈
T ∗q1N so that Λ = T ∗q0N × T

∗
q1N ⊂ T

∗N × T ∗N ≅ T ∗(N ×N).
We get this from a variational principle. The first variation of AH dAH(γ)(ξ) is

∫
1

0
ω(γ̇(t), ξ(t))dt − ∫

1

0
dHt(γ(t))(ξ(t))dt + ⟨θ(γ(1)), ξ(1)⟩ − ⟨θ(γ0), ξ(0).

By definition θ(x)(ξ) is nothing but p(dπ(ξ)). Here x = qp. [picture].
Then the boundary terms can be written as

⟨α(1), dπ(ξ(1))⟩ − ⟨α(0), dπ(ξ(0))⟩
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for γ = (q, p) and α = p ○ γ.

In the periodic case, these both vanish. In the two-point case, the q is fixed, so
the projection this way vanishes.

More generally, the 2-boundary conditions can be amplified to so-called conormal
boundary conditions. The fiber here can be replaced by any conormal bundele N∗S
for S a submanifold.

One of the fundamental thereoms is the so-called Arnold conjecture, which is that
the zero section cannnot be removed from itself by any Hamiltonian diffeomorphism.

Fact 1.1. (Arnold’s conjecture, Hofer–Floer, [unintelligible]–Sikorav,. . . ) For N
compact, then N ∩ ϕ(N) ≠ ∅ for any ϕ ∈ Ham(M,ω).

If ξ(N) = 0, then we know there is such a diffeomorphism so this is a very
different in the smooth world.

There is the so-called symplectic creed of my adviser Alan Weinstein. “Every-
thing is a Lagrangian submanifold.” There is more and more evidence for this. One
plausible expectation is that a suitabel collection of Lagrangian submanifolds sould
recover a large part of the sypmlectic topology of (M,ω).

How is this possible? The best way to motivate this involves using some physical
language. The best way to see this is to “study some long-range interactions of
Lagrangian branes.” What has been known for a long time is that symplectic
topology cannot be seen locally. There is the (closed) Darboux theorem and the
(open) Darboux–Weinstein theorem. The former says that ω can be written pulled
back, ω = dqi∧dpi for some chart. The latter says that for any L in (M,ω there exists
a symplectic diffeomorphism Φ so that we can pull back the canonical symplectic
form and get ω = Φ∗ω0.

Now we should try to exploit these variational structures in some way. Physics
may again be a good way of motivating this kind of study. So we want to measure
this long-range interaction between L0 and L1 by regarding that as some kind of
morphism between L0 and L1 in some category.

This is by now called the Fukaya category. The important aspect of this is to
understand the intersection properties of these two. If you have L0 and L1, we
want to understand the intersection properties.

Let’s first consider the case of transversal intersection L0 ⋔ L1 with M compact
and Li compact Lagrangian submanifolds. We consider CF (L0, L1) as the category
of R-modules over L0 and L1 over a ring R, suitable in some way, that I will
present later. These are modules with some natural basis. We want to construct
a “complex,” meaning we want to construct an R-linear map ∂ ∶ CF (L0, L1) →
CF (L0, L1) hopefully satisfying ∂2 = 0. Very often this fails and I’ll explain how to
handle this in this case, but we’ll construct ∂ by studying first order quasi-linear
elliptic equations with Lagrangian boundary conditions:

∂U

∂τ
+ J ∂U

∂t
= 0

U(τ,0) ∈ L0

U(τ,1) ∈ L1

U ∶ R × [0,1]→M ;

U(−∞) = qU(∞) = p.
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. Similarly, we can study u ∶ R×S1 →M , and study (perturbed) Cauchy– equations

∂U

∂τ
+ J (∂U

∂t
−XH(U)) = 0

but this domain is not compact, and so we need to control behavior at infinity by
imposing some energy conditions. The relevant energy is given by

EJ(U) =
1

2
∬ ∣∂U

∂τ
∣
2

J
+ ∣∂U

∂t
XH(U)∣

2

J
dtdτ

So if we impose finite energy , E(J,H)(U) <∞, together with transversality condi-
tions, then as τ goes to ∞ we go to a closed loop z(t) which satisfies Hamilton’s
equation ż =XH(z). For the open string case this is a Hamiltonian trajectory con-
necting the first Lagrangian to the second one at time 1. Given a Hamiltonian, how
do you know if you have a periodic orbit? This turns out to be an efficient way to
prove the existence of such orbits, but all you have to do is to show the existence
of a solution to this equation.

So when H = 0, say, the equation, the only solutions, are constant, say, on
cotangent bundles. In general, it will be a problem of so-called Gromov–Witten
theory on general (M,ω). Assume you understand Gromov–Witten theory very
well, then this gives you a lot of information about periodic orbits.

Now I have to explain what this J is. So J is an almost complex structure
J ∶ TM → TM , with J2 = −id, compatible with ω, so that gJ ∶= ω(●, J●) is a
positive definite symmetric bilinear form, i.e., defines a Riemannian metric. Maybe
a better, more flexible structure is, this is

(1) it is positive, so that ω(v, Jv) ≥ 0 and equality holds if and only if v = 0,
(2) along with Hermitian properties ω(J●, J●) = ω(●, ●).

And a Fact due to Gromov is that the set J of such J forms a contractible infinite
dimensional manifold.

Later we’ll look at this in more detail, but for one minute let’s go back to the
open string,

∂U

∂τ
+ J (∂U

∂t
−XH(U)) = 0

U(τ,0) ∈ L0

U(τ,1) ∈ L1

thenM(J, ,H ∶ Z−, Z+) is the set of finite energy solutions, which look like [picture].
The construction of this moduli space is fundamental. There are two issues,

transversality of M and compactness of M , that one has to understand to construct
such a space.

2. TriThang Tran: Quantum shuffle algebras and the homology of
Hurwitz spaces

Thanks for the invitation to speak and for coming to hear me talk. Today I’m
talking about quantum shuffle algebras and the homology of Hurwitz spaces. Can
everyone see if I write this size? So this is joint work with Jordan Ellenberg and
Craig Westerland. There are a few bits and pieces that go into this project so this
talk will possibly be in bits and pieces as well. The first bit I want to talk about
is what a quantum shuffle algebra is. The second part is what Hurwitz spaces are,
and the third part I want to talk about is the relationship between the two. And



TASK 2017 5

lastly, if there’s time, I’ll put the motivation in the end, talk about the reason we
cared about this in the first place, something called Malle’s conjecture for function
fields. I’m probably going to spend a lot of time in the first two.

2.1. quantum shuffle algebras. In this talk, k is going to be a field. To talk
about quantum shuffle algebras, let me start with braided vector spaces

Definition 2.1. A braided vector space (V,σ) will be
(1) A vector space V (finite dimensional, for me), and
(2) A braiding σ ∶ V ⊗ V → V ⊗ V

such that

(σ ⊗ id) ○ (id⊗ σ) ○ (σ ⊗ id) = (id⊗ σ) ○ (σ ⊗ id) ○ (id⊗ σ)

as a map V ⊗ V ⊗ V → V ⊗ V ⊗ V , sometimes called the braid relation (probably
why this is called a braided vector space)

Some examples, I could define σ(x⊗ y) = y⊗x, this is a boring one. I could also
choose σ(x⊗ y) = −y ⊗ x.

So given a braided vector space I can get an action of the braid group on n
strands, Brn, on V ⊗n. The braid group is

⟨σ1, . . . , σn−1∣σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if ∣i − j∣ > 1⟩

and what’s the action of σi on [v1∣⋯∣vn]? It does nothing for the first i − 1 terms
and then applies σ:

[v1∣⋯∣vi−1∣σ(vi, vi+1)∣vi+2∣⋯∣vn]
and because σ satisfies the braid relation this gives me an action of the braid group.

I wanted to talk about quantum shuffle algebras, so given (V,σ) I can form
something that I’ll call a quantum shuffle algebra, which I do as follows. Define
A(V,σ) = A(V ) = A as, well, as a vector space

A =⊕
n≥0

V ⊗n

and so this is a vector space, this is the same underlying vector space as the tensor
algebra where I concatenate words. I use a different product. We’ll use the braid
action in this product.

I’ll say what it does on V ⊗n ⊗ V ⊗m → V ⊗n+m, let me call this ⋆, and

[v1∣⋯∣vn] ⋆ [w1∣⋯∣wm] = ∑
τ∈Sh(n,m)⊂Sn+m

τ̃[v1∣⋯∣vn∣w1∣⋯∣wm]

this sum over (n,m)-shuffles, lifted to the braid group. Here Sh(n,m) is the set of
(n,m)-shuffles, and I can’t just take any lift to the braid gruop, and so I should
say τ̃ is the Matsumoto lift of Sn+m to Brn+m.

So a shuffle is a permutation that keeps the relative ordering of the first n things
the same and the last m things the same, but can interleave these two sets [picture].
So I get an element of the braid group by deciding that crossings from left to right
are going to be the overstrands.
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So Ross checked in 1998 that star is associative. This is a bit bashy, but I don’t
know. We can check this. So we end up with a product on A. Was it Vigleik that
mentioned signs? If I take σ(x⊗ y) = −y ⊗ x then I get

[a∣b] ⋆ [c] = [a∣b∣c] − [a∣c∣b] + [c∣a∣b]

I do have to be a little bit careful. I shouldn’t just take any diagram that repre-
sents Sn+m, I want the identity to go to the identity braid, and this is presentation
dependent. I should write my shuffles in this simple form.

The (A,v) we will have will come from racks. A rack is a set R with a binary
operation ◁. It satisfies conditions

(1) a◁ (b◁ c) = (a◁ b)◁ (a◁ c) (this is the so-called “shelf”- distributivity
condition)

(2) a◁ a = a
I struggled thinking saying ◁ out loud, we’ll write a◁ b as ba. This is going to
make sense right now because I’ll give you an example right now. The conditions
are instead

(1) (cb)a = (ca)(ba)
(2) aa = a.

The prototypical example is R = G a group, ab = b−1ab, and you can check these
conditions easily:

(cb)a = a−1(b−1cb)a−1 = cba = cab
a

and the second condition is easy. Another example is, I can let R be a union of
conjugacy classes of G, let [a][b] = [b−1][a][b], and given such a rack, let V be the
braided vector space generated by R, and let the braiding σ be V ⊗ V → V ⊗ V is

[a∣b]↦ [b∣ab].

I’ll let you check that if you use condition (1) it’ll tell you that σ satisfies the braid
relation.

These are the quantum shuffle algebras that arise from this rack, relevant for
Hurwitz spaces.

2.2. Hurwitz spaces. Now let me talk about Hurwitz spaces. Let G be a finite
group and c a union of conjugacy classes. For example you could take Sn and
the transpositions. So this is HurcG,n, and I’ll input a positive integer n, and here
HurcG,n is a branched G-cover of the complex plane with n branched points. The c
means that the monodromy around each branch point lies in c. I want this set up
to isomorphism of branched covers. This is supposed to be a set whose points are
branched covers of C (not necessarily connected at this stage). The claim is that
this is a space. Maybe instead of giving you a good definition of the topology, let me
tell you how I think about the topology. There’s a map from HurcG,n → Confn(C),
the spaces of n points in the plane. What’s the map? I take the branched cover to
its branch locus. If it’s an n-branched cover then there are n branch points. So the
configuration space is, this, if, I can think of this as sitting inside Cn/Sn, and this
map HurcG,n → Confn(C) is a covering space whose fibers are discrete, so a covering
space.

So this space is pretty interesting. Let me give you a sample theorem for why
people have cared about this space.
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Theorem 2.1. (Ellenberg–Venkatesh–Westerland ’16)
Let G be a finite group and c a conjugacy class of G such that

(1) ⟨c⟩ = G, that is, c generates G,
(2) G is non-splitting, which I don’t want to write down what that is right now,

a strong condition on G.

Then, short-handing, there are constants A, B, and D, so that Hp(HurcG,n;Q) ≅
Hp(HurcG,n+D,Q) for n ≥ Ap +B.

This is sometimes called a homological stability result. This occurs in many
other places in homology, such as in configuration spaces.

Not only did they prove that this space satisfies homological stability, but they
also used this to prove a version of the Cohen–Lenstra heuristics for function fields.
These are sort of, one of these statements that tell you about the number of groups
whose, I’m going to screw up, so, I was going to remember this sentence but I
blanked out. It’s about counting, if I was given a number field and I was going
to count—no, I’ve blanked out. You can ask Craig, he’s right there. This was a
number theory problem about number fields that was reworded to be about function
fields, and this result helped them prove the function field version.

The point is that understanding the Hurwitz spaces has some cool number theo-
retic computations you might be interested in. I’ve told you about Hurwitz spaces
and quantum shuffle algebras.

2.3. Relation between Hurwitz spaces and quantum shuffle algebras.

Theorem 2.2. (Ellenberg–T.–Westerland) For any (G, c) and G finite, if I take
the rack associated to c, letting V = kc and σ I gave before be a braided vector space,
then the quantum shuffle algebra associated to this vector space, I have A(Vϵ), take
this quantum shuffle algebra, then Extn−q,n

A(Vϵ)(k,k) ≅Hq(HurcG,n,k), where (Vϵ, σϵ) =
(V,−σ).

The idea is that here’s a space whose homology I’m interested in, the Hurwitz
space, and here’s one way to compute its homology. This would be pretty useless
if I couldn’t compute these Ext groups, but I can, so it’s not so useless.

[Can one describe the product on the right hand side?]
This lifts the product that comes from adding two configurations sort of “op-

eradically,” putting two configurations in their own little boxes.
Where does this come from? I can stratify HurcG,n based on where the branch

points are. Let’s make n a number, say 5, so I can write something down. Let
λ be an ordered partition of 5, say (2,1,2). So for a partition I’ll get a stratum
of this space, where, here’s the complex plane, and I’ll look at branched covers,
where I have two points that share one real coordinate, one on its own, and another
two sharing another real coordinate. It has to be in this order. So each λ, if I
think about this strata, the vertical lines can move about and this is what the cells
look like, well, this is what I’d get for Cn, these are the [unintelligible]cells, but I’ll
get additional information, something telling me the monodromy around each of
the branch points. I should really get a monodromy element in c for each of the
points. So specifying that stuff I get a cell in HurcG,n. The highest dimensional cells
correspond to λ = (1,1, . . . ,1). If I’m thinking about the boundary maps, there are
three ways that these can combine, and if I had more than one point, you’d get
some sort of shuffling effect.
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So roughly speaking, this cell structure which is not a cell structure on HurG,n,
which is really a cell structure on its one-point compactification, then you get
something like the bar complex on the shuffle algebra, which is roughly why this is
the same.

In the last two minutes I’ll say a word about why this is useful.

2.4. Malle’s conjecture for function fields. Let X(n) be the number of finite
field extensions L/Fq(t) with Galois group G and discriminant less than n. I want
the number of such field extensions.

Conjecture 2.1. There exist constants c1(G), c2(G, ϵ), and a(G), such that

c1(G)na(G) ≤X(n) ≤ c2(G(na(G)+ϵ)).

and so the second inequality is roughly what Ellenberg–T.–Westerland prove
using this count of Hurwitz spaces.

3. Seonjeong Park: Cohomological rigidity of manifolds arisen from
right-angled 3-dimensional polytopes

[I do not take notes during slide talks]

4. May 2: Mike Hopkins: Reflection positivity and invertible
topological phases

[I do not take notes during slide talks]

5. Calin Lazaroiu: Differential models for open-closed
Landau-Ginzburg theories

[I do not take notes during slide talks]

6. Daniel Murfet: A-infinity minimal models and matrix
factorisations

I’m going to explain a map from the sort of algebraic subset of what Calin
was talking about in the last lecture, from pairs, well, let me just say polynomial
functions W ∶ Cn → C with isolated singularities, to A∞ algebras. This will go via
a triangulated or dg category of matrix factorizations and this should really be a
2-functor, with bimodules and so on. The ultimate motivation was understanding
higher categorical content related to some work I did with bicategories related to
Landau–Ginzburg. So W will be my polynomial and AW the algebra (a finite
dimensional vector space with higher operations). So A∞ algebras extract, often, a
finite thing which is easier to understand than a big space that you start with.

So the property this will have is that the triangulated category of perfect modules
over AW equivalent to hmf(W ), the homotopy category of matrix factorizations of
W , or more equivalently, the bounded derived category of coherent sheaves on the
critical locus ofW , but the tweak is that we mod out by perfect guys Perf(W −1(0)).
Orlov called this the triangulated category of singularities.

Singularity is important here because if you’re working nonsingularly this quo-
tient is zero.

As I said I’ll give a construction of AW but what you want to know is the
equivalence so that you can consider the bounded derived category via this algebraic
structure.
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So my motivation was to understand topological string theory better, Calin’s
work and others, Calin described some way to get a 2d open-closed tft, and there’s
a richer story with string theory. Just as a tft is a functor, these things are minimal
cyclic (Calabi–Yau) strictly unital A∞ categories. This connection appears first
in Herbst–Lazaroiu, then Lerche, Costello, et cetera. In particular I wanted some
examples of A∞ algebras to run through the machine.

The second thing was I wanted to try and understand unfoldings in terms of
A∞ categories. I can ask, if I have a family of isolated singularities, can I get a
sheaf of A∞-algebras on the base space of the unfolding. This should be related to
Frobenius manifolds and other interesting things.

I’ll start by defining A∞ algebras and then the category of matrix factorizations,
and then I’ll explain the assignment which will go by the minimal model theorem.
This assignment will go through a certain dg algebra naturally associated to the
category of matrix factorizations, and then if I have time I’ll talk about modules.

Every talk you prepare there are two pages at the end that every time you give
the talk you don’t get to give.

Let me say what an A∞ algebra is.

6.1. A∞-algebras. I don’t want to work over a field necessarily. My base com-
mutative ring might be the coordinate ring related to the unfolding. So k is a
commutative Q-algebra.

Definition 6.1. An A∞-algebra is a Z or Z2-graded finitely generated projective
k-module A = ⊕n∈ZAn with linear maps mn ∶ A⊗n → A of degree 2 − n, for n at
least 1. So m1 goes from A to A and is of degree 1, m2 goes from A⊗2 to A of
degree 0, m3 is degree −1 and gives a sort of homotopy.

The equation is that for all n ≥ 1, we have

∑
r+s+t=n

(−1)r+stmr+1+t(1⊗r ⊗ms ⊗ 1⊗t) = 0.

The n = 1 case will say that m1 is a differential, the n = 2 will say that m1 is a
derivation with respect to m2, so this looks like a dg algebra except it’s not strictly
associative, m3 is a homotopy, and so on.

I won’t talk about history (as this is a topology conference, you may know this
better than me), I want to give some explicit small examples. If mn = 0 for n ≥ 3
then (A,m1,m2) is a dg algebra. It’s interesting to talk about modules over an
ordinary algebra even if you don’t have higher structure. I should say secretly I
want everything to be homologically unital.

I didn’t say it, but if I have an A∞-algebra, then taking the homology gives me
an associative algebra and I want a unit for that algebra.

Definition 6.2. A is minimal if m1 = 0.
Nature gives you ones with m1, and you’re interested in the invariant homology,

the passage in between the thing you’re given which is infinite dimensional and
the other end where everything is finite dimensional, that’s where the interesting
mathematics comes.

Let me give an example of a minimal A∞ algebra. I said earlier Z or Z2-graded,
I’ll in fact be Z2-graded.

For d > 2, let ∣ϵ∣ = 1, and A(d) = k[ϵ]/ϵ2 = k⊕ kϵ. So mn = 0 unless n ∈ {2, d}. So
m2 is the usual product, and md is zero on the basis vectors except md(ϵ, . . . , ϵ) =
(−1)d−11.
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This is an A∞-algebra, and this will be the AW for W = xd + y2 + z2.
Let me say briefly what A∞-modules are. So given an A∞ algebra, an A∞-module

is a Z or Z2-graded finitely generated projective k-module M with operations mM
n ∶

A⊗n−1⊗M →M of degree 2−n for all n ≥ 1, satisfying the same identities interpreted
appropriately. The first operator, if t ≠ 0, then the first operator acts on some tensor
not including an M . If t = 0, then you use the operator involving M . So things are
like a module but the two things that are normally equal are only homotopic.

So now per(A) is the triangulated subcategory of H0(Mod∞A) generated by A.
If you had a ring, this would give you finitely generated complexes of projective
modules. You cook up a dg category, its homology is a triangulated category, and
then you take the subcategory generated by that one object (with summands as well
as direct sums, mapping cones, and suspensions). This is the category of perfect
modules.

This is like the usual triangulated structure.
Where would I naturally run across an A∞-algebra? There are a variety of ways,

but I come to them via algebraic geometry rather than algebraic topology. The
way they appear to me is as follows. I assert that we start life caring about certain
triangulated categories, and the one we love best is the bounded derived category of
coherent sheaves on a Noetherian scheme, or second to that the homotopy category
of matrix factorizations, and joking aside, these encode ext and tors that we care
about properly. So we care about triangulated categories. There are constructions
that require us to go beyond triangulated categories. If you have a dg category
whose homology is your given triangulated category, you call this an enhancement,
and these are often more complicated. We want to enhance the category to un-
derstand it, and in many cases there’s a generator, that’s in the sense I described
earlier, a particular coherent sheaf or complex, where I can get every guy from this
guy by these operations. The existence of a generator is pretty common. If we have
a generator, we get an algebra, the endomorphisms of the generator. The perfect
dg modules over these endomorphisms, under hypotheses, should give us back the
triangulated categories. This sounds like a good place to stop, except that these
endomorphisms are infinite dimensional. What we want to get down to is some-
thing honestly finite dimensional, and if we take the cohomology of that complex
and add higher operations, we get an A∞ algebra. That’s the minimal model the-
orem, that there is always a way of doing that so that this guy is quasi-isomorphic
to the original dg algebra, so then its perfect modules, the upshot, call it A, the
A∞-algebra, it has the same triangulated category we started with as its perfect
modules.

Under some hypotheses, so, we end up with a finite dimensional vector space and
this encodes everything there is to know about the original triangulated category.

Definition 6.3. Say that W ∈ k[x1, . . . , xn] is a potential if, for fi = ∂xiW ,

(1) For k Noetherian, f1, . . . , fn are quasi-regular, so that a maximal ideal
containing all fi’s, localizing at them gives me something regular.

(2) the critical locus k[x]/(f1, . . . , fn) is finitely generated projective
(3) the Koszul complex K(f1, . . . , fn) is exact outside degree 0.

Some examples.

(1) k = C and the critical points of W are isolated.
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(2) k = C[t] and W = x2 + y3 − 3t2y + 2t3 is a potential. You can see that
k[x, y, t]/(∂xW,∂yW ) = C[t]⊕C[t]y.

Let me define the category of matrix factorizations. Everything I’ll say for the rest
of the talk will have W a potential.

Definition 6.4. the dg category mf(W ) of matrix factorizations of W has objects
(X,dX) with X a finitely generated projective k[x]-module, Z2-graded, and dX as

an odd operator d2X =W1X . You can think dX = (
0 u
v 0

) with uv = vu =W ⋅ 1X

The morphisms are Homk[x](X,Y ) with dHom(α) = dY α − (−1)∣α∣αdX .

Then hmf(W ) =H0(mf(W )).

Now I want to find a generator. From any, I put up an equivalence earlier which
is maybe a good place to start,

hmf(W ) ≅ Db(coh(W −1(0)))/Perf(W −1(0))

this is a theorem of Buchereitz (unpublished) and later Orlov. So in there on the
right is k(P ) for P ∈ SingW −1(0). This corresponds to something called k(P )stab
on the left, and I’ll tell you what it is.

Given a singular point P as W = ∑n
i=1(xi − Pi)W i

P with W i
P ∈ m2

P . There are
some details that aren’t quite right unless I work completely locally at each point
in the critical locus.

I’ll use the decomposition, which isn’t unique, to write down a factorization, and
then I get a matrix factorization

k(P )stab ∶= (k[x]⊗k⋀(kφ1 ⊗⋯⊗ kφn),
n

∑
i=1
(xi − Pi)φ∗i +∑W i

Pφi)

So if I square the operator, I get (xi − Pi)W i
P which is W .

Let me stick to the case of a single singular point at P for simplicity; otherwise
I’d need to do more. Then the theorem is that k(P )stab generates hmf(W ). There
are proofs of this in Orlov, in Keller–Murfet–Van den Bergh, in Dyckerhoff, and so
we’re free to go on to the next step. Now we can try to take its endomorphisms
and take the homology.

There’s a big distinction between polynomials and power series that I can evade
by replacing hmf(W ) with the Karoubi completion hmf(W )ω.

So now I want to give you a sketch of what the answer looks like, and the main
content is what the homotopy retract looks like.

Definition 6.5. AW is the minimal model of End(k(P )stab), meaning that AW is
an A∞-algebra homotopy equivalent over k to the endomorphisms of k(P )stabW .

Of course this doesn’t really pick out a representative and in fact I have a par-
ticular construction in mind.

I won’t give you a closed formula for the higher products for every W , but what
I’ll tell you is the right homotopy retract to use in order to generate answers and
then some of the answers.

So write ι ∶ k[x]→ k[x]/(f1, . . . , fn) with fi = ∂xiW . I’ll also need S ∶= ⋀(kO1 ⊕
⋯⊕ kOn) with ∣Oi∣ = 1. Let X be in hmf(W ).



12 GABRIEL C. DRUMMOND-COLE

Theorem 6.1. (Dyckerhoff–M. ’09, M. ’15) There is a strict homotopy retract of
Z2-graded complexes over k

S ⊗k End(X)⇆ ι∗End(X)

where p maps to the right, i to the left, and H is the self-map. Becausef of [unin-
telligible], we have that the right hand side is a finitely generated projective module.

So I assume pi = 1 and ip = ∂H +H∂; here H comes from choosing ∇ ∶ k[x] →
k[x]⊗k[f] Ω

1
k[f]/k

The minimal model theorem, given such a data, this is a homotopy equivalence,
and I have something finitely generated over k on the right, and I’ll get higher
products on the right and the resulting one on the right will be quasi-isomorphic
to the original dg algebra. So I get something {mn}n≥1 on ι∗(End(X)).

So I want to start with k(P )stab, and get down, but I have at the top S⊗End(X),
and you can find within this k ⋅ 1 ⊗ End(X) and then the corresponding piece
downstairs will be an A∞ model.

I’m out of time. Let me just draw, I’ll tell you the output for this case. I
should mention, in case I forget, Dyckerhoff started this in his thesis, there are
many versions in mirror symmetry. Efimov does this for one particular W , and the
underlying Z2-graded free module is some exterior algebra.

So taking X = k(P )stab with P = 0, then AW is ⋀(kφ1 ⊕ ⋯ ⊕ kφn). Take an
auxiliary space H = AW ⊗⋀(kθ1 ⊕⋯⊕ kθn)⊕ k[x].

The interactions in the Feynman calculus, W = ∑i xiW
i, the operators, each W i

is ∑γ W
i(γ)xγ where W i ∈ k[x] and γi are numbers. So you get for an operator on

H,
−1
∣γ∣

W i(γ)θj∂xj(xγ)φ∗i

(picture) and then for this picture you get

θi∂xi

and for this one

φ∗i ⊗ θ∗i

and then the numbers you get is by summing over all ways of drawing these vertices
in your trees and using theseW i(γ). For genericW the calculations are too involved
to do by hand. I’ll stop here.

7. Yong-Geun Oh, Lagrangian Floer theory and mirror symmetry on
toric manifolds II

So I’d like to continue, the statement I made at the end of the last lecture;
the basic statement was that the Fukaya category, which I’ll denote Fuk(M,ω), is
a filtered curved A∞-category. I want to try to explain what I mean by this in
this lecture. Last time I said that the objects of this category are some Lagrangian
submanifolds, but we need to restrict our discussion to a certain class of Lagrangian
submanifold and then decorate them with some additional data. So the resulting
objects will be (L, b), where b is called a bounding cochain and this is going to be a
solution to a certain A∞ Maurer–Cartan equation. The morphisms we’ll define are
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going to be CFΛ((L0, b0), (L1, b1)) along with ηk1,k2 and ξk1,x2≥0, some bimodule
operations. The products

mk ∶ CFΛ((L0, b0), (L1, b1))⊗⋯⊗CFΛ((Lk−1, bk−1), (Lk, bk))
→ CFΛ((L0, b0), (Lk, bk)).

So maybe the instructive thing is to look at disks with k+1 marked points [pictures]
along with maps into M which take the marked points to intersection points of
Li and Li+1 and which take the boundary between two marked points into the
appropriate Lagrangian. This map of the disk will satisfy the Cauchy–Riemann
equation ∂̄J,j)W = 0 where j is a complex structure on the disk and J a compatible
almost complex structure on (M,ω).

To describe how mk is defined, I need to describe two pieces of topological
data. Let L be the chain (L0, L1, . . . , Lp), the chain of Lagrangians, and p⃗ =
(p01, . . . , pk,k+1) (where k + 1 ≡ 0) the intersection points.

Definition 7.1. Let π2(L, p⃗) be the set of homotopy classes of smooth maps with
the given boundary conditions and asymptotic conditions at each marked point.
I’ll denote by B an element in π2(L, p⃗).

There are two characteristic numbers associated to this picture. One is the
symplectic area [ω] ∶ π2(L, p⃗)→ R which is [ω](B) = ∫W ω where [W ] = B, and the
Maslov index, some kind of winding number µ(L,p⃗) ∶ π2(L, p⃗), the polygonal Maslov
index, which I won’t explain.

Then I define a moduli space

M̃k+1(L, p⃗ ∶ B) =
{((W,j), z0, . . . , zk)∣

∂̄JW = 0,
[W ] = B,

W (zi−1zi ⊂ Li−1,

w(zi−1) = pi−1,i,
[ω](B) = E(J,j)(W ) <∞}

/PSL(2,R)

Then the “virtual dimension” of M̃k+1(L, p⃗ ∶ B) = n + µ(L,p⃗)(B) + k − 2.
We’ll compactify M̃k+1 by including all “bubble configurations,” which gives the

so-called Gromov compactification.
Then

mk = ∑
B∈π2(L,b⃗)∶µL(B)=0

mk,BT
ω(B).

This homotopy group is not unique, there’s a countable subset. The area changes
as the homotopy class changes. So this formal parameter T encodes the area.
I’m not going to concern the grading, but if you look at all those Lagrangian
submanifolds, oriented, and this has a natural Z2-grading. If every L is oriented,
then this CF(Li−1, Li) has a degree 0 and a degree 1 part, but the trouble is that,
I already talked about the transverse intersection case, but we cannot talk about
identity or units. To incorporate the unit, we must consider the case when the
Lagrangians coincide.



14 GABRIEL C. DRUMMOND-COLE

So when L ⋔ L′ you look at Λ-modules over L0 ∩ L1; otherwise you can look at
Ω(L,Λ) when L = L′.

So the best way to control this discussion is to restrict to a finite collection of
Lagrangian submanifolds. Let’s take the special case, where L is a single Lagrangian
submanifold L. Then I want to discuss the A∞ operations for this case. So we’ll
define a filtered and curved A∞-algebra structure on L.

Let’s specialize all these mk operations when this chain is just a single La-
grangian. Then you replace this with a differential form on L. So we can define

mk ∶ Ω(L)⊗⋯⊗Ω(L)→ Ω(L)
where mk is again decomposed over homotopy classes β ∈ π2(M,L) of mk,βT

ω(β)

which is defined by considering the moduli space as a correspondence. There is a
natural evaluation map evi ∶Mk+1(L, p⃗,B)→ L by mapping (w, z⃗)↦ w(zi), which
gives the following correspondence

Mk+1(L, p⃗ ∶ B)

ev†=(ev1,...,evk)wwnnn
nnn

nnn
nnn ev0

&&LL
LLL

LLL
LLL

L ×⋯ ×L L

So how is this defined? So

mk,β(α1, . . . , αk) ∶= (ev0)!(ev∗1α1 ∧⋯ ∧ ev∗k αk).
and to have the pushforward you need some discussion on virtual transversality
matters.

In this talk I’m not going to get into this.
So what is m0? This is parrticularly important in this enhancement of La-

grangian submanifolds, so what is ev0, when k = 0, this is m0(1), so this is nothing
but, this uses the evaluation of a disk with one marked point. You just think of the
pushforward of the function 1, here, this is (ev0)!(1M), and this is nothing but the
chain you get from the boundary values of the moduli space of holomorphic disks.
So this chain [ev0 ∶M1(β)] =m0,β .

Especially when the Maslov index of β is 2, then in this case the dimension
dimM1(β) = n = dimL. So this kind of disk with Maslov index 2 will play an
important role.

The A∞ relations are then nothing but a consequence of the degeneration of, if
you look at the configuration space of k points in D2, or k+1 points, z0,. . . , zk, then
the compactification of this one is well-understood. Each boundary component is
obtained by a degeneration into two irreducible components. If I try to compactify
my moduli space of maps, then a similar decomposition holds. If this is the only
kind of degeneration for the space of maps, then the A∞ relations hold without
k = 0. Unfortunately there are other components for the moduli space of maps. If
you include that case, you have to consider the curved A∞ relations, which always
hold.

Our, one of the main interests, is that whether m1 satisfies m2
1 = 0. But that

does not always hold. Let me write down the first two curved A∞ relations, which
go like this. The first one is m1(m0(1)) = 0. The second one geos m2(m0(1), x) +
(−1)∣x∣

′
(m2(x,m0(1))) =m2

1(x). So if m0(1) ≠ 0 then m2
1(x) is not generally zero.

This will affect the bimodule operation.
So what do we do? Let’s first look at examples, how this m0 appears in practice.
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So here is an example, with M = C, and L0 = R and L1 = S1. Then there are two
intersection points p = −1 and q = 1. Then B+ is the homotopy class of the upper
and B− the lower semidisk. So I want to compute, well, CF(L0, L1) = Λ{p, q}. So
m1(p), in this case, there is one homotopy class, we need to find, here k = 1, so
there is this R-translation, I have to look at µL(p, q) = 1, so that the moduli space
is isolated. By the Riemann mapping theorem, this B+ is the only such disk. So
m1(p) = Tω(B+)q and similarly m1(q) = Tω(B−)p. So if you compose these, youget

m2
1(p) = Tω(B+)+ω(B+)p = T 2πp, and similarly for q. So here we see that m2

1 = T 2π1.
This is a basic example of a matrix factorization. This configuration provides a
natural thing. This is not always the case. To achieve this kind of story, you have
to restrict to a certain class of Lagrangian submanifolds.

So to make our story more rich, we have to allow, to deform the original definition
of the mk operations. So we deform mk and there are two ways, one is so-called
“boundary deformations” and the other “bulk deformations.” Here we consider
more marked points, the original version has k + 1 marked points, but we insert
many possible insertions. If we insert more such things on the boundary, those
are boundary deformations, but you can do them on the interior and make “bulk
deformations.” So you look at a holomorphic disk, let me define this. For a given
b ∈ Ω(L), we can deform mb

k, which you can think of this as

mb
k(x1, . . . , xk) =∑m(b, . . . , b, x1, b, . . . , b, x2, . . . , xk, b, . . . , b)

and then this doesn’t make sense unless you make some sense of convergence, and
this only converges in the T -adic topology. So Λ is the “universal Novikov ring”

Λ = {∑aiT
λi ∶ ai ∈ R;λ0 ≤ λ1 ≤ ⋯ ≤→∞}

and then we have
Λ0 = {∑aiT

λi ∶ λi ≥ 0}
and

Λ+ = {∑aiT
λi ∶ λi > 0}

So the fact is that R is an algebraically closed field, then Λ is as well. This is far
from Noetherian but enters symplectic topology in a natural way.

The proposition is

Proposition 7.1. For any b of degree 1, then {mb
k} again defines a curved A∞

algebra

Definition 7.2. We say L is unobstructed if there is a b such that mb
0(1) = 0.

If you go back to the definition of b, this equation is equivalent to ∑m(b, . . . , b) =
0, and for convergence of this, I need the T -adic valuation of b to be positive. This
is the A∞ Maurer–Cartan equation. It’s useful for the Calabi–Yau case, but for the
Fano case, you need

Definition 7.3. L is weakly unobstructed if there is a b such that ∑mk(b, . . . , b) =
λb1. Then we say that such a Lagrangian submanifold is weakly unobstructed.

The solution is not unique, let me writeMweak(L) as the set of gauge equivalence
classes of solutions of the equation. Then by definition, for each element, a potential
function POL goes fromMweak(L)→ Λ+, saying POL(b) = λb, and we call elements
b in this solution space a weak bounding cochain. So we have L equipped with a
potential POL, and (L, b) is an object in the Fukaya category.
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We can compute the potential functions or their restriction to some subspace of
the Maurer–Cartan moduli space for the toric case. Given the moment map we can
compute the potential function and in fact in this case we have a natural inclusion,
an embedding Φ ∶ H1(L; Λ+) ↪Mweak(L) and then physicists’ Landau–Ginzburg
potentials, after C-reductions, are precisely WL ∶= POL ○Φ.

8. May 3: Cheol-Hyun Cho: Globalizing local mirror functors

Thank you very much, I’d like to thank the organizers for the invitation. My
talk today is about the connection between Yong-Geun and Daniel Murfet’s talks
yesterday. It’s about homological mirror symmetry. This tries to relate what is
called the Fukaya category of a symplectic manifold X with a matrix factorization
category of a potential function W . There are several versions of this; there’s a
version where X is a symplectic space and the mirror is Landau–Ginzburg. Maybe
what I want to do today is to give a geometric way to go from one side to the other
side and so on.

Before moving to our approach, let me explain the general philosophy behind
this kind of correspondence. This mirror picture was conjectured by Kontsevich;
then the main question is why and how.

The most convincing, successful philosophy was the SYZ formalism, together
with some viewpoints of Auroux. This approach says suppose you have a symplectic
manifold X, maybe Kähler. D is its anticanonical divisor. We take the complement
X/D and try to find a Lagrangian torus fibration structure for X/D, so some base
with fibers Lagrangian tori. The easies example is CP1, and then D is two points,
and CP1/D, this is a circle fibration. Then the mirror takes the dual torus fibration,
with the same base but the dual torus, which you can think of as a kind of U(1)
holonomy along the tori, but let me skip that part.

You are kind of choosing a flat complex line bundle, and the choices of holonomy
form another torus. So we get another circle fibration, drawn this way: [picture] and
so the dual space we can think of as Y = C∗, and now the fact that we took out the
anticanonical divisor enters the picture. So we’ll look at holomorphic disks which
contract to the boundary. In our example, each fiber supports two holomorphic
disks, and if you parameterize the base of the fibration by [0,1] then the areas are
approximately u and 1 − u for the fiber u. So the potential function is something

like 1 ⋅ Tuh + 1 ⋅ T 1−u 1
h
where h is the holonomy. We can write this as W = z + T 1

z
.

So this approach, the difficult part is finding the Lagrangian torus fibration of
X/D. Then also it’s difficult to go to the dual torus fibration. We want to send
this Lagrangian to matrix factorizations or sheaves and that part is also not easy.
The idea of constructing the potential from holomorphic disks, this appeared in the
last lecture of Yong-Geun Oh. Together we classified holomorphic disks in toric
manifolds [which gives a way to do this kind of thing in this case].

Let me explain a different setting to address “how?” This is Abouzaid following
Fukaya. If you have the base B and a torus fibration [picture] without any singular
fibers, then suppose we have another Lagrangian, we want to send this to some
sheaf on the other side, on T ∨, living on this space, and this is not a correspondence
between the space and the Landau–Ginzburg model. Morally speaking the stalk at
the point u and holonomy h is a Floer complex of (Lu, b) with L, with generators
intersections and differentials which count holomorphic disks. This is difficult for
many reasons, involving singularities and so on, but Abouzaid does this.
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The approach I want to talk about today is more elementary than this. This is
joint work with my former student Hong as well as with Lau. It’s best explained by
examples. The first example is when the symplectic manifold is R2 and we choose
a Lagrangian, the circle. Then the potential WL associated to this Lagrangian will
come from counting disks. There is an obvious holomorphic disk bounded by the
cicrle, so we get 1 ⋅ T area, and I’d like this to be a function, so I’ll put a complex
line bundle over L with flat connection, and holonomy z ∈ C∗. I’ll choose a specific
flat connection that does nothing around the circle except at one point where it
changes by z (in one direction). Then when we write the potential, we want to
write WL = 1 ⋅ T areaz.

Nothing fancy so far. I claim that we can send curves, we can think of this z as
living in H1(L,C∗). Then I’d like to construct some map from Fuk(R2)→MF (z =
WL).

In R2 we can consider some curve passing through our Lagrangian L, and then
we can look at the intersection points and the holomorphic strips between them.
Let me call these two points [picture] p and q and we’ll have one map from ⟨p⟩ to
⟨q⟩, which has decoration z because the point with the holonomy is in that section.
So this is

⟨p⟩ zÐ→ ⟨q⟩ 1Ð→ ⟨p⟩.
which is a factorization of z.

An interesting perturbation is this [picture]. So you can think of this example
as another matrix factorization of the polynomial z. The approach is to fix a
Lagrangian L and then study the Maurer–Cartan elements of L, and what we
obtain is a potential function related to this data, WL(b), and we automatically get
an A∞-functor from Fuk(X) → MF(W b

L). This is why we call this a “localized”
mirror functor, it uses L. If you avoid L it says nothing.

So this approach, maybe I can explain a little bit more. This approach is al-
gebraic, so you can somehow start as follows. Let A be any A∞-category, an
A∞-algebra with several objects, and then choose an object L and choose a distin-
guished set of generators X1, . . . ,Xn in Homodd(L,L). I look at a linear combinta-
tion b = x1X1 +⋯ + xnXn

Then we solve the Maurer–Cartan equation (possbly the weak one) m0(1) +
m1(b) +m2(b, b) +⋯ = 0 or WL(b) ⋅mf 1.

This is a restriction on X. The mk operations cancel out except for the multiple
of the unit. This Maurer–Cartan equation is somehow a unit relation.

So what do I want to say? Let Y be the solution space of the Maurer–Cartan
equation; then WL is a natural function from Y to Λ (or maybe C by reduction as
in yesterday’s talk) which sends b to WL(b). This all depends on L. For example,
Y also depends on L. Then we get a functor FL from A to MF (WL) which at the

object level takes A to (Hom((L, b),A),mb,0
1 ). Let me say what mb,0

1 is. [picture]
On the level of morphisms, if you have an element α from A1 to A2, then we need

a map from Hom((L, b),A1) to Hom((L, b),A2) and so you can just push forward
with α.

There are higher maps as well. The curved Yoneda embedding is a map to matrix
factorizations. This A∞ category, the target has no higher operations, but there
are higher operations.

Algebraically this is quite simple, just the curved Yoneda embedding. Let me
now move to the case of punctured Riemann surfaces. It’s a similar example but
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with a different flavor. So let me look at the three-punctured sphere. This is
our symplectic manifold with natural symplectic form. Here one considers what is
called the wrapped Fukaya category. I will not explain the details but what goes
on is that objects are non-compact Lagrangians, and the Hom spaces are infinite
dimensional and come from twisting along the puncture, which provides many in-
tersection points. We want to find a similar functor to the matrix factorization
category. The Lagrangian we choose is [picture]. This is an immersed Lagrangian.
We have chosen the object. What is the preferred generator? [pictures]. My
Maurer–Cartan element is xX +yY +zZ and I want to look at my equation, choos-
ing a generic point and counting. [picture]. The potential we get is WL = 1 ⋅xyz. If
I multiply these two angles, I get contributions here. The Maurer–Cartan equation
gives you cancellation like this [pictures].

Now how does the functor work? In a very similar way. [pictures]. It turns out
that in this case, the Fukaya category of the three-punctured sphere mapping to
matrix factorizations of xyz is an equivalence. Mirror symmetry on this space is
the work of Auroux Abouzaid Etingof Katzarkoff Orlov and also Bocklandt (?) and
also Heather Lee. Our approach gives a direct way to compare these categories.

Now let’s move on to the case with several punctures. For this we do a pair of
pants decomposition fro this Riemann surface and then choose the same skeleton-
like thing you did on each pair of pants. You get a functor from the wrapped Fukaya
category to, you get WL1 and WL2 and so on. The answer you get from this picture
is something toric Calabi–Yau. You get one chart for each pair of pants glued to
make something toric Calabi–Yau. The W extends to the whole thing and so we
get a potential W ∶ Y → C.

Let me explain a bit why toric Calabi–Yaus appear. The strategy is the following.
Let’s consider the four-punctured sphere. [many pictures].

9. Clarisson Rizzie Canlubo: Non-commutative coverings of classical
spaces

Thank you, this is joint work with Ryszard Nest. This is fancy name for finitely
generated projective Hopf–Galois extensions, by which I mean extensions by al-
gebroids, and the classical spaces are C(X) for some topological space X. The
details here, this is locally compact Hausdorff space, an affine scheme, a manifold,
and we should interpret C appropriately as the correct kinds of functions (bounded,
smooth, et cetera).

I won’t define a Hopf algebroid. I’ll follow one of the inequivalent definitions,
one of Böhm. These generalize Hopf algebras and groupoids. They can be thought
of as Hopf algebras over a base algebra R over k, not necessarily commutative.
They are also the analogue of groupoids in non-commutative geometry, just as
Hopf algebras are the analogues of groups. You might think these are Hopf algebra
objects in some category, but they are not. But the category of R-modules if R
is non-commutative, the coproducts and products don’t match nicely in bimodules
because of non-commutativity.

If you have a groupoid over X, this gives you a group G for every point x in
X. In non-commutative geometry, you’d expect that if you have a Hopf algebroid
over C(X) that you’d get a Hopf algebra over k; this isn’t quite the case; you get
coupled Hopf algebras. Let me talk to you about that.
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This is (H1,H2,C); let me say that H1 = (H,m,1,∆1, ϵ1, S1) and H2 has the
same underlying algebra but maybe the other parts are different: that is, we have
H2 = (H,m,1,∆2, ϵ2, S2) and a k-linear bijection C ∶ H → H, the coupling map.
This satisfies the following coupling conditions

(1)

H ⊗H
c⊗id // H ⊗H

m

##G
GG

GG
GG

GG

H

∆1

;;wwwwwwwww ϵ2 // k
1 // H

H
∆2

##G
GG

GG
GG

GG
ϵ2 // k

1 // H

H ⊗H
id⊗c // H ⊗H

m

;;wwwwwwwww

(2)

H
∆1 //

∆2

��

H ⊗H

∆2⊗id
��

H ⊗H
id⊗∆1

// H ⊗H ⊗H

and the similar one on the other side.

Examples are

(1) given a Hopf algebra H, take (H,H,S).
(2) given H and σ ∶ H → k, take H1 = H but for H2 let ∆2 take h to h(1) ⊗

σ(s(h(2))h3 and ϵ2 = σ and S2 send h ↦ σ(h(1))s(h(2))σ(h(3)). I claim
these are coupled with the map h↦ σ(h(1))s(h(2)).

An interesting question is when H1 and H2 coincide.

(1) If ∆1 is counital with respect to ϵ2 then they coincide by the Eckmann–
Hilton argument for coalgebras.

(2) If H1 is the group algebra of a group or its dual then these coincide.

An interesting fact is that any two of H1, H2, and C determine the third.
In the work I’m talking about I studied Hopf–Galois extensions by Hopf alge-

broids, which I can’t explain because I’m not talking about what Hopf algebroids
are. If you’re given A ⊂ B extensions of k-algebras and H a k-Hopf algebra, and B
an H-comodule algebra, i.e., ρ ∶ B → B ⊗H. We say B/A is H-Galois if

(1) Bcoρ = A
(2) B ⊗A B → B ⊗H via a⊗ b↦ (a⊗ 1)ρ(b)

[note: I must have missed something?]
If you’re given a coupled Hopf algebra, being Galois with respect to H1 is equiv-

alent to being Galois with respect to H2.
Part ofH being a Hopf algebroid over something, over C(X), there is a k-algebra

map from C(X)→H. Even if C(X) is commutative the image need not be central
in H. So the first case is if C(X) is central, let me tell you what happens in that
case. In this case, H = Γ(X,E) where E →X is a finite rank vector bundle over X.
This is given by Serre–Swan but says more. Not only is H the global sections of



20 GABRIEL C. DRUMMOND-COLE

a finite vector bundle, but th fibers are coupled Hopf algebras, and the operations
are all pointwise.

The more interesting case, when the image of C(X) is non-central. I mean
possibly non-central so this includes the other case. What I did in this case only
works when k = C and X is compact Hausdorff. Before I give the definition, let me
talk about (topological) Hopf categories.

Let me define these categories first. I don’t know who introduced them but I
first read about them in a paper by Caenepeel (sp?)–Joost–Batista.

Given X a set, a Hopf category H is a complex vector-space enriched (small)
category with object set X, together with a functors ∆ ∶ H → H ⊗X H. This
codomain has objects X and the hom sets are pointwise tensor products of hom
sets:

(H⊗X H)(x,y) = H(x,y) ⊗H(x,y).

and ϵ ∶ H → I×, where I×(x,y) = C for all x, y ∈ X and S ∶ H → Hop such that ∆ is

coassociative (you can relax this up to a natural isomorphism):

H

∆

��

∆ // H⊗X H

∆⊗id
��

H⊗X H
id⊗∆

// H⊗X H⊗X ⊗H

and unit

H

%%LL
LLL

LLL
LLL

H⊗X I×

I× ⊗X H H⊗X H
ϵ⊗id
oo

id⊗ϵ

OO

and antipode conditions as well.
Let me give an example; for X = {1, . . . , n}, let H(x,y) = Cexy. This is trivially

a Hopf category but I want to say something more interesting. Given such a Hopf
category, I can take the direct sum of Hom sets, B = ⊕H(x,y). This is a Hopf
algebroid. Let me define

epq ⋅ est =
⎧⎪⎪⎨⎪⎪⎩

ept q = s
0 q ≠ s

which tells you B ≅Mn(C). Then B is a Hopf algebroid over the diagonal matrices,
that is, Cn, that is, C(X), the functions on this discrete set. This is a nice example
because the general situation is a generalization of this example.

For X a topological space and OX the sheaf of continous C-valued functions on
X, a Hopf category H over X is topological if there is a sheaf of OX -bimodules over
X ×X such that

(1) for any f and g in OX( ), σ ∈ H(U), U(X ×X),

(f ⋅ σ ⋅ g)(x, y) = f(x)σ(x, y)g(y)

for (x, y) in U .
(2) Hx,y is the fiber of H is (x, y) in X ×X.
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(3) the product, unit, coproduct, counit, and antipode of H should be induced
from from

H⊗OX
H
○′Ð→ H

OX
η′Ð→ H

H
∆′Ð→ H⊗OX×XH

H
ϵ′Ð→ OX

H
SÐ→ Hop

X ×X flipÐÐ→X ×X

Let me go back to the case where H is a Hopf algebroid over C(X) and the image is
non-central. We have a left and right action of C(X) onH, each is finitely generated
projective. Then H = Γ(X,E) for some bundle E from Serre-Swan. These two
actions commute to C(X) acts on the fibers, but not simply by multiplication in
each fiber. This means that C(X) → End(E) (via the right action), but since
C(X) is commutative this factors thorugh some maximal Abelian subalgebra Dn

of End(E).
Sparing you the details of the computation, [unintelligible], trivializing vector

bundles, choosing bases for the fibers, there are several arguments, sparing you all
the details let me tell you what you will get. So D is a sheaf of complex vector
spaces over X×X supported on a closed subset Z in X×X. Let me tell you roughly
how we get E .

Using a theorem in complex analysis, since things in C(X) are simultaneously
diagonalizable. For every x you have a vector space decomposed into several sub-
space, joint eigenspaces for C(X) viewed as a collection of operators. If I denote
by Ex the fiber of the vector bundle over x, and then E(x,y) is the eigensubspace
of Ex corresponding to some eigenvalue. Ex is finite dimensional so there are only
finitely many of these.

This is symmetric, because I can run the argument, I picked out the left action
and then used the right action on the bundle I get. The same thing would work in
the other direction. Z is also a union of diagonal subsets of X ×X. I mean by a
diagonal subset a subset so that π1, π2 both map T to X.

So [unintelligible]I can find Hx,y = E(x,y) and I claim that this is a topological
Hopf category. With this I have the following.

Theorem 9.1. Hopf algebroids over C(X) are in bijection with topological Hopf
categories over X.

This is a bijection, far from being functorial. I have no way of proving that this
is functorial. More than this, though, the other half is

Theorem 9.2. Galois extensions of Hopf algebroids are in bijection with Galois
extensions of Hopf categories over X.
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10. Zsuzsanna Dancso: Categorified and quantized lattices of
integer cuts and flows / Does homological algebra have

untappend potential in lattice theory?

Once in a while I’m tempted to talk about the things that are on my mind
instead of the things I can give a nice polished talk about, I’m a slow learner; this
usually turns out poorly but here goes. This is joint non-results with Tony Licata.
I’ll start with utter nonsense. Then I’ll talk about an example I sort of understand,
and hopefully I’ll have time to give you a list of mysteries.

10.1. utter nonsense. For the rest of this talk, let me declare what I mean by
a lattice, which is a finitely generated free Abelian group with a symmetric non-
degenerate bilinear form (this is not nonsense, this is the truth). Say you take
some algebra A, with some properties, Artinian, maybe Koszul for some of this to
work, let me not be too precise, and if you take the category of finitely generated
modules over A, then you can consider the Grothendieck group of this category,
K0(A- mod ), the free Abelian group generated by equivalence classes of modules
module [Y ] = [X] + [Z] for a short exact sequence 0→X → Y → Z → 0.

On this group there is a pairing called the Euler pairing, which is just

⟨[X], [Y ]⟩ =∑(−1)i dimExtiA(X,Y )
and “often” this makes K0 into a lattice. I won’t go into often, this is not even
well-defined, everything should have finite projective resolutions, this is not always
symmetric, so this is often a lattice. You might wonder what notions and statements
in lattice theory are secretly governed by this homological algebra behind the scenes.
Here are some questions, not very well-formed.

● Given a lattice can you find an algebra to give that as the Grothendieck
group?
● Can we use this construction to learn more about lattices
● What notions in homological algebra correspond to interesting notions in
lattice theory?
● Often there’s more structure on the homological algebra level. Algebras are
often graded in a natural way. Then you can try to change your algebras,
give them, say, a q-deformation. What is the extra structure on the lattice
side?

All we have is one construction for a concrete example. I think that’s a very nice
example, which has a lot of interesting features. We wonder if this construction is
a concrete example for a much more general theory of categorified or homological
lattices.

10.2. Lattices of integer flows and cuts associated to a graph. Before we
find corresponding homological algebra I need to tell you about combinatorics and
graph theory. Let G be a finite graph, possibly with multiple edges and loops. By
E(G) I’ll denote the edge set, number these. We choose an orientation, meaning
we choose a direction for every edge, making the graph into a 1-dimensional CW
complex. If you have a 1-dimensional CW complex, then you get the first homology,
which sits inside the free Abelian group generated by the edges. This is a free
Abelian group. To make this a lattice we need an inner product. We build that
by giving this thing a Euclidean structure, making the edges an orthonormal basis.
You then have an an inner product on edges. You can restrict that to H1 and you
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get what we call the lattice of integer flows. This is the first homology of the graph
with the inner product induced by making the edges orthonormal. You take cycles
in the graph, taking each edge with sign according to whether the cycle agrees or
disagrees with the orientation on the edges.

The orthogonal complement of the flows is called integer cuts; they have a com-
binatorial description but I’ll cut that.

One more bit of combinatorics I need to tell you is a nice way to choose bases
for these lattices. If you have a graph

●

●

1

??�������
●

2

__@@@@@@@

●
3

__@@@@@@@

4

OO

5

??�������

and I choose a spanning tree

●

● ●

●
3

__@@@@@@@

4

OO

5

??�������

then any edge outside of the spanning tree gives me a “fundamental cycle” made
up of that edge and edges from the spanning tree. So in this graph e1 ↝ e1 − e4 + e3
and e2 ↝ e2 − e4 + e5. For flows you get a basis from ei ∉ T for T the spanning tree;
for cuts you get a basis from ei ∈ T .

So you have the span of fundamental cycles F(G), you have the fundamental

cuts C(G), and they both sit inside ZE(G), and to this picture we’ll construct an
algebra AG,T so that inside K0(A- mod ) we’ll have the span of some indecompos-
able projectives and the span of some complementary simples. Then inside you get
the Euler pairing, and then the inner products of these two pieces match up with
the fundamental cycles and the fundamental cuts. This is an example of lattice glu-
ing (the determinant is one) and the fundamental cycles and cuts are orthogonal
complements in this unimodular lattice. So the example is some kind of “homolog-
ical lattice gluing” (which is a thing that doesn’t exist yet but one day Tony and I
hope to find it).

Next I’d like to show you the construction, which is very simple.
Okay so what is the construction? Let me draw the graph one more time?
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To this graph G we’ll associate a bipartite graph, which encodes all the combinato-
rial information necessary to remember these two lattices, this is BΓ,T so depends
on the spanning tree as well. So the vertices of the bipartite graph correspond to
edges of the original graph, with tree edges on the left. You connect non-tree edges
to the edges in the tree in their fundamental cycle.

3
SSSS

SS

1

4
∗kkk
kkk

∗S
SS

SSS
2

5
kkkkkk

where the ∗ keeps track of the sign of e4 in each of the fundamental cycles. Then
AG,T is the path algebra of BG,T , where paths concatenate to zero if their ends
don’t match up. Moreover, starting on the left and ending on the left should give
zero. This algebra is graded by path length. This is also Z/2-graded by signs. I
promised modules. So AG,T - mod is finitely generated graded modules. Before
passing to the Grothendieck group let me say

Proposition 10.1. Both the simple modules and the indecomposable projectives
are in one to one correspondence with the edges of G.

The simple Li for edge i is the field C with the action as follows. The idempotent
ei (the constant path) acts a the identity and everything else acts as zero.

The identity of the algebra is the sum of the idempotents, which are pairwise
orthogonal. You can use that to split the algebra itself into a direct sum. AG,T ≅
⊕AG,T ei, the paths that end at i. and those are indecomposable projectives. Those
are all the simples, all the indecomposable projectives, and one more thing it’s useful
to state is that the homomorphisms between two indecomposable projectives are
the paths from i to j. How does that act? By composition with that path. That’s
a fairly simple exercise.

So here comes the only interesting thing I’m going to say in this talk. This, if
you look at it, counts the number of common edges between the fundamental cycle
of edge i and edge j with signs, if edges i and j are not in the tree. This is exactly
⟨Ci,Cj⟩ in the lattice of flows.

Let me explain that a little bit.
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5
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Look at P1 and P2. A path from P1 to P2 uniquely corresponds to a point on the
left, which is in the fundamental cycle of each of these. You count this with stars
which tells you about the contribution of that edge to the fundamental cycle.

You can phrase this a bit more algebraically and it gives you our initial statement.
The Pi and Pj are graded, and Hom(Pi, Pj) is a graded vector space by Z and Z/2.
If you take the graded dimension, this is a polynomial in Z[q, q−1, t]/t2 = 1. The q
is for Z and t for Z/2. If you take the graded dimension qdimHom(Pi, Pj)∣q=1,t=−1
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you get ⟨Ci,Cj⟩ in F(G), and this is a graded version of the Euler form,

∑(−1)i qdimExti(Pi, Pj).

These modules are projective so you can just write Hom, you don’t need Ext. So
that gives us the main statement with a little bit more precision.

I suppose a talk should involve a theorem so I’ll call the correspondence I de-
scribed a theorem. If you take indecomposable projectives for edges not in the tree,
and then take the graded Euler form on K0 of A-mod with this evaluation at q = 1
and t = −1 you get exactly the lattice I described.

There’s some extra aesthetic that I don’t have too much time to talk about. It’s
true that A is a Koszul algebra, and there is a notion of duality, and the duality has
to do with swapping the bipartition, which, if this was a planar graph, corresponds
to planar duality; in the non-planar case it corresponds to matroid duality.

10.3. Two minutes of mysteries. What if we don’t evaluate at q = 1, then you
get that K0 is a “q-lattice” which is a free Z[q, q−1]-module, a non-degenerate
semi-linear form.

There’s a classical theorem (from 2010) saying that [unintelligible]is a complete
invariant of graphs, which says that q-flow lattices are isomorphic then you get an
isomorphism of graph and spanning tree.

The second question is what this has to do with topology. The lattices have a lot
to do with topology. There is a theorem of Josh Green saying that the classical flow
lattice is a complete isomorphism invariant of graphs. The Tate graph construction,
this lets you draw an alternating knot diagram. If you take 2-isomorphism classes of
graphs you get mutation classes in knot theory. Proving this combinatorial theorem
about graphs let him prove that Heegaard Floer was a complete mutation invariant
of alternating knots which is a strong thing in knot theory.

The third question, what happens when you change the spanning tree. The
bipartite graph and the spanning tree change dramatically. If you pass from con-
sidering modules to complexes, that doesn’t really help, but if you consider matrix
factorizations, then there is a partial canonicality statement that you can prove.
It’s not true that the category of matrix factorizations are equivalent.

There ought also to be a connection to zig-zag algebras, that would be nice
to explore, and another very interesting subject, the last mystery, is the graphi-
cal Riemann–Roch theorem which is a graphical analogue of the Riemann–Roch
theorem and it has a statement in terms of cut and flow lattices. I think we can
formulate a categorical version of that statement. There’s a lot to do and very little
that’s done and that’s all that I wanted to say.

11. Mike Hopkins: Analogies between higher categories and
chromatic homotopy theory

So this is going to be kind of a weird talk, but I want to use that as a little bit
of a way to motivate and explain something about chromatic homotopy theory.

Let me remind you of something that came up in the first talk. We were looking
for this hierarchy of categories Cn. So C0 was C and C1 is vector spaces, and
Cn sholud be Cn+1(1,1). There was this hypothesis or ansatz that the invertible
objects in Cn had something to do with IZ(1), that PicCn is like Sn+1IZ(1). This
IZ(1) has something to do with homotopy groups of spheres and is a formal object.
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The analogy I want to talk about is somehow along these lines and is unrea-
sonably effective. So a space X gives rise to an ∞-category where the objects are
the points of X, the 1-morphisms are paths, the 2-morphisms are paths between
paths, et cetera. A k-morphism is some sort of map of a k-dimensional complex to
X. The spaces are the categories where all the paths are reversible, the morphisms
invertible. These things are trying to be spaces but some paths you can only go
along in one direction and you can’t go back, like that game chutes and ladders.

If you have a category, if C is a category, say an ∞, n-category, or I’ll just say
a category, there are two ways you could make a space. I’ll make up notation.
You could have κC ⊂ C, the largest subcategory where all morphisms are invertible.
That’s the closest space that sits inside C. There’s also something in the other
direction C+ where you invert all the morphism that accepts a functor from C. For
example if C is VectC, then

κC is ∐n≥0BGLnC and C+ is just the trivial category
because the map to the 0 vector space becomes invertible.

But these weren’t arbitrary categories, they were symmetric monoidal. So what
does a symmetric monoidal structure correspond to in terms of spaces, one where all
morphisms are invertible. That corresponds to a space with an infinitely homotopy
commutative monoid structure. When I was in the back of the room the computer
was no problem to see over but can you see this far down on the board? Are you
typing this right now?

There are really two symmetric monoidal structures right here, if you took Whit-
ney sum instead of tensor product, this would correspond to ∐BGLnC as an in-
finitely commutative monoid with block matrices. This is not commutative, going
from BGLnC × BGLmC to BGLn+mC. These are not commutative, but they’re
homotopic, the two inclusions, and eventually infinitely homotopic.

Such a space is trying to be an infinite loop space. In fact it has enough structure
to have a classifying space, and if you take loops on that classifying space, it is an
infinity loop space. You could form ΩBX, some people call that X+, and that
group completes X under the monoidal structure here, it’s analagous to the other
+, it’s completing the sum, not the multiplication. If X = ∐BGLnC, then X+ is
Z ×BGLC = Ω∞K, the classifying space for K-theory.

Every one of these steps loses information and there are choices about how I
made these steps that are a mystery. We want to have these categories Cn and
do something to get a spectrum, but there’s still some mystery. I can take the
invertible morphisms or invert all morphisms. I could have taken invertible objects
under sum or invert all objects under sum. I chose opposite decisions. On the
morphisms I chose inverting and for ⊕ I chose invertibles and I got K-theory. But
why do these ones?

So anyway, K-theory is the first stage of chromatic homotopy theory and there’s
a remarkable connection to higher homotopy theory and that’s what I want to talk
about to prepare for my next talk. Let me press on.

Note that C0 = C has a sum and a product. That’s more structure. Then C1,
some kind of super vector spaces, has a direct sum and a tensor product, and I’m
also supposed to think of this as being some kind of ring. One hopes that all the
Cns are some kind of ring. On plus, it’s the right thing to do is to invert everything,
and for times, you want to restrict to invertible things or just live it alone. There’s
a temptation to invert the algebra because of the relationship with field theory, it’s



TASK 2017 27

not a good thing to do, I’m sorry, I can’t talk about that, I forgot what happens
that’s bad in Vect.

Anyway the thing I want to talk about is that the space model we get here is an
E∞ ring spectrum, you have an infinitely coherent addition, an infinitely coherent
multiplication, and it has the property that homotopy classes of maps into E is a
cohomology theory. K-theory is the prototype of all of this.

So I want to get to one thing that we can already say is kind of interesting. I
talked a lot in the last lecture about reality checks. The one reality check we want
is the Picard group of Cn, the invertible objects under tensor product, the groupoid
of objects invertible under ⊗, this is supposed to turn out to be, so, so, forgive me,
I don’t know why, I’m hesitant to write this, it’s supposed to be the zeroth space of
the spctrum Ω∞(Sn+1IZ(1)), this thing, it doesn’t really matter what this space
is, even a professional homotopy theorist will have a hard time knowing when he
or she has run into this. There’s a nice criterion for when you run into this space.
I’ll say an easy theorem in topology and then reinterpret it in this language.

Theorem 11.1. The following are equivalent:

(1) E (a spectrum) is equivalent to IZ(1) (the Sn+1 is the analogue of shift in
triangulated categories)

(2) E is coconnected: πnE = 0 for n ≫ 0, and Map(HZ,E) = HZ, where HZ
is the Eilenberg–MacLane spectrum.

This gives you something that you can state without using homotopy theory.
The Picard space, this has an infinitely homotopy coherent multiplication. It’s got
a group law, not strictly commutative, but infinitely homotopy commutative. The
Eilenberg–MacLane spectrum is actually commutative. You might think of the
mapping space as picking out the actual center of E. But there’s already a name
for things like that, those are called strict Picard categories.

If C is a symmetric monoidal ∞, n-category, using ⊗ to denote the symmetric
monoidal structure. There’s probably an ⊕ although I don’t need to state anything.
PicC will be the X ∈ C such that there exists Y with X ⊗Y ∼ 1. There are also the
strictly invertible elements, which are

StrictPicC =Map(HZ,PicC).

You can have an A∞-algebra, and you can replace your chain complex with some-
thing quasi-isomorphic with differential zero. You can also take the ∞ out of the
A∞ if you’ll make the chain complex bigger. These are both descriptions of A∞-
algebras. We have the notion of just an algebra, taking the infinity out of both
sides. So Pic has infinitely homotopy commutative product and in the strict case
it’s actually commutative.

For an example, take sVect, the category of Z/2-graded vector spaces. What is
PicC? If an object is invertible, it has to have dimension 1, so it has two objects,
which are C in dimension 0 and in dimension 1. But the C1 is not in the strictly
commutative part, because the flip map C1 ⊗C1 → C1 ⊗C1 is not the identity, this
has a sign. So because of this, in the strict Picard category you only have one one
dimensional vector space.

So the way that you can recognize that you have this crazy Anderson dual of the
sphere is that the strict Picard category looks like an Eilenberg MacLane space.
There’s some theorem, I don’t want to quite call it a theorem, so what do you do
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when you don’t want to call it a theorem? You call it a theorem and don’t write
the paper.

Theorem 11.2. saying
PicC ∼ Ω∞(Sn+1IZ(1))

is the same as saying
StrictPicC =K(Z, n + 1).

I haven’t gotten to anything having to do with chromatic homotopy theory but
we’ll get there.

So we’re looking for categories where the strict units have this particularly nice
form. I’m trying to think about how to do this next segue, I don’t know a great way
to motivate it, the category C1 was supposed to correspond to K-theory. Then Cn

is supposed to correspond to some other multiplicative cohomology theory, some
other E∞ ring spectrum. In chromatic homotopy theory there is a candidate for
this, which is Morava En-theory, some higher version of K-theory. The nature of
this arrow is nonexistent. There are many calculations you can do, this has been a
philosophy going back to the mid-1980s, but I want to sort of evolve this analogy
for you and state a theorem that I think is very surprising about Morava E-theory
that makes this relationship look unreasonably precise. But we’ll get to that in 20
minutes.

So what’s up with this Morava E-theory? We’re kind of hoping to see an
Eilenberg–MacLane space in the strict units. There’s supposed to be a map from
K(Z,2) to K-theory, and so this is BU(1) = CP∞ and this map to K theory is the
tautological line bundle. Then the fact that pulling back L along multiplication on
CP∞, the map classifying tensor product of line bundles, this bundle pulls back (of
course) to L⊗L.

I want to replace 2 with n+ 1. You can just set out to look for it and that turns
out not to work very well.

I don’t know a good way to motivate this other than saying that asking for the
Eilenberg–MacLane space to sit in the strict units isn’t enough structure.

What are all maps from CP∞ to K? This is Z[[x]] where x = 1 − L for the
tautological line bundle L. What about maps

[CP∞ ×CP∞,K]?
that’s Z[[x, y]] where x = 1−L1 and y = 1−L2 and x goes to x+y−xy pulling back
from L to L1 ⊗ L2. This is a special case of a formal group law, a formal power
series, F (x, y) = x + y +⋯ + aijxiyj +⋯

If you write x +F y = F (x, y), then the things this satisfies is that it’s unital
(with zero), associative, and commutative. Some examples are F (x, y) = x + y and
F (x, y) = x + y − xy.

So are these isomorphic? If you expect the answer is no, then you might want
an invariant. There’s a good way to discuss formal group laws, I want to pick this
angle we’re at to look at this from. Pick a prime p and I want to take the algebraic
closure of the p-adic number and complete it, and this is Cp, and Dp is the set of
all x with p-adic valuation greater than 0. You can think of Dp, something like the
unit disk, and a formal group law is the same thing as a Lie group structure on
Dp with 0 as the unit. By Lie group, I mean an analytic function for the product,
these will have to be in some extension of the p-adic numbers. This lets you think
of this as a physical group sitting there. If we have one of these F s then we can
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look at the kernel, at the elements of order p. When F (x, y) = x + y, the elements
of order p are {0}. When F (x, y)1 − (1 − x)(1 − y), then that’s cyclic of order p, it
consists of 1 minus pth roots of unity. I can see that these aren’t isomorphic then.

For F a formal group you can look at the rank of the kernel of multiplication by
p, which gives you “height,” this is the n in Morava E-theory.

How can you tell what the height of a formal group is? The standard notation is

∣p∣F (x) =
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x +F ⋯+F x

p
which is some formal power series ∣p∣F (x) = px+⋯+ aixi +⋯

We want the zeros of that analytic function. Above the number i, you make a dot
for the p-adic valuation of ai. It started with px, and then you look at the convex
hull of this set of points. Let me do an example. Let’s not look at that series, let’s
look at (x − pα)n. That has n roots all with valuation α. If I do this badly I’ll get

xn + pαxn−1 + p2αxn−2 +⋯ + pnα

and I can tell that no one is paying attention any more because this is wrong. But
it’s almost right, I just need to multiply by something, and all that’s going to do is
raise the p-adic valuation. So what I find is that the valuation of all the coefficients
lies above the line between (0, nα) and (n,0). So this line which has slope −1

α
lies

in the convex hull and everything else is above.
So what can happen if you have a formal group of height n? How can I get a for-

mal group of height n? Let’s just do height 2. The analytic function multiplication
by p, this starts with px, the height is 2, so there is a total of p2 points killed by p.
One of them is zero with infinite p-adic valuation and there are p2−1 other ones. It
has to end at p2, this polygon. The Newton polygon might look like this [picture]
but there might be another point killed by p with lower valuation, in which case
so does every multiple of it. The break would have to happen at p. If one has the
valuation then p − 1 of them will. The general thing, you can only change slope at
powers of p. This is supposed to motivate that there are n− 1 parameters that can
move around and specify this Lie group structure on the disk.

That’s supposed to motivate, it’s not a proof, but it’s supposed to motivate the
existence of a universal height n formal group law, which lives over (something like)

Zp[[u1, . . . un−1]]

where the n − 1 parameters are telling me the p-adic valuations of the things in
the subgroup killed by p. This is versal but not really universal because it has
automorphisms.

There’s a theorem due to Haynes Miller and myself and Paul Goerss in various
pieces

Theorem 11.3. There is a (more or less unique) functor from universal formal
groups to E∞ ring spectra. The one that sends the universal height n group that
goes to En, the nth Morava E-theory.

Sorry, that was a little bit brisk. I’m going to wrap this up. Chromatic homotopy
theory is studying homotopy theory via these Morava E-theories. I didn’t connect
this to Cn. I was looking for something the cohomology of a higher Eilenberg–
MacLane space than CP∞. But I said that we should stay with CP∞ and work
with the other parameter that we can modify, and it turns out that that keeps
track of height, the height of the formal group law.



30 GABRIEL C. DRUMMOND-COLE

I’m building up this theorem too much but I think this is a really striking result
that I’ll end with. This Morava E-theory is supposed to be analagous to Cn. Inside
Cn are invertible objects, and for a cohomology theory, the notation is a little
bit off, the invertible objects are PicCn, and I could have called this C×n . The
group of units of En, there’s different notation, gl1En is a spectrum of units, so
[X,glE1] = E0(X)× [sic?].

So going back to C1, my supervector spaces, E1 was K-theory. The invertible
elements PicC1 is two lines, it’s Z/2-graded line bundles. But the units in K-theory
consists of all virtual vector bundles of virtual dimension ±1. So that’s like 1 plus,
there’s a lot of those. If I was asking for, there’s a lot of those. That’s a much
bigger space, there’s a lot more to the units of K-theory. However, there’s a sur-
prising theorem, or there’s a theorem that I find unreasonable but it’s nevertheless
a theorem

Theorem 11.4. (Hopkins–Lurie) The strict units (that is Map(HZ, gl1E)) is
K(Z, n + 1).

This is unreasonable because it lets you pick out a finite part of the units, picking
out the Z/2-graded line bundles from the K-theory units. You’ve done a lot, we
just kind of guessed that this nth Morava E-theory corresponds to Cn, but it seems
to have the one property we want, about its strict units.

This was a quick introductions to the animals we’ll see in the next lecture. The
next lecture will have more mathematics and less mathematical analogy. I’ll try to
describe the next series of results in a less technical way.

12. May 4: Diarmuid Crowley: Diffeomorphisms of discs: recent
progress and open problems

Thank you very much to the organizers for organizing this very lovely conference.
This is joint with Schick and Steinle. Numbers of you have heard about some of
this and some have heard about none of it. I hope this won’t be precisely the same
as things you’ve heard.

Let me introduce the star of the show, Dk is the k-disk and f is a diffeomor-
phism. There’s some exciting work, you can think about symplectomorphisms or
contactomorphisms as well, and I’ll require my diffeomorphisms to be the identity
in a neighborhood of the boundary. So this is of course a very important object
in differential topology and a number of subjects. We’ve effectively got a version
of the little disks here, this is a topological group, with the C∞ topology. This
is not commutative but it’s homotopy commutative, I’ll say a little more later on.
You could say it’s a boring manifold but let’s observe that we have an extension,
the great thing about fixing on the boundary is that for any k-manifold I get an
extension: For M a (closed) smooth manifold, I grab a disk wherever I like, and
do my diffeomorphism there. You can map out of DiffM to a number of places,
this acts on the metrics, it maps into the cobordism spaces that Mike was talking
about, and one of the points of the talk is that we’ll detect things by a map into
real K-theory, and anything that you know with the α-invariant, we’ll be able to
pick that up anywhere in the middle.

Let me tell you how the talk is going to go. I’ll give some selected history and
then the α invariant and our main theorem. Then I want to talk about the proof,
and all of this constitutes the progress. If time permits, there’s some things we
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don’t know about that I’ll at least mention. If you have such a diffeomorphism
you can take its derivative and get an element of the general linear group. When I
differentiate such a map I get an obvious linearization map, I get a map to GL(R)
but that’s homotopy equivalent, I get a map to ΩkSO(k).

Here’s a table of what we know and who to attribute it to.

k Diff(Dk) Mathematicians
1 ≅ ∗ folk theorem
2 ≅ ∗ Smale
3 ≅ ∗ Hatcher (hard!)

Let me show you an exotic thing. Look at π3SO3 × π3SO3 and I’ll construct
a map due to Milnor which will end up in Diffc(R6) ≅ Diff(D6). So what’s the
idea? I think of α as a homotopy class of a map (D3, S2) → (SO(3), id). Given
that I should give a diffeomorphism of R6 which I’ll think of as R3 ×R3. So I get
Fα(x, y) = (x,α(x)y) which works in the strip D3 ×R3 and extend by the identity.
This isn’t compactly supported. I can do the same sort of thing in the opposite
direction, with Fβ . Milnor’s clever idea is to take the commutator σ ∶= FαFβF

−1
α Fβ .

We’re churning up this piece of the six-disk in an interesting way.
So that’s a concrete example of a wacky automorphism of the 6-disk that you

can actually write down.
A little remark is that Fα is orthogonal with respect to the standard metric.

Then with some clever rescaling you can see a copy of D1 ×D5, and it’s preserving
the D5 slices [picture] and in fact σ lifts to an element of π1Diff(D5).

Let me summarize, when I take α and β not divisible by 28, the Milnor pairing σ ∶
π3SO(3)×π3SO(3)→ π0Diff6 ≅ Z28 factors through π1(DiffD5). The observation
that it can be factorized is Antonelli–Burghelea–Kahn.

Now I want to talk about assembly, in the first case taking a map starting from
π1Diff(Dk) and mapping it to π0DiffDk+1. I have some family of diffeomorphisms,
and I just do this in sheets. I then get a diffeomorphism of the k + 1 disk.

That’s a simple idea but you can see there’s nothing special about the 1-disk.
In general I get a map from πiDiff(Dk) to π0DiffDk+i and I could factor through
anything in the middle.

I can dub this group, anyway, Γk+i+1

Theorem 12.1. (Smale–Cerf) There’s an assembly map

π0Diff(Dk) EÐ→ π0Diff(Sk)→ Θk+1,

the group of homotopy spheres. I take [f] to [E(f)] ↦ [Dk+1 ∪E(f) Dk+1] . The
theorem is that this is an isomorphism for k ≥ 5

Theorem 12.2. (Kervaire–Milnor) 0→ bPk+2 → Θk+1 → coker(Jk+1)

here bPk+2 is finite cyclic and the cokernel is finite; Θk+1 is a finite Abelian group.
Now Novikov lets us, if we have a strange diffeomorphism of the disk, you try

to pull it back along the assembly maps. HE found that many Diff(Dk) are not
aspherical. We said this is a homotopy commutative H-space. If it were finite, then
this would be a torus and thus aspherical. Once it’s not aspherical, then, it is not
homotopy equivalent to a finite CW complex.

Back to the table:
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k Diff(Dk) Mathematicians
1 ≅ ∗ folk theorem
2 ≅ ∗ Smale
3 ≅ ∗ Hatcher (hard!)
4 ?
5 not aspherical (our results: C–S–S) (3-primary)
6 not aspherical (our results: C–S–S) (via α invariant, today.)
7 not aspherical A–B–K (70s)

So I just want to say a few more things, advertise others’ work

Theorem 12.3. (Kupers) Diff(Dk) is of finite type for k ≥ 5 (homotopy groups
are finitely generated).

Using ideas that Michael Weiss put into making his weird Pontryagin class,
Sanders could exploit that to prove this theorem.

Theorem 12.4. (Casels–Keating–Smith 2017) π0 Symp(D4k,ωot)→ π0Diff(D4k)
and this is nonzero and hits the Kervaire sphere if the Kervaire sphere is exotic.

They improve this with assembly and give some homotopy groups for symplec-
tomorphisms which I won’t state.

Now I want to return to the work with Schick and Steinle and for that I need to
tell you a little bit about the α invariant, which is defined in the first case for spin
manifolds.

If I take a homotopy sphere in dimension n+1, this is in particular a spin manifold
and there’s an important map to K-theory which maps a spin manifold to the index
of the Dirac operator. The homotopy spheres are a finite group and the KO groups
we know from Bott periodicity, so we can’t get the Z but

Theorem 12.5. (Adams–Milnor) This α ∶ Θ8j+ϵ → KO8j+ϵ is split onto for all
j ≥ 1 and ϵ ∈ {1,2}.

So for example this works for Θ9 →KO9 ≅ Z2

There’s an important filtration, the Gromoll filtration, of Γn+1 ≅ Θn+1, so Γn+1
(k) =

im(A ∶ πn−k Diff(Dk)→ Γn+1).
Theorem 12.6. (Cerf) You can always go one step back, Γn+1

(n−1) = Γ
n+1.

Can you do better? Here’s a scandal in differential topology. This filtration
is not known for any value. We know Θk up to 62 but don’t know this in any
dimension.

So how far can we pull back the particular elements in the image of α?

Theorem 12.7. (C.–S.–S.) α(Γ8j+ϵ
(6) ) ≠ 0. That is, α ∶ Γ8j+ϵ

(6) → Z2 is split onto.

So for example, π2Diff(D6)→ π0(Diff(D8)) but this is modest, I can do this for
the million-and-eight disk.

I want to say something now about the proof. The key word I want to introduce
here is Toda brackets. In the interests of time I won’t tell you what these are. This
is really a homage to Adams, who found an infinite family of elements that hit the
α invariant, µ8j+ϵ ∈ πs

8j+ϵ. So πs
7 ≅ Z/240 which contains a unique element a with

2a = 0 and a ≠ 0. What’s your favorite homotopy class which is of order 2? It’s η,

so take S8 ηÐ→ S7 2Ð→ S7 aÐ→ S0 and coning these off [pictures] I get ⟨η,2, a⟩ ⊂ πs
9 and

the alpha invariant of this is {1}.
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Then we get f ∈ S8j−1−ϵ → S7 so that α⟨f,2, a⟩ = {1}.
For this part of the talk I’ll assume you know there’s a space G so that πs

7 ≅ π7G.
There’s something else π7PL → π7G and then you can map to π7PL/O, which is
π7(PL6/O6). Why do we care? There’s a theorem of Morlet, that Diff(Dk) ≅
Ωk+1PLk/Ok. So with a shift the homotopy group elements correspond. So we
found an interesting element aPL6/O6

to apply Today brackets on.
So we can do ⟨f,2, aPL6/O6

⟩ and the α invariant of this is nonzero.
That was a little bit fast, but the real input is to figure out a way convert Adams’

construction into the space of diffeomorphisms of disks. When I loop up I get this
class in a way I can use.

That’s something about the construction of these elements. Now in the remain-
ing time I gave you one scandal already, that we don’t know the Gromoll filtration.
I’ll present another scandal that we can use to resolve it.

The derivative or linearization map is what I’ll turn to now. We take Diff(Dk),
maybe symplectomorphism if you like, and you can differentiate it, and get Tfx ∶
Rk → Rk which gives us an element in SLk(R) ≅ SO(k), and so up to homotopy I
get this derivative map D ∶ Diff(Dk)→ ΩkSO(k).

Let me say a little about Morlet in this setting. Let me pretend that you know
how to differentiate PL things, then you get this square

Diff(Dk) D //

��

ΩkSO(k)

��
PL-Homeo(Dk)

DPL

// ΩkSPL(k)

and you can do a kind of Alexander trick, since the PL group is ∗, and you can
prove this is a Cartesian square, and then ΩkSO(k) is Ωk+1PLk/Ok and so the
factorization from DiffDk is the Morlet map.

So you can ask if this map πiDiff(Dk)→ πiΩ
kSO(k) ≅ πk+1SO(k) is interesting?

If you like, you can let πiDiff(Dk) ≅ πk+i+1(PLk/Ok) and ask if this map is ever
nonzero and we have no known examples.

You could say that this boundary map is always zero because it’s a dumb map.
Using concordance theory, Milnor and Brumfiel, this map is essential, it’s nontrivial
on some Moore space. It’s not that it would be zero for stupid reasons, but we can’t
compute it on homotopy.

Right. Why would you care? Let me give you two reasons for why you would
care about this. So let’s see. Let’s look at this map on π0 ∶

π0DiffDk → π0Ω
kSO(k) ≅ πkSO(k) ≅ πkSOk+1

and it’s not hard to see that this takes a homotopy sphere in π0DiffDk to its
tangent bundle. It’s a classical theorem that all homotopy spheres have the same
tangent bundle as the standard sphere. How do you do this? You first have to
show that this is stably trivial and work from there, I have to go and ask Adams
for everything. This problem about the boundary map, as a differential topologist,
you want to understand this fundamental fact in differential topology maybe better.

A second motivation is the Gromoll filtration in dimension 16, the group is

Γ16 = Z/2 so Γ16
(15) = Γ

16
(14)

?⊃ Γ16
(13) and [some missed] πs

16 ≅ Z2⊕Z2(η4) and we’d like

to say that the Gromoll filtration stops there and this is zero.
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Concretely in relation to D, we have π16PL14/O14 → π15O14 and this is zero.
But we know nothing about

π16(PL13/O13)→ π15O13 ≅ Z/2⊕Z

but there’s an inviting Z/2 summand waiting to be hit.
There’s a theorem of Burghelea–Lashof saying D = 0 on π0 and π1. Then

A’Campo says that D = 0 on π2. It would follow that this thing was nonzero,
violating A’Campo. It’s like Fermat, we wrote to A’Campo and he said he had lost
his notes.

13. Bea Bleile: Fundamental Triples and Poincaré Duality
Complexes with Highly Connected Universal Covers

Thank you very much and I wanted to thank the organizers, I’ve really enjoyed
the conference so far, and the other speakers, it’s also been good for the soul. The
nice thing about this title is that Jonathan Hillman had a paper with a similar title
and complementary content. One of the motivations to write down our part of the
paper which is on proving some conjectures of Turaev was that Jonathan was using
these things in his part, Jonathan wasn’t quite game to use it until he’d seen it
written down.

I’ll start by introducing the background, then introduce homotopy classifica-
tion, and fundamental triples, and then I’ll talk about PD complexes with highly
connected universal cover, proving Turaev’s conjectures.

So’ve we’ve heard a lot about manifolds, and Poincaré duality complexes are just
homotopical versions of manifolds. So we work in CW0, where the objects are CW
complexes with n-skeleton Xn and X0 = ∗, with maps the basepoint preserving
maps. We have the universal covering X̂ → X, and fix a basepoint of X̂ as well
so we don’t run into trouble and denote by C(X̂) the cellular chain complex of

X̂. Sometimes I’ll write π for the fundamental group π1(X,∗), and let the group

ring be Λ and consider C(X̂) as a complex of left Λ-modules. A lot of things are
going on at the chain level, so it’s a mix of algebraic and topological things. Now
I is the augmentation ideal and if we have a homomorphism ω ∶ π → Z/2Z, this
yields an anti-homomorphism denoted by a bar from Λ to Λ which takes ∑ngg ↦
∑(−1)ω(g)ngg

−1. When we don’t want to restrict to orientable Poincaré duality
complexes, this ω allows us to switch from left to right modules. So if you have a
left Λ-module M , then you get the right Λ-module Mω where mλ ∶= λ̄m and you
do the same thing the other way around to go from a right Λ-module N to a left
Λ-module ωN .

Then the homology and cohomology groups we work with, I’ll just write them
down, if M is a left Λ-module, then

Hn(X;M) ∶=Hn(Mω ⊗Λ C(X̂))

Hk(X;M) ∶=H−k(HomΛ(C(X̂),M))

Then a Poincaré duality complex consists of a triple (X,ωX , [X]) where X is in
CW0 with finitely presentable fundamental group, ω is an orientation character
π → Z/2Z, and [X] is the fundamental class in Hn(X,Zω) such that capping with
[X] is a (Poincaré duality) isomorphism

Hk(X;M)
∩[X]
ÐÐÐ→Hn−k(X;Mω)
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for all M .
You might ask if there’s anything new here, and there are Poincaré duality

complexes that aren’t manifolds, but you have to go to n = 3 for that.
So the question, also, that Kirby–[unintelligible]showed that every manifold is

homotopy equivalent to a CW complex and so you can make PD complex. What
about the other way? For n = 1 you get the circle. For n = 2, Eckmann–Müller,
Linnell between 80 and 83 showed the answer is yes, you only get closed surfaces.

For n = 3 the answer is no. In 1967, Wall showed that if and only if π is
the fundamental group of a PD3 complex and is finite, then and only then, π
has periodic cohomology of period four. Milnor showed that there are such finite
groups which are not the fundamental groups of a three-manifold (so this was 1957).
The simplest one is S3 and Swan constructed an example in 1960 with fundamental
group S3. For n = 5 there are counterexamples by Gitler–Stasheff, simply connected
PD5 complexes not homotopy equivalent to a 5-manifold.

Some useful facts. Take a Poincaré duality complex X = (X,ωX , [X]) in dimen-
sion n. Then

(1) (Wall) X ≅ X ′ ∪ en, where for n > 3, X ′ is the n − 1-skeleton of X, and for
n = 3, X ′ is three-dimensional but homologically three dimensional. If you
take e ∈ Cn(X̂) corresponding to en, then [X] = [1⊗ e].

(2) The map

ωHomΛ(C(X̂),Λ)
∩1⊗eÐÐÐ→ Λω ⊗Λ C(X̂) ≅ C(X̂)

is a chain homotopy equivalence of degree n
(3) (Browder?) A map f ∶ X → Y of PDn complexes which is oriented degree

one (meaning ωX = ωY π1(f) and f∗([X]) = [Y ], then the induced map on
fundamental groups is surjective.

There was a notion of a fundamental triple around earlier for three-manifolds
and PD3 complexes which we generalized, and now we come to fundamental triples,
which give us the classification.

We want to look at degree one maps. Let PDn
+ be the category of PDn-complexes

with degree one maps. Then there is a functor τ to the category of triples Trpn+ ,
which is the category (T,ω, t), where T is an (n − 2)-type in CW0 and ω is a
homomorphism π1(T ) → Z/2Z and t ∈ Hn(T,Zω). An object in PDn

+ , X, we get
the (n−2)-Postnikov section by attaching cells to kill higher homotopy groups, and
then you send

(X,ωX , [X])↦ (Pn−2X,ωX , p∗[X]).

Theorem 13.1. (Baues–B. 2007) The functor τ is full and reflects isomorphism.

Reflection of isomorphisms is easy. You just need Poincaré duality and White-
head’s theorem. For fullness, meaning that if we have a map (T,ω, t) → (T ′ω′, t′)
between two things in the image of the functor, that the map comes from one in
Poincaré duality complexes.

So for fullness, take an isomorphism of triples, take the (n−1)-skeleton, take the
chain complex, and take a chain map, and then use that the isomorphism preserves
the ts to match up the fundamental classes.

Then you realize this as a topological map using Baues’ homotopy systems.
As a corollary, you get that PD-complexes are orientedly homotopy equivalent

if and only if the fundamental triples are isomorphic.



36 GABRIEL C. DRUMMOND-COLE

You hope to know something about Poincaré duality complexes when you know
up to the middle dimension, and I was asked that by an audience member last time
I talked about this, and I’m still no closer.

For n > 3, you could take (P⌊n2 ⌋, ωX , p⌊n2 ⌋∗([X])), a pre-fundamental triple and
you could ask if this classifies PD-complexes. The answer is no, the corresponding
τ still reflects isomorphisms but we don’t get the corollary because, the counterex-
ample is if you attach D2n to Sn ∧ Sn via α = [i1, i2] + i1β where β ∈ π2n−1S

n with
trivial Hopf invariant. A question is what information you’d have to add to detect
homotopy type and if anyone has some ideas I’d love to hear them.

This brings us to the third part, on Turaev’s conjectures. Originally [unintelli-

gible]proved the classification theorem for PD3 complexes and Turaev provided an
alternative proof. If you take (X,ωX , [X]) a PDn-complex with (n − 2)-connected
universal cover, then we can takeK =K(π,1), which gives the (n−2)-Postnikov sec-
tion. So Turaev showed that the classification, splitting, and [unintelligible]results
extend to [unintelligible]. I want to report on the generalization of the realization
and the splitting.

First formulate the conditions for realisation. We had some technical conditions
because π is finitely presentable, you can convince yourself it’s actually of FPn−1
type and because we have Poincaré duality we have that Hi(π;ωΛ) = 0 for 1 < i < n.
So for the main realisation condition, we use a functor from the category of chain
complexes over Λ, call it Gr, to the stable category of Λ-modules.

If you have a map f ∶ C → D, you get a chain map Cr → Dr, and the image of
dDr+1 sits in there, and we can take the cokernels of the differential maps dCr+1 and
dDr+1, and the induced map of cokernels is Gr(f).

Then we need one more result, from Turaev, if f ∶ C → D is a chain homotopy
equivalence and Cr and Dr are projective, then Gr(f) is a homotopy equivalence
of modules, which is precisely what will give us our condition.

We apply G to the chain homotopy from Poincaré duality at the chain level,
with some fudge because you have to shift on one side, and we get something from
Cn−1(X̂)/imdn−1 (and I call that Fn−1(C(X̂))) and that goes to to C1(X̂)/imd2 ≅ I,
call this map η, it’s a homotopy equivalence of modules.

Again, take P = Pn−2X, then because the Postnikov section is the identity lower
down, this is Fn−1(C(P̂ ))

Now the Turaev map is constructed, call it νC which works for C a complex of
free Λ-modules, from Hn(Zω ⊗Λ C) → [Fn−1(C), I], and it’s constructed precisely
so that νC(P̂ )(p∗[X]) is equal to η.

The νC is the composition of a connecting homomorphism with a suitable eval-
uation map.

Theorem 13.2. (B.–Bokor) Take a finitely presentable group G satisfying the tech-
nical conditions and take k = K(G,1) with t and ω as before. Then (K,ω, t) is
realized by a PDn-complex if and only if νC(K̂)(t) is a homotopy equivalence of

modules.

So that’s the condition that picks out, tells you about realisability. We’re in
the stable category, so a homomorphism is nullhomotopic if it factors through a
projective.

So now to splitting or decomposition, the notion of connected sum for PDn

complexes also coes back to Wall. If we have two PDn complexes, then we can
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write each of them as Xi ≅ X ′i ∪ en. Then we write ĝi as the composition with
the inclusion into X ′1 ∧X ′2. Then we attach an n-cell via ĝ1 + ĝ2 and define this
as the connect sum X1#X2. You do things on the chain level to show this is a
Poincaré duality complex. If you can write X a Poincaré duality complex, then
π1(X) = π1(X1) ∗ π1(X2). You can show that it goes the other way as well, if
π1(X) = G1 ∗G2, then the Turaev map applied to the fundamental class here gives
you a homotopy equivalence of modules, and you see that νC(K̂)(p∗[X]) = µ1 +µ2,

and this is in the homology of a K(G1,1) and a K(G2,1), and so you realize these
two and because of the classification theorem, then you can realize (Gi, ωi, µi) by
Xi and then by the classification theorem, X ≅X1#X2.

So a PDn complex decomposes nontrivially as a connected sum if and only if
its fundamental group decomposes as a free product. This applies for instance to
closed manifolds.

There are some results with other connectedness assumptions but some of them
are kind of yucky, making them nicer is yet to be done.

14. Yong-Geun Oh, Lagrangian Floer theory and mirror symmetry
on toric manifolds III

So let’s briefly recall, (M,ω) is symplectic with L a Lagrangian submanifold. In
my talk I used the de Rham model, so mk ∶ Ω(L ∶ Λ)⊗n → Ω(L ∶ Λ). So you want
to regard this as a correspondence using evaluation maps

Mk+1(L;β)
ev†

yysss
sss

sss
s

ev0

$$J
JJ

JJ
JJ

JJ
J

Lk L

and mk,β(α1, . . . , αk) = (ev0)!(ev†)∗(α1 ×⋯ × αk) and the mk satisfy the A∞ rela-

tions, which are the same thing as d̂ ○ d̂ = 0 where d̂ is

m̂k ∶ BΩ[1]→ BΩ[1]

where m̂k is the coderivation induced by mk. For each b ∈ C0[1] = C1, we can
deform mk to

mb
k(x1, . . . , xk) =∑m(b, . . . , b, x1, b, . . . , b, . . . , xk, b, . . . , b).

The proposition is that this is still an A∞ structure. For k = 0, then mb
0(1) is

∑∞k=0mk(b, . . . , b) and we define Mweak(L) as the set of b such that mb
0(1) ≡ 0

(mod ()e)/ ∼ where ∼ is gauge equivalence and e is the unit of (C,m). By definition,
L is called weakly unobstructed ifMweak(L) is nonempty. Then we look at the pair
(L, b), where these form an object of our Fukaya category, where b ∈ Mweak(L).
Then by definition, we’re given a potential function POL ∶Mweak(L) → Λ+ where
POL(b) has a nice form because e is the Poincaré dual of [L]. So then this is

∫
L
∑mk(b, . . . , b)dvolL

I also need to deform the whole Fukaya category, using so-called bulk deforma-
tions. So b is an anmbient differential form on M . The way we’ll deform this,
we’ll look at the moduli space of holomorphic disks with boundary and interior
marked points Mk+1,ℓ(L ∶ β), where there are points w, z0, . . . , zk, z

+
1 , . . . , z

+
ℓ ) so
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that ∂̄J(w) = 0, the class [w] is β ∈ π2(M,L), each zi is in ∂D2 and each z+j is in
the interior. [pictures]

Again you want to do a correspondence, a pullback and pushforward. Using this,
you can define a so-called closed-open map here. This is a q̂ ∶ E(M)[2]⊗BΩL[1]→
BΩL[1]. Then what I’m saying is qk,ℓ is ΩM[2]⊗ℓ ⊗Ω(L)[1]⊗k → Ω(L)[1] where
this is the pushforward of the pullback;

qk,ℓ(α1, . . . , αk, ω1, . . . , ωℓ) = (ev0)!(ev+, ev†
+)∗(α1 ×⋯ × ωℓ).

Proposition 14.1. Define mb,b
k as qk,1( ;b).

Then this also satisfies the (curved) A∞ relations. You can do this for any given
L. By doing this over the whole Fukaya category, on each M , now, to deform the
category you have to look at a chain of Lagrangians.

You can deform morphisms in a similar way. If you look at a chain of Lagrangians
like this [picture] all you have to do is to look at punctured disks [pictures]. In this
way you’ll define mb

k as

qbk,1 ∶ CF (L0, L1)⊗⋯⊗CF (Lk−1, Lk)→ CF (L0, Lk).

Denote the resulting category by Fukb(M,ω).
This is the general story, I want to do some computations in the toric case. It

looks intimidating but luckily we have a good example for which we can do all this
structure explicitly.

When we go down to the minimal (canonical) model (H,{m}∞k=0) where m1 = 0
and H∗(L; Λ). Let me change the space to (XΣ, ω), a toric manifold, and in this
audience maybe the best way is to describe the moment polytope. Let me draw a
picture. For example, [pictures] So PΣ is the moment polytope and GΣ is the set
of inward pointing normal vectors at the facets. Σ is the so-called “fan” but just
focus on this picture.

I want to reveal the essence of this computation by doing it slowly here.
What is it, by the way, this m0, β? It involvesM1(β), the space of holomorphic

disks with one marked point. The dimension here is given by the dimension of the
Lagrangian submanifold plus the Maslov index of β plus one minus three so

n + µL(β) − 2.

Then this is roughly a count of the number of holomorphic disks with Maslov index
2, passing through one generic point. This is the open Gromov–Witten invariant
of one point.

Then this one has exactly dimension n, so ev0 the domain and target have the
same dimension. So under the assumption thatM1(β) has no boundary, then you
can compute degree, and this is 1-point open Gromov–Witten invariant.

It turns out (this is work of Cho and myself) that in this toric case, for each
facet, there is exactly one, a unique holomorphic disk of Maslov index 2. In the
CP2 case there are three facets, you look at the Lagrangian submanifold, you look
at the associated Lagrangian submanifold, and there are three holomorphic disks
with boundary on this fiber with Maslov index 2. So you can compute m0,β .

Let me do this more systematically. The consequence, furthermore, there could
be other Maslov index 2 disks. In the Fano toric case, these are all such holomor-
phic disks. The result provides so-called Givental–Hori–Vafa potentials. On the
other hand, for the non-Fano case, there are more, other hidden contributions, for
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example, for the Hirzebruch surface, there are four obvious holomorphic disks but
there are more that are somewhere hidden, maybe holomorphic disks that are not
smooth, singular disks. It makes computation of the potential function in general
very complicated (unless the toric manifold is Fano)

Let me write down the potential function in general, POL(b). In the toric case
you can replace with the harmonic forms, and in the toric case these are equivalent
to [unintelligible]forms, which makes things nice, and so in this case you have

POL(b) = ∑
µ(β)=2

Tω(β) exp(b ∩ ∂β)nβ

where nβ = deg[ev0] and β ∈H2(X,L) with [∂β] ∈H1L.
In the Fano case, as I said, we know all the holomorphic disks of Maslov index

2, so then we say WL(U), the composition of the potential with the canonical em-

bedding POL ○ΦL where ΦL ∶ H1(L ∶ Λ) →Mweak(L(U)). So the composition is

∑T ℓj(b)e⟨b,vj⟩

Choose a basis for H1(L(U) ∶ Z), {ei}. Then b = ∑xi(b)ei I should have said,
ℓj is a linear affine function , ℓj(b) = ⟨b, vj⟩ − λj and the polytope is ℓj ≥ 0. So

yi(b) ∶= exi(b) and then the formula is

WL(w)(b) =∑ yvkT
⟨b,Vj⟩

So for example for CP2, our W (b) is y1Tu1 + y2Tu2 + T 1−u1−u2

y1y2
.

At the moment it looks like it depends on u. This should just be a function on
C∗. A good way of doing this is to change the variable again, write yi = yi(b)Tui .
Then this looks like W = y1 + y2 + T

y1y2
. Now how do you recover the fiber? All

you have to do is, these polynomials, they have Novikov ring coefficients. Then the
corresponding valuation points, there is the corresponding moment fiber.

So now this whole story can be deformed by an ambient cycle again. We can
deform these potential functions (and this whole story) by a bulk parameter b. So
you’ll be given a family of potential functions which I’ll denote W (y;b) and regard
this as a family, a deformation of this potential function. We know that in general
the deformation of a category gives rise to some class in Hochschild cohomology of
the category, and in this way, the q1, the q map, will define a map, let’s say, the
closed open map, which, let me write this.

In a symplectic manifold, b lives in H∗(M) and there is some well-known cup
product, a quantum product, and by considering the quantum product, with quan-
tum cohomology of M , this deformation map q can be regarded as a map from
the quantum cohomology class of M going to the Hochscihild cohomology of the
Fukaya category q1 ∶ QH∗(M) → HH(Fuk(M)). This is folklore, but the precise
version we wrote down was

Theorem 14.1. (Abouzaid–Fukaya–O.–Ohta–Ono) This is a ring homomorphism
and under the so-called semi-simpleness of quantum cohomology, this is indeed a
ring isomorphism (under some generation conditions).

We believe this is generally true, we are in the process of proving the same holds
in general.

This involves some further understanding about homological mirror symmetry
between matrix factorization and torics.
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The proof of the ring homomorphism can be described by this picture, the quan-
tum product is defined by inserting two elements, you look at the moduli space
[pictures].

In general the Fukaya category is very abstract. To explicitly describe it it’s
useful to have a good class of Lagrangians. In the toric case, we have, I didn’t
mention, I want to mention, for a good description of the Fukaya category, it would
be to choose to select a “good” collection of Lagrangian submanifolds. This is sup-
posed to generate the whole subcategory. Cho looked at the punctured sphere, and
chose [unintelligible]. He got something that generated the whole wrapped Fukaya
category for a punctured surface. SO we need Abouzaid’s generation criterion. I
should say, sorry, the ring isomorphism is only true under the generation criterion,
that the q1 map to Hochschild, this becomes, at the end of the day, this is injective.
In particular, it’s a unital ring, so if you, well.

Finally, in the toric case, this collection is given by those pairs (L(u), b) such
that b is a critical point of the fiberwise potential function of u. There is some
finite number of, in this case only one, there are some finite number of basepoints
so that the associated potential function has a critical point. When you collect
those, the number of such pairs is the Euler characteristic of this toric manifold,
rkH∗(XΣ). When you’re given a toric manifold, we can explicitly find these pairs
and it turns out that this collection satisfies the generation criterion. This proof
needs to study so-called mirror symmetry between Saito’s, Kodaira–Spencer map
given by each toric divisor corresponding to the differential of the potential function,
bi =Di → ∂Wb

∂bi
.

15. May 5: Craig Westerland: Structure theorems for braided Hopf
algebras

I want to tell you about a project I’ve been working on for the last year or so,
and in many respects it has nothing to do with the talk that TriThang gave on
Monday, although it grew out of that work. If you remember his talk, he said
that if you want to study the homology of these Hurwitz spaces of branched covers
of configurations in the plane, I can compute it with something called a quantum
shuffle algebra, Ext∗,∗

A(Vϵ)(k,k). But this comes with a caveat, writing this down

doesn’t mean you understand either side. You don’t understand really anything
about this right hand side. But also the multiplication in the shuffle algebra is a
delightful combinatorial gadget but it doesn’t help you write things down in terms
of generators and relations. And except in the simplest cases, I have no idea how
to write things down for this algebra. The goal today is about writing down a nice
presentation for these algebras, and we’re not going to get there but we’ll get some
other things of interest.

These quantum shuffle algebras are braided Hopf algebras, you might hope there
are like Milnor–Moore or Poincaré–Birkhoff–Witt theorems in that context and
there aren’t. But I’d like this to be like the start of that.

I’ll make this a pure algebra talk for a while. Let me start with some setup. Let
H be a Hopf algebra over a field k, and I want to remind you of a couple of words,
some probably familiar and some probably not familiar. An element g is grouplike
if ∆(g) = g ⊗ g. An element x is skew-primitive if there exist grouplike elements g
and h such that ∆(x) = x⊗ g + h⊗ x. It is primitive if g and h are the identity.
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From the grouplike guys, I can produce a group G(H) ⊂ H, the group of grou-
plikes, and the fact that this is a Hopf algebra makes this into a group. Maybe
less familiar is the coradical of H, which is the sum of all simple subcoalgebras, I’ll
notate this as H0. It’s maybe hard to think about. This is dual to the radical. The
line generated by a grouplike is a subcoalgebra. A word I’m guessing almost none
of you is familiar with is that H is said to be pointed if each simple comodule is
1-dimensional. For a topology audience this is an awful word. Trying to imagine
what this means is hard. An example of a simple comodule is a grouplike; it’s
the same as saying the coradical H0 is the same as k[G], the group ring on the
grouplike elements.

We’ve got all the language now to state the theorem, which is something called
the Andruskiewitsch–Schneider conjecture.

Theorem 15.1. (W.) If H is a pointed finite dimensional Hopf algebra over a field
of characteristic zero, then it is generated by grouplike and skew-primitive elements.

So this, previous work, this has previously been established, lots of special cases
by Andruskiewitsch and Schneider, in the setting, where, let’s see if I can intimidate
you, when the infinitesimal grading is Cartan-type. Recently, Angiono (2013) did
it in the Abelian case, when the group of grouplikes G is Abelian.

This is part of the classification of finite dimensional pointed Hopf algebras using
what is called the lifting method. They have a very large program for trying to
describe these things and part of that is about exploring all the possible relations
that could occur. One starting point to classify them is the question of how many
generators you need. In most of the cases you were interested in, you knew this
already, and I’m saying that it works more generally.

I want to spend a couple of minutes telling you how to reduce this theorem to
a theorem about braided Hopf algebras. That’s, let’s see, this might be going a
little bit deeper into the weeds of Hopf algebras than we’re comfortable with, but
I promise you it will pay off in a moment.

The method starts with the coradical filtration. My Hopf algebra H, I can
define a filtration on it by saying Hn is the set of things whose diagonal lies in
H ⊗H0 +Hn−1 ⊗H. So H1 is things whose diagonal lies in H ⊗H0 +H0 ⊗H. So
we have a name, these are skew-primitives. So H0 are grouplike and H1 the skew-
primitives. It has all the properties you need to say that, let Hgr be the associated
graded thing, ⊕Hn/Hn−1, and this becomes a graded Hopf algebra.

The conjecture is saying that H is generated in H0 and H1, which is the same
as showing that the associated graded is generated in H0 and H1. But there’s
something cool which is, we can kill off the things coming from H0. There is a
projectino from Hgr to H0 = k[G], which makes Hgr a coalgebra for k[G]. So we
can define R ∶= Hgr ◻k[G] k, the cotensor product. This is the dual to the tensor
product with the ground field, killing off a subalgebra.

What can I tell you about this thing? This construction R is a graded connected
braided Hopf algebra in the category of Yetter–Drinfel’d modules for G, Y DG

G.
It’s connected because we killed off degree zero. The Hopf algebra structure on
the associated graded gives one on R, but it’s not Hopf in the usual sense but in
a braided monoidal category. I can reconstruct the original Hopf algebra as the
Radford biproduct of the group ring with R, so we have generation by grouplikes
and R. As an algebra it’s a twisted tensor product but writing it down precisely
will take a lot of work.
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Let’s just sort of put over here a reminder that to show the theorem, it’s now
equivalent to saying, to showing that R is primitively generated.

Let me tell you about Yetter–Drinfel’d modules. There’s a more general setting
but let’s just work over the group ring. These are modules over the group ring
k[G], let’s make the right-modules M , which have a decomposition

M =⊕
g∈G

Mg

so that (Mg)h =Mgh where gh = h−1gh.
This is a category, in fact a braided monoidal category. If I have two guys, M⊗N

is the tensor product over k in the usual way, and the action of g is diagonal, if
you’ve got a more general Hopf algebra the action involves the diagonal of the Hopf
algebra, and the grading is (M ⊗N)g is the sum of Mn ⊗Nk. The braided part
is the most important part, the isomorphism from M ⊗N → N ⊗M , which takes
m ⊗ n to n ⊗mg if n ∈ Ng. If I do this twice and braid again, I get mg ⊗ nh if
mg ∈Mn. This is only going to be symmetric monoidal if these actions are trivial.

There’s a more general condition, but a braided Hopf algebra is a Hopf algebra
object in this category of Yetter–Drinfeld’d modules.

That’s the sort of thing that this R is, a Hopf algebra object in this category.
Let’s look at a couple of important examples. The first is, if V is a Yetter–Drinfel’d
module then T (V ) is a braided Hopf algebra. You know how to multiply, and
you make v primitive for all v ∈ V . This construction looks harmless. It’s a little
misleadingly so. The quantum shuffle algebra that TriThang talked about, A(V ),
if V is a Yetter–Drinfel’d module, if I take T (V )∗ (if V is finite dimensional at
least) then this is A(V ∗). This tells me that the coalgebra structure on A(V ) is
the tensor coalgebra, the deconcatenation coproduct. Then this description setting
the generators to be primitive tells me that the coproduct is dual to the quantum
shuffle product, which was a complicated gadget.

A third example is something called the Nichols algebra, called BV , the image
of the natural map T (V ) → T co(V ) induced by idV , the subalgebra of the shuffle
algebra generated by V . There’s a remarkable characterization, that B(V ) is the
unique braided Hopf algebra with, well P (A) the primitives maps to Q(A), the
indecomposables. It’s the unique such one where this is an isomorphism and these
in fact are V .

So if the word braided weren’t there and we were just talking about Hopf alge-
bras, like assuming that the group was trivial, then a braided Hopf algebra is the
same as a Hopf algebra. Then what is B(V )? Its primitives are isomorphic to its
indecomposables, so it’s primitively generated, so it’s cocommutative. The same is
true for the dual Hopf algebra, so the dual Hopf algebra is primitively generated,
so it’s commutative. So if I use the Milnor–Moore theorem, I don’t even need to
be in characteristic zero. Being cocommutative means I’m the universal enveloping
algebra on my primitives and being commutative tells me that the primitives are
Abelian, and so I’m the symmetric algebra on P . So symmetric algebras are the
analogues of these Nichols algebras.

To ground this more, for specific G and V you can produce, say, the Borel part
of the enveloping algebra, for like a Kac–Moody case.

Let’s go back to the sketch of the aim of the proof. The Hopf algebra R, we’d
like to show that it’s primitively generated. We know that R is a connected graded
Hopf algebra, and in fact, the filtration was such so that, the skew-primitives are



TASK 2017 43

the primitives. That will map to indecomposables as before. This is in fact an
injection. I”m saying P (R) is indecomposable because I can only add up to 1 by
adding up 0 and 1. We’ve got the awkward thing that, we know the primitives
are indecomposable, but we want to say the converse is true. But we have a name
for this being an isomorphism. So equivalently, we want to show that R = B(V )
for V the primitives. The theorem that’s getting that all to work is that if S is a
connected, primitively generated finite dimensional braided Hopf algebra over k of
characteristic zero, then S is a Nichols algebra. If S = R∗ then the primitives of
S will surject onto the indecomposables of S, it’s the dual of my injection. I can
switch to a question about primitively generated ones in this way, and I still want
a Nichols algebra.

Let’s take a moment to breathe and wonder why this is true. I’m saying some-
thing like, if I have a finitely generated primitively generated Hopf algebra, then it’s
a symmetric algebra. How to I do that? I use Milnor–Moore and Poincaré–Birkhoff–
Witt. That’s the thing I want to prove. But aiming for Poincaré–Birkhoff–Witt, or
Milnor–Moore, I try to do something involving the enveloping algebra of the prim-
itives and then relating this to the symmetric algebra. But you get off the ground
by knowing that the primitives are a Lie algebra. But P (A) is not necessarily a Lie
algebra. What goes wrong? If I take ∆[a, b], I should get ∆[a, b]⊗ 1 + 1⊗∆[a, b].
So let’s do it:

∆([a, b]) =∆(ab − ba)
= (a⊗ 1 + 1⊗ a)(b⊗ 1 + 1⊗ b) − (b⊗ 1 + 1⊗ b)(a⊗ 1 + 1⊗ a)
= [a, b]⊗ 1 + 1⊗ [a, b] + (a⊗ b − σ(b⊗ a)) + (σ(a⊗ b) − b⊗ a)

and these cancel if σ is just a swap but otherwise you’re hosed.
So that raises the question, what structure does P (A) support? There are a lot

of people in this room good at thinking of algebraic structures that this supports.
The right framework is operads. Is there an operad that governs this structure?
The answer is yes. Let me talk briefly about braided operads.

A braided operad C(n) is a collection of objects with two pieces of data, an

action of the nth braid group on C(n) along with substitution maps C(m)⊗C(n) ○iÐ→
C(m + n − 1), which is the analogue of plugging the n-ary operation into the ith
slot of an m-ary operation. These should be associative, equivariant (you have to

be a little careful here) for the cabling map from Bm ×Bn
○iÐ→ Bm+n−1. Let’s do an

example.

○2

is

with the two strands from the braid on the right cabled along the overstrand of
the braid on the left. So braided operads should govern things in braided monoidal
categories

(1) BrAss(n) = k[Bn] and an algebra for BrAss is an associative algebra in a
braided monoidal category.
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(2) Unfortunately I actually need the completion B̂rAss, which is a pro-operad,
and the nth space

Just as the associative operad contains the Lie operad, and this governs the primi-
tives, we want to find something here to govern our braided primitives.

Let me make a quick definition

Definition 15.1.

Sn = ∑
τ∈Sn

τ̃

where this is the lift, the Matsumoto lift of Sn the symmetric group to the braid
group Bn, e.g., the lift of

is

This is called the quantum symmetrizer and there’s also

Sp,q = ∑
(p,q)-shuffles

τ̃

Now the braided primitive operad

BrPrim(n) = ⋂
p+q=n

kerSp,q ∶ B̂rAss(n)↺

and

BrPrim∞(n) = ker(Sn ∶ BrAss(n)↺)
and everything you need to go through goes through in this context. Sorry to have
run out of time just when we were getting to the fun bit.

16. Byeongho Lee: Hypercommutative operads and topological
vertex operator algebras

Thanks for the invitation and for inviting me. These algebras were first intro-
duced by Lian–Zuckerman in 1993. My title could have also been different: hyper-
commutative algebras are the same as formal Frobenius manifolds. But I wanted to
attract some attention from the operads people. Now topological vertex operator
algebras are a formulation of topological conformal field theory. The theorem-to-be
(this is a work in progress) is that given a topological vertex operator algebra, then
by forgetting something we can get a Frobenius manifold. The idea is from physics.
So my job here is to translate the physics literature. If this is done, then the first
question that we should ask must be to describe the inverse image of Frobenius
manifold.

This is going to be my genuine contribution in this regard, if this is done. We have
many questions we want to ask here, and we want to lift the question to questions
about topological vertex operator algebras where there is rigid structures.

So my outline, first, since I put operads in my title, I’ll start with hypercom-
mutative algebras. Then I’ll talk about vertex operator algebras, so I’ll talk about
vertex operator algebras. Not a lot of people are familiar with them so I’ll start
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with this. Then I’ll briefly mention how to get a Frobenius manifold from a topo-
logical vertex operator algebra. Then finally I’ll talk about possible applications
and further questions. I cannot say everything very precisely but the first two parts
will be more precise and the last two parts much less precise.

This is my outline. Let’s start with hypercommutative algebras. These are
algebras over the hypercommutative operad. What is an operad? There are people
who are not familiar with operads, I cannot give you all the precise definitions
but I can give some descriptions. The first thing that comes to mind when I
heard about operads is the picture of a corolla with n inputs and one output, and
some compatibilities. So what are algebras? This structure should be preserved
on algebras, so you have, we’re working on the category of vector spaces, so you
have an n-ary operation H⊗n →H with compatibilities. This is what algebras over
operads will look like, these maps and these compatibilities.

What is a hypercommutative operad? The title should have been singular,
like “. . . hypercommutative operad”, not “. . . operads” sorry about that. This is
H∗(M0,n,C) with compatibilities given by gluing map and forgetting.

The gluing maps, if you have a sphere with a bunch of points and another, you
number them, and you can glue them and get a nodal sphere. If you have four
points you can forget to three points. The compatibilities are given by these maps.

Then what is a hypercommutative algebra? We’re working in complex vec-
tor spaces, so H is a finite dimensional vector space over C and we have a non-
degenerate symmetric bilinear form g, which we need because this operad is actually
a cyclic operad. In an ordinary operad, you have n inputs and one output, but here
you can’t tell the difference between inputs and outputs. Then the n-ary operations
go αn ∶H⊗n →H and using g we can go back and forth to βn+1 ∶H⊗n+1 → k. How
do we do this? We go from α to β by taking a1⊗⋯⊗an+1 to g(αn(a1⊗⋯⊗an), an+1)
and in the other case, we can invert the matrix of g and get gab∆a ⊗∆b, and then
αn(a1⊗⋯⊗an) = βn+1(a1⊗⋯⊗an⊗∆a)⊗∆b and this is independent of the choice
of basis. So we won’t work with αn but with βn+1.

I said this is a cyclic operad so we can think of this thing as a compatibility: that
βn are symmetric n-linear forms, for n ≥ 3. I want to describe the compatibilities
here, there are actually a nice way to write down the compatibilities of this algebra.
To do this, let’s make another identification. We have symmetric n-linear forms,
which correspond to homogeneous polynomials of degree n, in a basis for the dual
space of H. Call this Yn, so x ⊗ y + y ⊗ x corresponds to 2xy. Then we set
Y ∶= ∑n≥3

1
n!
Yn ∈ C[x] where x is the basis.

So what is the compatibility condition? This is expressed using a famous differ-
ential equation, the WDVV equation, which is

Yabkg
kℓYℓcd = YadmgmnYnbc

where the subscripts on Y are partial derivatives and we are using Einstein conven-
tions. The proof is to compare term by term and you get this exact geometric data.
This is a hypercommutative algebra, also known as a formal Frobenius manifold.
The simplest example, is An-singularities, comes from minimal model of topolog-
ical conformal field theory. So here, see “G-Frobenius manifolds”, advertising my
paper, so if you want to play with a concrete example you can look at my paper. I
wrote down the details about the structure very explicitly.

So this was the first part. The second part is about vertex operator algebras.
There are two key ideas, I would get lost, but the two key ideas, are Hilbert spaces
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and correlation functions. I write these down to not get lost in my talk. So this
is supposed to be a quantum field theory, a conformal field theory, so we should
build a Hilbert space. Conformal here means we have an action of the Virasoro
algebra, I’m just talking about the simplest example. The Hilbert space should be
a representation of this algebra, so this is an infinite dimensional Lie algebra over
C generated by Ln for n integral and a central element Z with [Z,Ln] = 0 and the
commutation relations [Lm, Ln] = (m − n)Lm+n + Z

12
(m3 −m)δm+n,0.

We construct a representation using Verma modules, so how do we construct
such a module? We choose c, h ∈ C and call this module M(c, h) with a basis that
looks like L−n1⋯L−nk

v0 for n1 ≥ ⋯ ≥ nk > 0 and k ≥ 0. Here c is the central charge
and h is the conformal weight. Here we take Zv0 = cv0 and L0v = hv0 along with
Lnv0 = 0 for n ≥ 1. We need to be able to take inner products. So let’s define the
expectation value for v ∈M(c, h) with v = kv0 +⋯ and define ⟨v⟩ as k.

Using this we define the Hermitian form H(L−n1⋯L−nk
v0, L−m1⋯L−mnv0) as

⟨Lnk
⋯Ln1L−m1⋯L−mk

v0⟩.

So we call M(c, h) unitary if H is positive semi-definite and

H(Lnv,w) =H(v,L−nw)

so that Ln and L−n are adjoint to one another.

Theorem 16.1. M(c, h) is unitary for 0 ≤ c < 1 and h > 0.

There is a finite number of allowed values for c and h, given a central charge,
the allowed ones are 1 − 6

m(m+1) , there are a finite number of h that are allowed,

hp,q = ((m+1)p−mq)2−1
4m(m+1) . You want this to be positive semidefinite and look at some

determinant to conclude this.
Then to have an irreducible module, we define W (c, h) to be the quotient of

M(c, h) by the kernel of H. Then this will be positive definite and will be an
irreducible representation of the Virasoro algebra.

The Hilbert space is constructed as: the Hilbert space of central charge c is the
sum

⊕W (c, hi)⊗W (c, h′i).
We want eventually to put a vertex operator algebra structur on this Hilbert space.

I’m running late here. So the vertex operator algebra relevant for the minimal
model is Vc where c is one of the values over there. Then as a vector space this
has a basis that looks like L−n1⋯L−nk

Ω and the Virasoro algebra acts as usual. At
this point this is just a vector space, and we should put some quantum fields on it,
T (z) ∶= ∑Lnz

−n−2 ∈ EndVc[[z±1]]. Then the condition of being a quantum field is
that for any v, we have Lnv = 0 for large enough n. This is a condition of being a
quantum field. A nice thing is that you can touch and play with these here. A very
important property is the state-field correspondence, a very nice property of two
dimensional cfts. How is this expressed in vertex operator algebras? If you look
at that quantum field, the stress energy tensor, you can see that this T (z)Ω is in
Vc[[z]], and if you evaluate at z = 0, well, z can have a negative power, but one of
the conditions of being a quantum field is that you don’t have negative powers, and
then this evaluation should be L−2Ω in the vector space, and Y (L−2Ω, Z) = L(Z)
is the state field correspondence.
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Then we need to give something for other vectors in the Hilbert space, so
Y (L−n1⋯L−nk

Ω, Z) is
1

(n1 − 2)!
⋯ 1

(nk − 2)!
∶ ∂n1−2

z L(z)⋯∂nk−2
z L(z) ∶

where this is the normally ordered product which you need because otherwise you
get ill-defined expressions. I don’t have enough time to give you details.

An important property of quantum fields is that they should satisfy this locality
contiion

(z −w)∗[L(z), L(w)] = 0.
For any field A(z) and B(w) and any u and v in Vc we have H(u,A(z)B(w)v) =
H(u,B(w)A(z)v). Because of the state field correspondence you can put vectors
instead of fields here. And anyway you get something symmetric again.

In this case this depends only on the homology class ofM0,n, so it doesn’t depend
on the position of the insertion. This is called a topological conformal field theory.
I used too much time so far.

So for a topological vertex operator algebra, the Hilbert space is built in a similar
way but we use the topologically twisted N = 2 superconformal algebra. The
generators are Ln, the U(1)-current Jn, then two supersymmetries Gr± and the
central element Z. I won’t write down the relations. We have to change the stress
energy tensor, this is a Eguchi-Yang twist (not an A or B twist). So we have
T (z) = T + 1

2
∂J .

Then G+− 1
2

is the BRST charge, and the cohomology class with respect to this

operator will be finite dimensional and this homology will be the Hilbert space. Let
me just mention a few things that I want to apply this to.

I’d like to consider this, I have a problem about orbifolding Frobenius manifolds.
This question is relevant, for example, to orbifold quantum cohomology. If you
lift this problem to a problem on vertex operator algebras, then this was studied,
this was already used in the early days of vertex operator algebras, for example
to construct moonshine modules. So I think the natural way of answering this
question is to lift this question to one about topological vertex operator algebras.
That was my motivation. There are a couple of other applications but I’m already
past the time. Thank you.

17. Mike Hopkins: Brauer groups in chromatic homotopy theory

Thank you for coming back to the third and last talk of the conference, the
last talk you have to sit through (for me that was the one before this). This does
connect to my last two talks, but I realized in preparing my notes that I was going
to spend most of the time setting things up. So I’m instead going to jump to the
results and connect to the previous ones if there’s time. This is joint work, today,
with Jacob Lurie, inspired by a remark, let me just say, work, of Vigleik Angeltveit.

Last time I talked about Morava E-theories, these are cohomology theories, E∞
ring spectra that come out of algebraic considerations, functorial, they come to us
for free, and regulate the world of homotopy theory. They have some properties.
One is that E0

n(∗) which is π0En is a formal power series ring W [[u1, . . . , un−1]]
where W is the ring of Witt vectors of some field of characteristic p which you
can think of as being the p-adics although sometimes you want further properties,
separability and so on. It’s two-periodic like K-theory. So E∗0 (X) is ordinary
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cohomology, well, cohomoly with coefficients in Q̄p, but that’s not quite right,
because that’s not two-periodic, so it’s really in Q̄p[u±1] where u is in degree 2, so
that’s really made 2-periodic. So then E∗1 (X) is roughly K-theory, but it’s really an
E∞ ring spectrum. But the philosophy is that En is a decategorification of n-VectC,
which passes a remarkable number of reality checks.

Hopefully what I’ll tell you you’ll find interesting even if I don’t get to the details
of the connections. So En is supposed to generalize the ring of vector spaces, and
over a ring there are some other things I’d like to do. So one question is whether
there are residue fields? That would be something we might call Kn and we might
hope that the Kn cohomology of a point, or π0Kn sholud be π0En/m, it’s a local
ring, and then the maximal ideal is (p, u1, . . . , un−1). There are no obstructions (or
choices) for En, it’s given to us universally. But modding out an ideal in homotopy
theory is something that, that’s not something you can do canonically. Let me just
tell you some facts about this.

(1) There are En-modules Kn with no multiplicative structure.
(2) Another fact, among those that do, Kn can never have a commutative, it

can never be commutative. That’s unlike ordinary algebra. In homotopy
theory, reducing (mod ()p) is not something you can do and keep com-
mutativity. Thomas Niklaus was saying recently that reducing modulo p
somehow corresponds to shifting n.

(3) A third property, this depends how you define the moduli problem, but
there are uncountably many different associative algebra structures, and
that’s a theorem, a result, due to A. Robinson and also to Vigleik.

The thing that got this project kicked off is this remark due to Vigleik that some-
times these Kn are Azumaya algebras. That gives you a way of approaching study-
ing and classifying these with a little bit more structure. If you think about classi-
fying simple algebras over a field, how do you do that? You introduce this equiv-
alence relation of Morita equivalence, identify them if one is a matrix algebra over
the other, then tensor product gives you a lot more structure, you can study these
as an Abelian group. So my goal is to describe the classification of these Azumaya
En-algebras.

So there’s various reasons why that’s an interesting question and I’ll put that off
to the end. There are some constructions in the middle that I think are of general
interest and I’m already feeling pressed for time. So let me define this term for you.

Definition 17.1. An E-algebra is Azumaya if the map A⊗EAop → EndE(A) is an
equivalence (and A is dualizable as an E-module) There’s a missing condition, that
the map from E-modules to A-bimodules that sends M to M ⊗A is an equivalence
of categories, but let’s indulge me that this condition, right.

In the context of field theory, this is saying that A is a dualizable object.

Definition 17.2. We say A and B are Morita equivalent if A ⊗ Bop ≅ EndE(V )
for some E-module V , (which is again probably a generator of some kind).

Definition 17.3. Then the Brauer group of E is the Morita classes of Azumaya
algebras under tensor product.

The connection to my previous talks I”ll postpone to the end.
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There are things I’m sweeping under the rug, the tensor product (I’m in Kn-
local E-modules, for the expert), but this could be an arbitrary symmetric monoidal
structure, the generator condition, but let’s ignore that.

I want to, so for example, this depends on the category of E-modules. Let me
give you a couple of examples. If E is C and by module I just mean module, so
this is VectC, then Br(E) = 0, the usual Brauer group. If E is C and by E-module
I mean Z/2-graded vector spaces, then this Brauer group is called the Brauer–Wall
group and is cyclic of order 2. It’s generated by the Clifford algebras, so Cl1 is a
generator and Cln is equivalent to Clm if n ≡ m (mod 2). Maybe in the interests
of time I won’t do another example (say, over the reals).

There’s another construction I want to mention, then I want to generalize to
Morava E-theories. So let me see if I can, right, so here’s another construction, or
let me just say, more generally, suppose L/K is a Galois extension of fields with
Galois group G. Then H2(G;L×), that’s the kernel of the map Br(K) (really I
should say K-modules but I mean usual ungraded K-modules) to Br(L). Okay,
so I want to calculate, describe, the classification of Azumaya En-algebras, so the
Brauer group of En.

There are two things I need to do in order to do this.

(1) I need to construct invertible algebras
(2) I need to classify them.

I want to start by constructing them. I want to look at the examples of the Clifford
algebra and this Galois cohomology and find something common to them that works
in the general case.

Serre has a beautiful series of lectures in the Cartan seminar on Galois coho-
mology, and Serre’s article on the Brauer group gives an explicit construction from
H2(G,L×) to a Brauer element. Let me describe that construction.

What does α in H2(G;L×) classify? It’s a group extension P of G by units in L.
So the free Abelian group on P , that’s the group ring on P , that’s an algebra over
Z[L×], which maps back to L, so you can look at Z[P ]⊗Z[L×] L. This is Azumaya
over K.

Let me translate this maneuver to topology. A group is a group but the free
Abelian group corresponds to the suspension spectrum Σ∞. Now we can just do
the analogous construction. I need to turn all these things into spaces. I’m not
going to take all the features of the example, but I want to do this for E∞ rings.
Suppose R is an E∞ ring. It’s a spectrum, so it consists of a sequence of spaces,
and equivalences Rn ≅ ΩRn+1. Then R corresponds to a cohomology theory and
Rn(X) = [X,Rn]. So there’s a map from R0 → π0R, the components, then among
those is (π0R)× and the pullback is GL1R. An element is a unit if and only if it
is if you restrict to every point of the space. So [X,GL1R] is R0(X)×. This has
a group structure and when [unintelligible], this GL1R is actually an infinite loop
space. I wanted some principal bundle over G whose fiber was the units in some
ring. That’s classified by some (twisted) map into the classifying space. I’ll get to
G in a minute but I want to imitate this without the group structure. So imagine
I have a space X (eventually G) mapping to BGL1R. This classifies a principal
bundle P over X with fiber GL1R. So now I can copy Serre and hefine Xζ as
Σ∞P+ ⊗Σ∞GL1R R and this is a Thom spectrum. In fact, when R is the sphere
spectrum, then BGL1R is the classifying space for spherical fibrations, and Xζ is
the usual Thom complex. This is the most twisted up cohomology.
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This isn’t yet a group.

Definition 17.4. If ζ is a group homomorphism thne Xζ is an A∞ ring spectrum.

These are twisted forms of group algebras just like Serre’s construction is a
twisted form of the L group algebra of G.

Let me do an example. Suppose X is the circle. A map from S1 → BGL1R,
that’s ζ ∈ π1BGL1R = π0GL1R = π0R

× and you can work out that this is the cone
on the map from R to itself given by 1 − ζ.

More generally, if X = S1 ×⋯ × S1, and I had elements ζ1 ×⋯ × ζn → BGL1R ×
⋯ ×BGL1R and then I can go to BGL1R and that composition is ζ, then Xζ is
the tensor product on the cones of the maps 1− ζi, so I get the Koszul complex for
killing all of these. This gives me a way to mod out by the elements in a regular
sequence.

This formula also connects to the other way to construct Azumaya algebras, the
Clifford algebra construction. Let’s look at one other example. Let me say one other
thing. If X = G then the group homomorphisms from G to BGL1R is the same
as space maps from BG → B2GL1R. So I want to connect this, I had two sources
of invertible algebras. One was the Serre construction from Galois cohomology or
suitably twisted group rings and the other was Clifford algebras, so let me explain
the Clifford algebra construction from this point of view.

Now, so, for this, I want to take my ring R to be cohomology with complex
coefficients, but I need to make it two-fold periodic. I’m glad I get to do it because
when, Clifford algebras are Z/2-graded algebras and that bugs topologists, you
multiply things in degree one and you get to degree two, and you say that’s the
same as something in degree zero, and that involves a choice, say of u. There’s
a potential for running into things, like in K-theory the Adams operation don’t
respect the periodicity, they change the choice of the elements u. So it’s better to
see things as making this 2-periodic, but not specify the element, so R = HC[u±1]
with ∣u∣ = 2. What’s GL1R? Well π0 = C×. Then π1 = 0, π2 = C = π4 = ⋯, so it looks
like it’s probably a product of Eilenberg–MacLane spaces. That’s true, there are
no possible ways to connect these. We’re interested in BGL1R, which has π2 = C×
and π4 = π6 = ⋯ = C, and the odd ones are zero. I’m interested in homotopy classes
of maps from X (which is BG) to B2GL1R, and from the description of B2GL1R,
this looks like it might be H2(X,C×)⊕H2(X,C)⊕H4(X,C)⊕⋯ and that’s true,
but it’s not a canonical isomorphism. This wouldn’t be true any more over Z/p;
these would be connected in some odd way. I shouldn’t write this in this way. I
should remember that there’s an exponential map

exp ∶ C[[u]]→ C[[u]]×

and if I use that exponential map, this gives me an isomorphism from [X,B2GL1R] =
H2(X,C×)⊕⋯

This doesn’t affect the result but it affects the way I think about the result.
These should be thought of as the exponential of some cohomology classes. But
we’ll get to that in a minute. Okay.

So I want to take X to be BG where G is a torus. So what is homotopy classes of
maps from X to BGL1R in this case? Let me write Λ for π1G. Then the component
in degree two is a map Λ→ G× and j ∈H4(BG) is a quadratic form q on Λ, and the
Thom spectrum, we loop this, since time is running out let me just tell you that the
Thom spectrum is the Clifford algebra of q. This was one of the things I wanted
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to convey, you might like to know this outside the world of chromatic homotopy
theory. All of these are part of this one Thom complex construction.

Now I want to take E to be the nth Morava E-theory and look at this map, X
will be BG for G the n-torus, and I want to look at maps from BG to B2GL1En.
This has lots of pieces associated to it just as in the cases of the complex numbers.
The first part is a linear map ζ1 ∶ Λ →W [[u1, . . . , un−1]]×. One fact is that Gζ ∼ ∗
if ζ1 has image outside (1 +m)×. So I want to think that this sits in (1 +m)× and
from there I can go to m/m2 by 1 + α to α (mod ()m2).

Then a second fact is that Gζ is a Kn if and only if Λ → m/m2 extends to an
isomorphism Λ⊗ k → m/m2 for k = π0E/m.

Now the next piece of zeta is a quadratic form q ∶ Λ→ π2E
Then the third fact is that Gζ is Azumaya if and only if q is non-degenerate.

Definition 17.5. A polarized n-torus is a torus (S1)n equipped with a map from
BT → B2GL1En satisfying my conditions, two and three, so that T ζ is a Kn and
an Azumaya algebra.

Theorem 17.1. (H., Lurie) Every Kn Azumaya algebra comes from a polarized
torus.

So that’s one construction and this leaves me making a decision on the fly.
There’s only about forty minutes left, no just kidding, only ten minutes left. There
are experts who want to hear about the classification. But there’s more things I
can say about the relationship to physics. The topologists who wants to hear the
details are my friends so if I disappoint them they’ll still be okay, I can apologize
later. There’s a nice scheme for classifying these structures, but I want to step back
and say something about what this classification is supposed to mean.

So I’ll just say that once we work this out, the classification, you get the group,
which comes filtered, you get the associated graded, you get a construction of every
element of the group, but we don’t quite have the group structure. I want to
describe a map from this group to something else that should be an isomorphism.
I’ll try to be somewhat quick about this. There’s a funny thing that these chromatic
homotopy theories have. I started with Clifford algebras to emphasize, among other
things, that there’s a logarithm or exponential. In chromatic homotopy theory
there’s a logarithm that has no right to be there, there’s a formula for it due to
Charles Rezk, and it’s an infinite loop map from GL1E → E. For reasons I can’t
get into this gives a map from the Brauer group of E to π−2E, which is supposed
to be a logarithm.

Some version of this is supposed to be an isomorphism, and I’ll have to tell
that to my friends later. But the problem is to describe the composition that goes
from polarized tori to elements in the Brauer group of E to π−2E, that’s something
we know, a free [unintelligible]over the formal power series ring. There’s some
modifications that make this look like a monomorphism.

I want to end by talking about what is going on in the question, reminding you
that this is some sort of logarithm. I’ll try to wrap this up sort of quickly, but this
is a more philosophical note that it might be interesting to know about. I have this
map from BG to B2GL1E? What does a map into this classify? A point in GL1E
is a unit, a point in BGL1E is a torsor, a unit in E-modules. So this second one
will classify categories non-canonically equivalent to E-modules. So this classifies
a bundle of E-linear categories all of rank 1. Because I said B2GL1E, they’re
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non-canonically equivalent to E-modules. If I take this category and take its space
of sections. So Gζ , that’s the space of sections of this bundle. If you want that
says that Gζ is the integral over BG of whatever ζ was, which is like a quadratic
exponential eq. This is the part that’s canonically picked out. You can make this
totally rigorous, that the Morita class of Gζ , it’s really an integral of this family
of E-linear categories. But it’s a quadratic exponential, an exponentiated classical
action. So this first map is an integral of a quadratic exponential, and the map
from Brauer groups to π−2E is a logarithm, so this is supposed to look like the
thing that you do, a logarithm of an integral of an exponential, a Feynman path
integral formula, that’s all, that’s what we’re seeking now, that’s supposed to be
a decategorification of something that, remember, well maybe I’d better stop, this
is some decategorification of some construction of a topological field theory by an
exponential action. I’ll stop there and say thank you everybody for bearing with
me and it’s been a great conference.


