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1. May 11: On entropies of autoequivalences on smooth projective
varieties

I’d like to thank Jae-Suk but unfortunately he isn’t here. Today I’ll talk on this
purpose. Today X will be always a smooth projective variety over C and by Db(X)
I mean the bounded derived category of coherent sheaves on X.

To (X,f) (f is for simplicity an automorphism) we can consider a dynamical
system, the set of maps {fn}n≥0. To this data we can consider the important in-
variant, the “topological entropy.” I won’t define this. But it’s a real number which
measure the complexity of the system. Instead we can consider a pair (Db(X), F ),
where F is a functor, for simplicity an autoequivalence. Then we get a dynamical
system on the derived category, what we’re interested in is {Fn}, the sequence of
autoequivalences.

In 2013, Dmitrov–Haiden–Kartzarkov–Kontsevich introduced the notion of en-
tropy of a functor h(F ), measuring the complexity of this system. Our main interest
is this object, and one of our main theorems is the comparison of topological and
categorical entropy with F induced by f .

We’ll describe entropy, then our main theorems, and finally give a sketch of the
proof of the main theorem.

For simplicity, I’ll call this DHKK entropy, and it’s defined, measuring the com-
plexity of the following object. Take M and N in the derived category Db(X), and
define a function δt ∶ (M,N) ∶ R→ R≥0 ∪ {∞} by

δt(M,N) ∶= inf {
p

∑
i=1
enit∣

0 // A1

||

// ⋯ // Ap−1 // N ⊕N ′

zz
M[n1]

aa

⋯ M[np]

cc
}

where the triangle is exact, and this is called the complexity of N with respect ot
M . If G is a split generator of Db(X), then 1 ≤ δ0(G,M) <∞.

If X is a point, then δt(C,M) = ∑`∈Z dimCH
`(M)e−`t

Definition 1.1. If G is a split generator of Db(X), then

ht(F ) ∶= lim
n→∞

1

n
log δt(G,FnG)

and ht(F ) is independent of G, and the “limit” exists.
1
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Now I’d like another way to explain this entropy:

ht(F ) = lim
n→∞

1

n
δt(G,FnG′)

for G and G′ split generators of Db(X).
To show this statement, we need the following properties of the complexity func-

tion.
δt(M1,M3) ≤ δt(M1,M2)δt(M2,M3).

If F ∶Db(X)→Db(X), then δt(F (M), F (N)) ≤ δt(M,N).
Then the proof is that δt(G,FnG′) ≤ δt(G,FnG)δt(FnG,FnG′) by the triangle

property, which in turn is ≤ δt(G,FnG)δt(G,G′), which is independent of n; the
other direction is also easy.

Lemma 1.1. (1) ht(F ) = ht(F ′) if F ≅ F ′.
(2) ht(Fm) =mht(F )
(3) ht([m]) =mt
(4) If F1 ○ F2 ≅ F2 ○ F1 (autoequivalences), then ht(F1 ○ F2) ≤ ht(F1) + ht(F2)
(5) ht(F ○ [m]) = ht(F ) +mt
(6) ht(F1 ○ F2 ○ F −1

1 ) = ht(F2)

and so ht ∶ Auteq(Db(X))→ R ∪ {∞}
This is similar to the conjugate invariant norms of the lunch seminar today.

There is a degenerate locus and this commutativity, but it’s close. Anyway. The
original definition, complexity is quite difficult to calculate. But in some cases it’s
easy to calculate.

Theorem 1.1. (DHKK, 2.6)

ht(F ) = lim
n→∞

1

n
log δ′t(G,FnG′)

where δ′t is given by

δ′t(G,FnG) ∶=∑
`∈Z

dimC Hom(G,FnG′[n])e−nt

Remark 1.1. To prove this theorem or use properness, we need properness and
smoothness of Db(X), and a dg enhancement. We always have this so we can just
forget about it.

Now let me recall some notation. Consider the following. χ(M,N) ∶= ∑`∈Z(−1)` dimC Hom(M,N[`]),
the Euler form. Introduce N(X), the quotient of K0(X) by [unintelligible]χ, the
[unintelligible]Grothendieck group. In our case, this is a free Abelian group of finite
rank.

The important point is that we have a group homomorphism from autoequiva-
lences of X to AutZ(N(X), χ) which takes F to [F ], and

Definition 1.2. The spectral radius ρ of [F ] is

ρ([F ]) ∶= max{∣λ∣∣λ is an eigenvalue of [F ]}.

From now on, t = 0, we let δ(M,N) = δ0(M,N), and h(F ) = h0(F ), and so on.

Theorem 1.2. (Main theorem and conjecture, joint with Kituta) The conjecture
says that h(F ) = log ρ([F ]).

The theorem says that if F is Lf∗ for f ∶ X → X, then h(Lf∗) coincides with
h⊺(f).
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Next,

Theorem 1.3. If KX or −KX is ample, then h(LF ∗) is log ρ([F ]) = 0.

Theorem 1.4. (Kikuta) If X is an elliptic curve, then h(F ) = log ρ([F ])

So we can calculate entropy using linear algebra. In particular h(F ) is an alge-
braic number. Now I want to recall the famous theorem by Gromov and Yongdin
which gives a motivation to consider such a conjecture.

Theorem 1.5. The topological entropy h⊺(f) = log max rq(f) where rq(f) ∶= max{∣λ∣λ an eigenvalue of ∣f∗∣Hq,q(X)}.

It is also known that rq(f) = limn→∞ (∫X ω
d−q ∧ (fn)∗ωq)

1
n where ω is a Kähler

form. Or it is also

log ρ(f∗)
where f∗ is the automorphism of H∗(X). So this is a categorical version.

Now I explain how to prove this.
The point is to use projectivity. The key words are Kodaira vanishing and the

HRR formula. Those are key.
So we write G as⊕Li where L is a very ample line bundle. This G is a generator

by Orlov’s theorem.
So first we show

h(Lf∗) = lim
n→∞

1

n
log ∣χ(G, (f∗)nG∗)∣

which is similar up to sign with the Euler number.
The easy part is to show ≥; this is very easy because ∣χ(G, (f∗)nG∗)∣ ≤ δ′(G, (f∗)nG∗)

and the important part, the key part, uses Kodaira vanishing. Here

Hom(G, (f∗)nG∗[m]) = 0

if m ≠ dimCX, which follows from Kodaira vanishing.
Therefore δ′(G, (f∗)nG∗) = (−1)dimCXχ(G, (f∗)nG∗).
Now we use Hirzebruch–Riemann–Roch, ∣χ(G, (f∗)nG∗)∣ is

(−1)dimCX ∫
X

ch(G∗) ch((f∗)nG∗)[unintelligible]

and then we obtain
d

∑
r=0

d−r
∑
q=0

cr,q ∫
X
c1(L)d−r−q Tdr(x)(f∗)nc1(L)q

where cr,q is rational and c0,q > 0
Then we use the following.

Proposition 1.1. (Dinh–Sibony)

(∫
X
(f∗)nωq ∧ ωd−q)

1
n ∼ n`q(f)rq(f)n

We discussed rq but nq, well, Hq,q can be decomposed into Hq,q(X)λ1,m1 ⊕⋯⊕
Hq,q(X)λs,ms , and here f∗ acts on Hq,q(X)λ,m by Jordan blocks Jλ,m. Then `q is
m1 (where rq was ∣λ1).

We know from what we’ve done that

∫
X
c1(L)d−q(f∗)nc1(L)
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for some leading term q. Then finally we obtain that h, well

lim
n→∞ = lim

1

n
log ∣χ(G, (f∗)∗G∗)] = log max rqf

Then define

h(Lf∗) = log max rqf ≥ log ρ([F ])
so

lim
n→∞ log ∣χ(G(f∗)nG∗) ≤ log ρ[F ] ≤ log max rq(f)

so h(Lf∗) = log ρ(F ) = hopi.
So

Remark 1.2. If Db(X) is coarser than DbY then X ≅ Y implies Db(X) ≅ Db(Y )
but not the counterpart.

Now I want to explain the proof of the second theorem.
Let h(Lf∗) = 0. Then choos G as ⊕(K−1

X )mi so that L is very ample. Since our
construction doesn’t depend on the choice of generator, because G is chosen in this
way, f∗G = G, so δ(G, (f∗)nG) = δ(G,G), so the entropy is 0 since this doesn’t
depend on n.

For the second part, use the following famous theorem, by Bondal–Orlov

Proposition 1.2.

Auteq(X) = Aut X ⋉ (Pic(X) ×Z)

So this group of autoequivalences always should contain this part but with our
hypotheses it’s as small as possible.

Then any autoequivalence F is given by

F ( ) = Lf∗( ⊗L
XL)[a]

for some f ∈ Aut X, L ∈ Pic(X), and a ∈ Z.
Please recall the property that we can forget about [a] because htF ○ [m] is

ht(F ) +mt and now t is zero. Then we calculate

F = Lf∗( ⊗L
X(L⊗Km

X )) ○K−m
X

so that L⊗Km
X is very ample. So we can choose m in Z to do this.

This is possible because KX and f∗ commute. Here the important point is that
we can decompose this as a composition, and these two parts commute, so we can
evaluate the entropy in terms of the sum of the two functors,

h(F ) ≤ h(Lf∗( ⊗L
X(L⊗Km

X ))) + h( ⊗K−m
X ).

Lemma 1.2. For L′ in Pic, we have h( ⊗XL′) = 0.

This is based on a famous fact in algebraic geometry that the image of a hom
space of this kind, the growth is at most polynomial order. Since we consider limits
like 1

n
log( ), which is zero since the growth is of polynomial order on the inside.

So h( ⊗K−m
X ) gives zero.

Now for the calculation of f , we should calculate just the left factor. I’ll write
F1 for L⊗Km

X , and then h(F1) is

lim
n→∞

1

n
log δ(G,G∗ ⊗L⊗Km

X ⊗ f∗(L⊗Km
X )⊗⋯⊗ (fn)∗(L⊗Km

X ))
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which is

lim
n→∞

1

n
log δ′(G,G∗ ⊗⋯)

and by Kodaira vanishing again, this is

lim
n→∞

1

n
log ∣χ(G,G∗ ⊗⋯)∣ = lim

n→∞
1

n
log ∣χ(G, (F ′)nG∗)∣

and again by linear algebra this is at most

log ρ([F1])
and because L′ acts on the numerical Grothendieck group by an uppper triangular
matrix with identity on the diagonal blocks. Then the spectral radii coincide to
make this log ρ([Lf∗]) and this is 0, so this is the second theorem.

Now I want to comment Kikuta’s result. Assume dimCX = 1. For genus 0, this
is −KX ample, and genus 1 is elliptic curve. If g > 1 then KX is ample. So we
already gave a calculation for g = 0 and g > 1. So the elliptic curve case is the
only one remaining. The theorem says if X is an elliptic curve, then h(F ) for F an
autoequivalence is log([F ]).

The key point is the following (for details ask him): first consider Auteq(X) →
Aut(N(X), χ), which is just SL(2,Z), this is the point, and h ∶ Auteq(X)→ R≥0 is
a class function, this h has the same value along conjugacy classes. Also, we need
the following, we have a short exact sequence

0→ Aut(X) ⋉Pic0(X) × 2Z→ Auteq(Db(X))→ SL(2,Z)→ {1}
and h(F ) is zero on the first term, because, well, 2Z is generated by [2] translation,
and Pic0 is line bundles of degree 0. Anyway, the entropy vanishes, we can check,
on the normal subgroup, so we should calculate the value of each conjugacy class
of SL(2,Z).

If [F ] is in SL(2,Z) is of finite order, then h̃([F ]) = 0. Then we can check
equality easily.

So the problem is the rest of SL(2,Z), the essential part, then you use the clas-
sification of conjugacy classes by Karpenkov, known as LLS period, and calculate
an autoequivalence of the following form: S2Tm2nST −m2n−1⋯ST −m1S, then S and
T are the “standard” generators of SL(2,Z), and for this kind, you can calculate
these, which correspond exactly to conjugacy classes of SL(2,Z), and the last part
is somehow, some technical thing.

This is in some sense expected because, I want to explain in two ways.

Remark 1.3. S is known as “Fourier–Mukai transform” which interchanges rank
and degree (very naively speaking). So this takes a structure sheaf to skyscraper
sheaf, and vice versa. So this mixes H0 and H2. Therefore, in that way, S ∶
Db(X) ≅Db(X), but on the left side Lf∗, if we move it to the other side, S−1Lf∗S,
this is not of the form Lg∗ for any g. But always for automorphism we have a
[unintelligible]theorem, so it’s natural to expect this kind of statement. In some
sense this is independent or invariant under this kind of transform. But because of
this picture, for this functor we can expect the analog of the theorem.

Also we can consider mirror symmetry. The remark then is that Db(X) ≅
Db(Fuk(Y )). Then if this holds, then very roughly speaking, this N(X) should
correspond to middle homology groups of Y but if this holds, then this is a cat-
egorical equivalence, the autoequivalence group should coincide. So if some good
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automorphism on Y , if we had one, then it would define an autoequivalence on X,
and in this case, because this Y is a symplectic manifold and we can define topo-
logical entropy, and we have that kind of theorem on Y , so it’s natural to expect a
similar statement on X. This explains the more general conjecture.

Anyway, so if we could have an equivalence between the algebraic and geometric
one, based on the algebraic calculation we could calculate the geometric invari-
ants on the geometric side. Unfortunately so far we have not calculated nontrivial
invariants on the geometric side. But that’s for next time.

2. May 12: On orbifold Jacobian algebras for invertible polynomials

I have completely changed subject, and this is related to my talk in January.
The object I’m considering is rather different. First I prepared some notation. Let
f be a polynomial in N variables f ∈ C[x1, . . . , xn] such that the Jacobian ring
C[x1, . . . , xn]/(∂1f, . . . , ∂Nf) is finite dimensional C-vector space. This defines an
isolated singularity at the origin. We consider another object associated with f ,
called Ωf , this is a globally defined N form ΩNCN , divided by df ∧ ΩN−1

CN . Let me

say, if you fix a nowhere vanishing N form ω, then Jac(f)
ω≅Ð→ Ωf . One of the most

important properties is the existence on this ring of the symmetric bilinear form Jf
which is non-degenerate Ωf ×Ωf → C, defined by, well, write

ω ∶ [φdx1 ∧⋯ ∧ dxN ]; omega′ ∶ [ψdx1 ∧⋯ ∧ dxN ]
then

Jf(ω,ω′) = ResCn [ φψdx ∧⋯ ∧ dxN
∂1f∂2f⋯∂Nf

]

and then Jac(f) is a Frobenius algebra, that is, there exists a symmetric non-
degenerate pairing η ∶ Jac(f) × Jac(f)→ C such that

η(XY,Z) = η(X,Y Z).
Now we can consider the generalization (Jac(f),Ω(f)) ↝ (HH ⋅(T ),HH⋅(T )),
where this is an example, when T is HMF (f) (the triangulated category of matrix
factorizations of f) or (C[x], f).

We want to study the pair (Jac(f,G),Ωf,G) for a “Landau–Ginzburg orbifold.”
First, Kaufmann considered this kind of object where Jac(f,G) is in correspon-

dence with “2-cocycles,” introducing the notion of the G-twisted Jacobian algebra
of f . Later Krawitz gave a construction of Jac(f,G) but ist is not Z/2Z-graded.

We want to show the existence and uniqueness for some pair (f,G) and to do
this we’ll restrict to invertible polynomials. Our definition, though, is quite general,
so I’ll start by writing the condition for this pair.

So first I want to introduce a group of symmetries of f . First introduce

Definition 2.1. The largest Abelian group, the maximal Abelian symmetry, is

Gf = {(λ1, . . . , λN) ∈ (C∗)N ∣f(λ1x1, . . . , λNxN) = f(x1, . . . , xN)}.

Definition 2.2. We call a pair (f,G) where G is a finite subgroup of Gf∩SL(N,C)
a Landau–Ginzburg orbifold

Today we’ll restrict to the special case where G is a subspace of Gf ∩SL(N,C),
which gives us a G-invariant holomorphic N -form ω. Then we get the existence of
the isomorphism between Jac(f) and Ωf . So I should give some more notation.
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For g ∈ G, I’ll use Fix(g) to denote the fixed locus {x ∈ CN ∣g ⋅ x = x}, a linear
subspace, and fg is f ∣Fix(g) and this is again an isolated singularity, and we have a
surjective algebra homomorphism

Jac(f)↠ Jac(fg).
I’ll also need the age of g for a Z/2Z supergrading, but I’ll omit it. As an example,
if

g = (e2π
√−1 a1

r , . . . , e2π
√−1 aN

r )
with 0 ≤ ai < r (where r is the order of g), the age of g is ∑Ni=1 air

Now I can introduce Ωf,G.

Definition 2.3. Introduce a Z/2Z-graded C-module

Ω′
f,G ∶= (Ω′

f,G)0 ⊕ (Ω′
f,G)1

each one of these itself Z-graded, they are

(Ω′
f,G)i = ⊕

g∈G
N−Ng≡i (mod 2)

Ω′
f,g

where Ng is dimC Fix(g) and Ω′
f,g ∶= Ωfg if Fix(g) is nontrivial and for g ∈ G where

Fix(g) = {0}, we have Ω′
f,g ∶= C∣g with this space generated by the symbol ∣g.

There is a pairing Jf,G ∶ Ω′
f,G ×Ω′

f,G → C by Jf,G ∶=⊕Jf,g where

Jf,g ∶ Ω′
f,g ×Ω′

f,g′ → C

where Jf,g is (−1)N−Ng−age(g)∣G/Kg ∣∣Kg ∣−1 and this gives a nondegenerate bilinear
form. Here Kg ⊂ G is the maximal subgroup fixing Fix(g).

For these vector spaces Jf,g(∣g, ∣g−1), we define this as (−1)N−age(g) 1
∣G∣ .

Definition 2.4.
Ωf,G ∶= (Ω′

f,G)G.

As a Z/2Z-vector space, this is isomorphic to Hochschild homology of the cate-
gory of Z-graded G-equivariant matrix factorizations of f (up to a shift by N). We
also have the Hochschild cohomology of this category, but it’s quite difficult to get
the product structure.

So we want to propose the algebra that would satisfy some conditions, and we
want to show the existence and uniqueness of such an algebra structure compatible
with this module. This is an open problem for, in the theory of Landau–Ginzburg
orbifolds, up to twisted sectors much work has been done, but the product structure
in twisted sectors is difficult, quite different.

The next object will be key in our story.

Definition 2.5. Let Aut(f,G) be the automorphisms {ϕ ∈ AutC−alg(C[x]∣ϕ(f) =
f,ϕ○g○ϕ−1 ∈ G for all g} where here we identifyG and the subgroup of AutC−alg(C[x]).

Remark 2.1. Aut(f,G) is isomorphic to AutC−alg(C[x] ⋆G), where ∗ is the skew
group ring.

Then ϕ ∈ Aut(f,G), well, ϕ ∶ Fix(ϕ ○ g ○ ϕ−1)→ Fix(g)
This subgroup does not appear in Kaufmann’s or Krawitz’ work, and it will help

with uniqueness of the product later.
Now we can define:
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Definition 2.6. The G-twisted Jacobian algebra of f is, well,

(1)
Jac′(f,G) ∶= (Jac′(f,G))0 ⊕ (Jac′(f,G))1

where each component has the same parity, like before:

(Jac′(f,G))i ∶= ⊕
g∈G

N−Ng≡i (mod 2)

Jac′(f, g)

and
Jac′(f, g) ≅ Ω′

f,g

for all g in G as C-vector spaces.
(2) Then there is a Z/2Z-graded C-algebra structur ○ on Jac′(f,G) where

Jac′(f, g)○Jac′(f, h) ⊂ Jac′(f, gh) for g and h in G. Further, the subalgebra
Jac′(f, id) is isomorphic to Jac(f). Further, Ω′(f,G) is a free Jac′(f,G)-
module of rank 1. For example, we can chose a holomorphic volume form
ω = [dx1∧⋯∧dxN ], always G-invariant. Then this induces an isomorphism
⊢ between Jac′(f,G) and Ω′(f,G).

(3) This module satisfies that
● Jac′(f, g) ⊢ Ω′

f,h ⊂ Ω′
f,gh. The Jac′(f, id)-module structure is the same

as the module structure from Jac(fg). This is a compatibility condi-
tion.

(4) Also, maybe, by using the ⊢ correspondence, we have the Aut(f,G)-action
defined by

ϕ∗(X) ⊢ ϕ∗(ω) ∶= ϕ∗(X ⊢ ω).
We can define the pullback using the invariance property. Then we get an
action like this, and the condition is that this is ϕ∗(X)○ϕ∗(Y ) = ϕ∗(X○Y ),
which is natural but a very strong condition. Also X○Y = (−1)XF g∗(Y )○X
for X in Jac′(f, g). So we should have a G-twisted commutative algebra
here.

Now we can talk about compatibility with the bilinear form.
(5)

Jf,G(X ⊢ ζ, ζ ′) = (−1)XζJf,G(g∗(ζ)X ⊢ ζ ′)
for invariance of Jf,G to later give a Frobenius algebra.

Finally,
(6) we have a universality property on G, which I’ll omit because I didn’t check

the full detail.

The problem is that there might be more than one such twisted algebra for the
pair f and G.

Conjecture 2.1. There exists aG-twisted Jacobian algebra for (f,G), in particular
the G-invariant part is uniquely determined (up to isomorphism).

If this is defined, then

Definition 2.7. Jac(f,G) is the G-invariant part of Jac′(f,G), and we call this
the orbifold Jacobian algebra of (f,G)

Theorem 2.1. (Basalaev–T.–Werner) The conjecture is true for f an invertible
polynomial and G ⊂ Gf ∩ SL(N,C) and N ≤ 3; in this case conditions 1 through 5
are necessary.
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Theorem 2.2. (“theorem”, Basalaev–T.–Werner) The conjecture is true for f
invertible and G ⊂ Gf ∩ SL(N,C). In this case condition 6 is also necesary.

Theorem 2.3. (Basalaev–T.–Werner) Let f be an invertible polynomial in N = 3
defining an ADE type singularity, so G ⊂ Gf ∩ SL(3,C). Then we can consider a

crepant resolution f̂ of C3/G, and inside the resolution Ĉ3/G we have a chart, C3

with a singularity, call this f̄ . Then Jac(f,G) ≅ Jac(f̄).

This is expected from the geometrical point of view.
I don’t have enough time, but I should give a definition:

Definition 2.8. Since f is a polynomial, we can expand it

f =
N

∑
i=1
aij

N

∏
j=1

x
Eij

j

so the number of variables and the number of monomials agree. We say f is
invertible if it has this form and E = Eij is invertible over Q.

A typical example, well, we have a classification, xa11 x2 + ⋯ + xaN−1

N−1 xN + XaN
N

(chain type) or xa11 x2+⋯+xaN−1

N−1 xN +XaN
N x1 (loop type), I guess I should say, these

are just examples.
By rescaling we can throw aij away, so any such f is a direct sum of these ones.
For these invertible polynomials, we have this uniqueness statement. This is

based on elementary combinatorial methods. In the general case we can directly
write down a product structure, once we fix a basis, and by using something like
the Hessian of f , we can write down the product, up to a (quite complicated) sign.


