
1. Introduction

General. I want to give you an introduction to what I’ll be talking about. We’ll
start with Chas and Sullivan’s original construction. We’ll go on to Cohen and
Godin’s reformulation. We’ll see how moduli spaces get involved, and finally, on
Friday, we’ll talk about compactified moduli spaces in string topology, my work. I
want to give a brief introduction to the kinds of problem that Chas and Sullivan
were talking about when they stumbled into string topology. The stuff that I’m
talking about right now will be generalized quickly later.

The brief introduction will be on the Goldman bracket and the Turaev cobracket.
To begin with, let Σ be an oriented compact topological surface with or without

boundary. Consider free homotopy classes of curves on the surface. Let π̂ be the
set of free homotopy classes of oriented curves on Σ.

If you know about the first fundamental group, this should be reminiscient. Here
free means we don’t care about a basepoint. I’ll apologize right now, but I’m going
to conflate free homotopy classes of curves and representatives. Things that I say
will be defined in terms of representatives but will be independent of that choice.
Things like α will mean one or the other. Let V be the vector space generated by
π̂ (over rational coefficients).

We have a giant set, and so the vector space that’s infinite dimensional.
What I want to do is perform a construction to give us an algebraic relation

on V , the Goldman bracket. Let α and β be in π̂ or be representatives of these
classes. Assume α and β have representatives that intersect only in transverse
double points. The picture of such an intersection is like this.

Now, let p ∈ α ∩ β, and we’ll define α ·p β ∈ π̂. I’ll cut the strands at the
intersection and reconnect them in the only other way that keeps the orientations
locally.

[Picture]
I’ll use this local move to define an operation called the bracket of α and β. This

will be the sum over all the intersection points of a signed version of α ·p β, where
the sign comes from the orientation of Σ:

∑

p∈α∩β

±α ·p β

So in my picture I’ll get a negative sign, and I’ll get a positive sign in my other
intersection.

Theorem 1. (Goldman) This is well-defined, and then we can extend the bracket
linearly to get an operation V ⊗ V → V . This is the Goldman bracket.

Now we have on this big infinite dimensional vector space a two to one operation.
We can ask what properties this satisfies.

Theorem 2. The vector space V together with the bracket is a Lie algebra.

Some of you may not have seen the definition of a Lie algebra yet, this is the
kind of thing that Gabriel will be talking about. The local move where we cut and
reconnected, we could picture doing this where the strands come from the same
curve. That’s where Turaev’s cobracket comes in.

It’s exactly the same kind of idea. We’ll take an element of π̂, perform the cutting
and reconnecting at each intersection point, and get an operation that’s completely
analogous. So here’s α, and I’ve drawn a curve with only one self-intersection point
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p, and here’s the first use of ∆, Gabriel and I are going to use ∆ for a bunch of
different things. The Goldman bracket took two curves to one, and here we’ll start
with one and get two. I’ll get these pictures for ∆(α):

[Picture]
What’s the difference between these two pictures. For the Goldman bracket we

had a first curve and a second curve. We have two ways of ordering the curves, first
and second or second and first. The sign we get will depend on whether we have
local agreement or disagreement with the orientation.

Theorem 3. ∆(α) is well-defined.

We can do the same kind of extension linearly, and define an operation V →
V ⊗ V . That’s your Turaev cobracket. Just like the vector space V with the
bracket is a Lie algebra, this satisfies some things too.

Theorem 4. V together with the cobracket is a Lie coalgebra. If you’ve seen a Lie
algebra, maybe you’ve seen a Lie coalgebra before, but maybe not, this is one of the
structures that Gabriel will talk about. If I look at the two structures together, this
is an involutive Lie bialgebra.

I want to take just a couple more minutes and say, “what have we done?” We’ve
taken a construction with pictures and ended up in algebra, this is algebraic topol-
ogy, but this remembers something about the intersections of the curves that we
started with.

If you know something about the representatives of the classes you’re talking
about. Here’s a fact. If α and β have disjoint representatives, then their bracket is
zero, [α, β] = 0.

Theorem 5. If α has a simple representative, which has no self-intersections, and
assuming [α, β] = 0, then α and β have disjoint representatives.

What would be the best thing? The bracket would know all about intersections.
The best thing would be that if the bracket is zero, there are disjoint representatives.
That’s not true, and it’s one of your exercises.

Another fact, if α has a simple representative then its cobracket is zero. That’s
basically the same statement, you have no intersections to sum over. Is there
an analogue to Goldman’s theorem, but for the cobracket? This is the question
that Chas and Sullivan were thinking about. If ∆(α) = 0, does α have a simple
representative?

The answer is no, or, not necessarily. Imagine taking a simple curve, and going
around it twice. That curve, move it in its homotopy class, and so it has transverse
double points, then its cobracket is zero. So the power of a simple curve has
cobracket zero. Does α have a representative which is a power of a simple curve.
This was not obvious for a long time. Much later, Chas made significant headway.

Theorem 6. Except possibly for a sphere with 0, 1, or 2 boundary components or
the torus, there is a curve with zero cobracket that is not the power of a simple
curve.

Let me draw an example to end. It’s a good exercise, not one I assigned, to
check that ∆(α) is zero.

Two tangents in terms of work, Chas has entirely combinatorial descriptions of
these things, and because it’s combinatorial, she can do computations and calculate
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intersections of curves. Since the first string topology papers, that’s where her work
has gone. The other tangent is, string topology is another generalization of this
kind of stuff.

Algebraic Introduction. Mathematics is full of binary operations, like multipli-
cation, that have “multiple inputs” and “one output,” and also binary cooperations,
like the diagonal map of a set, that have “one input” and “multiple outputs.” There
are plenty of examples of structures that have many to one operations, one to many
operations, and many to many operations. My favorite are in the flavor of “field
theories,” but there are lots of examples.

There are many frameworks to talk about such structures; I’m going to use my
lecture series to describe one general yoga for doing so. This way of looking things
started with what are called PROPs, for “Products and Permutations.” In a PROP,
you have spaces of k to ℓ operations with k inputs and ℓ outputs, and you have ways
of concatenating them horizontally and composing them vertically which satisfy
various identities that you would expect if you think about the way that many to
many operations generally work. PROPs turned out to be too hard to work with,
generally, and so over time people analyzed different simplified versions of them:
operads, cooperads, dioperads, 1

2 -PROPs, and so on. At the same time, there were
various additions made to the theory to account for different structures like traces
and nondegenerate inner products that weren’t well-handled by the many-to-many
framework, like cyclic and modular operads and wheeled PROPs.

I’m going to be talking about a particular version, properads, that just use the
vertical composition of many to many operations, because this is a sufficient tool
to describe what’s going on algebraically, at the chain level, in string topology, and
because the theory for properads is sufficient that we can make statements and
conjectures and perform analysis, we have a toolkit, let’s say.

So this is the goal, and although we won’t be able to get into the nuts and bolts
of the application to string topology, I hope that by the end of the week you’ll have
the ability to look under the hood yourself.

I want to show how that works in a toy model by talking not about representa-
tions of properads, but representations of dgas.

If you think about the history of the notion of a “group,” the first groups that
were studied with rigor, Galois groups, symmetric groups, Lie groups, and so on,
were all viewed as the groups of automorphisms of some structure. That is, one did
not study groups but rather representations of groups. Only in the late nineteenth
century did the “group” as an abstract notion, free from specific representations,
come into focus as an object of study. I don’t know the exact history, but I think
this conceptual movement was actually extremely helpful in studying representa-
tions, because it facilitated the development of representation theory, which gave
an abstract recipe for answering the kinds of questions that were being asked for
individual groups.

I like to think of operadic algebra as occupying a similar sort of space. There
are many kinds of algebra that are of interest to people, associative, commutative,
Lie, Gerstenhaber or Poisson, BV, Hopf, Leibniz, coalgebras, bialgebras of various
sorts, Frobenius, algebras coming from topological or geometric constructions, little
disks (En), moduli spaces and compactified moduli spaces, racks, quandles, at this
point I’m just riffing. There are algebras with invariant inner products, with traces,
with units and counits, with differentials, with different compatibilities, different
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ground rings, quantum algebras, I could go on and on. This, to me, is like the
situation with groups in the nineteenth century. There are permutation groups,
alternating groups, braid groups, cyclic groups, groups of isometries of polytopes,
classical matrix groups that are realized as the automorphisms of a vector space
with some kind of bilinear scalar product, and then it turns out that all of these
are representations of different abstract groups. In the same way, all of the kinds
of algebra I have named are representations of different properads.

But this is enough of the big picture, let’s look at my toy model.
Suppose I have a unital algebra, that is, a vector space with a bilinear associative

multiplication µ and a unit 1. What is a (left) representation or module or action
of this algebra on the vector space V ? Well, one way of looking at it is that it’s a
map ν : A⊗V → V which satisfies compatibility with the product map: for a and b
in A and v in V , you have (ab)v = a(bv). You should also have unit compatibility:
1(v) = v.

Another way to look at this, that I like a little better for what we are doing,
is to use the duality between Hom and tensor to say that Hom(A ⊗ V, V ) should
be the same exact set as Hom(A,Hom(V, V )), so the data should be the same as
a map ϕ from A to Hom(V, V ), that is, an endomorphism of V for each element
of the algebra A. What does the compatibility become? Well, (ab)v = ϕ(ab)(v)
and a(bv) = ϕ(a) ◦ ϕ(b)(v) so this relation becomes the relation that ϕ(ab) =
ϕ(a) ◦ ϕ(b). Similarly, we see that ϕ(1) should be the identity map V → V . The
endomorphisms Hom(V, V ) form an algebra using composition of endomorphisms,
and the identity map as the unit, and so we can encapsulate the whole structure
by saying a representation of A on V is exactly the same thing as a map of unital
algebras from A to Hom(V, V ).

So let’s look at a really simple example. Let’s look at the so-called “algebra of
dual numbers” A = k[∆]/∆2. What is a representation of this on the vector space
V ? Well, V is generated as an algebra by ∆, with ∆2 = 0. A representation should
be a map to the algebra End(V, V ), so it should be specified by an endomorphism
∆∗ : V → V satisfying ∆2

∗ = 0. So a representation of the algebra of dual numbers
is the same thing as a vector space with a square zero operator, that is, a chain
complex.

Now, let’s say that we were interested not just in maps from V to itself, but
among all of the tensor powers of V , so maps in Hom(V ⊗k, V ⊗ℓ) for varying k and
ℓ. Now this is not exactly an algebra, at least that’s not the usual way to think
about it, because how do you compose two maps with different ks and ℓs. But
there are partial compositions where you compose some of the ℓ outputs into some
of the k which we can picture like this:

· · ·

· · · · · ·

· · ·

· · ·· · ·
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So we partially compose two maps f and g by doing (id⊗i ⊗ f) ◦ (g ⊗ id⊗j). We
could imagine other ways of composing, but this is enough for now. If you write
down what kinds of associativity, equivariance (because there is an action of the
symmetric group on both the inputs and the outputs of the operation), and unit
relations this structure satisfies, you get an algebraic structure.

All that said, I want to start with some more mundane things by laying down
some groundwork so that we can get on the same page moving forward. Along the
way, sort of before we get to properads, there are going to be a bunch of different
types of algebraic structure that arise naturally in various settings. I’d rather not
present them all as a laundry list, definition, definition, definition, but there is going
to be some of that.

Here’s a little outline of what I plan to talk about today or eventually:

(1) Chain complexes
(2) dg associative algebras and their representations (possibly commutative)
(3) dg coassociative coalgebras (possibly cocommutative)
(4) Frobenius algebras (“open” Frobenius algebras)
(5) dg Lie algebras
(6) dg Lie coalgebras
(7) dg Lie bialgebras
(8) dg Gerstenhaber algebras
(9) dg Batalin-Vilkovisky algebras

(10) dg properads

I’m hoping to discuss the first four today, five through seven tomorrow, eight and
nine when I can, and the main goal of this part of the summer school is to describe
ten, properads, and the beginnings of applications of them. Properads constitute an
algebraic structure at a different level than these other structures, and you should
think of two through nine as all constituting different representations of different
properads.

2. Chain complexes, Associative and Lie algebras

This lecture is (hopefully) going to contain a lot of review. I want to spend an
hour on this more accessible material in order to draw connections to help motivate
the properadic framework that I’m going to be talking about later. Let’s get started.

2.1. Chain complexes. I want to work over the rational numbers, and so ev-
erything I say for the rest of the week will be over the rationals or possibly the
reals or complex numbers. A chain complex is a set of vector spaces Cn indexed
by the integers (we call this indexing number the degree) along with a degree −1
differential or boundary map ∂ : Cn → Cn−1. A chain map, C → C ′ is a set of
maps Ci → C ′

i that commute with the boundary map: f∂ = ∂f although we’ll
look at a different notion of maps between complexes with the Hom complex right
away. Chain complexes are one of the basic places to work in algebraic topology,
and essentially everything I describe will be some kind of extra structure that sits
on top of an underlying chain complex. Because of this, I want to establish some
properties of chain complexes.

The most basic thing that you can do with a chain complex is take its homology.
This is a graded vector space H(C) which is ker ∂/im∂, and it inherits its grading
from C. This is functorial, so maps between chain complexes induce maps at the



6

level of homology, and we will call a map which induces an isomorphism at the
level of homology a quasiisomorphism or weak equivalence. There is also a notion
of chain homotopy equivalence which is very different over a ring, but since we are
working over the rationals, we will not need to focus on the minor differences in
the data involved in these two notions, and will focus on quasiisomorphism.

Let’s do some constructions with chain complexes.

Definition 1. If C and C ′ are chain complexes, then we can take the tensor product
C ⊗ C ′, where we define (C ⊗ C ′)n to be

⊕

i+j=n

Ci ⊗ C
′
j

The differential on C ⊗C ′ will be ∂C ⊗ id + id⊗ ∂C′ , which doesn’t mean what you
might think at first glance. Rather, if I’m applying this to x ⊗ y in Ci ⊗ C

′
j, then

instead of ∂C(x)⊗ y + x⊗ ∂C′(y) you get ∂C(x)⊗ y + (−1)ix⊗ ∂C′(y), so there’s
an extra sign.

This is as good of a time as any to introduce the sign convention that indicates
that this is the appropriate thing to do, the so-called Koszul sign convention. Alge-
braic topology is full of signs and this convention does a really good job of coming
up with the “right” answers that make everything work coherently. The conven-
tion says that, you need to write things in a line, that’s how we write things, but
if you need to move symbols x and y that have signs past each other then you pick
up a sign, (−1)|x||y|. So for instance, when you apply maps to a tensor product
(f ⊗ g)(x ⊗ y) we need to move the symbols g and x past each other so you get
(−1)|g||x|f(x)⊗ g(y). In the case that we were just doing, we’re applying (id⊗∂C′)
and ∂C′ has degree −1 so we get the sign (−1)|c| = (−1)i, as promised.

Specifically, sometimes we’ll act on the tensor product C⊗n on the left by the
symmetric group Sn by permuting factors, so that if σ ∈ Sn, then

σ(x1 ⊗ · · · ⊗ xn) = ǫ(xσ−1(1) ⊗ · · · ⊗ xσ−1(n))

where ǫ is the sign induced using this rule.
So we just described a tensor product of chain complexes, now let’s describe an

“internal Hom.”

Definition 2. Let C and C ′ be chain complexes. The Hom complex Hom(C,C ′)
has as its n-degree space the vector space of degree n maps between C and C ′

(collections of maps Cm → Cm+n); these may or may not be equivariant with respect
to the differentials of C and C ′. Then the differential D in the Hom complex is
given by “bracketing with ∂” so

D(ψ) = [∂, ψ] = ∂C′ ◦ ψ − (−1)|ψ|ψ ◦ ∂C .

What does this mean? Well, let’s look at the degree zero homology of the Hom
complex. The kernel of the hom D are degree zero maps ψ so that D(ψ) = 0, that
is (since the degree of ψ is 0), maps satisfying ∂C′ψ = ψ∂C . These are exactly the
chain maps we described before. If we have D(φ) = ψ−ψ′, then that means exactly
that φ is a chain homotopy between ψ and ψ′. So the homology is spanned by chain
maps, and two are equivalent if they induce the same morphism on homology.

These are basic concepts and you may have seen them before; I’m emphasiz-
ing them because in the subsequent lectures we’ll be dealing with the endomor-
phism properad of a chain complex, which will be made up of the Hom complexes
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Hom(C⊗m, C⊗n), and I want to be clear on the convention so that this particular
ingredient is not a surprise.

So let’s turn now to differential graded algebras.

Definition 3. A differential graded algebra, or dga, is a chain complex A along
with a product map A ⊗ A → A which is an associative chain map. We’ll often
write ab to mean µ(a⊗ b).

Associative, let me write this in two ways, can be written in terms of the com-
mutativity of a diagram:

A⊗A⊗A
µ⊗id

//

id⊗µ

��

A⊗A

µ

��

A⊗A
µ

// A

This is not my preferred way to write this, I’d rather encapsulate the same thing
with the picture:

=

We read the diagram from top to bottom; the left hand tree corresponds to
moving along the top and right of the commutative diagram and the right hand
tree corresponds to moving along the left and bottom.

The fact that I have asked for the map to be a chain map means that ∂(ab) =
∂(a)b + (−1)|a|a∂(b), the Leibniz property for multiplication. We also call this
property ∂ being a derivation of the product.

Definition 4. A unital dga is a dga A equipped with a chain map k → A that is a
unit for the product:

= =

Definition 5. A commutative dga is a dga A so that µ is commutative. I’ll write
that by saying that µ composed with the permutation map σ ∈ S2 is again µ: µσ = µ
or σ(µ) = µ.

So a good example of a dga is the cochains of a space, with the boundary map as
differential and the cup product as the product. A good example of a commutative
dga is the differential forms of a smooth manifold, with de Rham d and the wedge
product.

If we dualize everything, we get the idea of a dg (coassociative) coalgebra, which
is a chain complex C along with a chain map called the coproduct ∆ : C → C ⊗C
which is coassociative. A counit for this is a map C → k that is a counit for
the coproduct. We can make pictures for this in the same way as before by just
turning the pictures for a dga upside down. The diagonal map X → X × X
induces a coassociative coalgebra structure on the singular chains of a space, using
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the identification of the singular chains on X ×X with the tensor product of the
singular chains on X with itself. We would call this cocommutative if σ∆ = ∆.

Whenever you have a structure that is defined by chain maps, like a dga or a
dg coalgebra, it descends to the homology, since homology is functorial. This is
not always the best thing to do with a structure like this because it often forgets
homotopical information, but it’s a first approximation to the chain level data. So
if you have a dga, you get an associative algebra structure on the homology, and
if you have a dg coalgebra, you get a coassociative algebra on the homology of the
chain complex. In both of the examples I gave, the cohomology and homology of a
space, when you pass to the homology, the structure becomes commutative. So the
cohomology of a space is a commutative algebra (we can view it as a commutative
dga with zero differential) and the homology of a space is a cocommutative dg
coalgebra with zero differential.

2.2. Lie algebras. Let’s turn to the next most common type of algebra, a nonas-
sociative type of algebra, namely a Lie algebra.

Definition 6. A dg Lie algebra is a pair (g, [ , ]) where g is a chain complex (with
internal differential ∂) and the bracket [ , ] is a bilinear map g⊗ g→ g which:

(1) is graded skew-symmetric: [x, y] = −(−1)|x||y|[y, x], and
(2) satisfies the graded Jacobi relation, which we could describe in a few ways:

[[x, y], z] + (−1)|x|(|y|+|z|)[[y, z], x] + (−1)(|x|+|y|)|z|[[z, x], y] = 0

This has some signs, which we can get rid of with our convention by saying,
if τ is a cyclic permutation of order 3, that

[ , ] ◦ ([ , ]⊗ id) ◦ (id + τ + τ2) = 0.

We could describe it conceptually by saying that the bracket is a graded
derivation of itself, in which case we’d write it a little differently:

[[x, y], z] = (−1)|y||z|[[x, z], y] + [x, [y, z]],

or we could write it using the same kind of pictures as before:

+

1 2 3

+

2 3 1

= 0

3 1 2

So I want to make a point about this. If you are used to ungraded Lie algebras,
then you’re used to the idea that skew-symmetry means that [x, x] = 0. But in a
graded Lie algebra, we have [x, x] = −(−1)|x||x|[x, x] so that if |x| is odd then we
don’t necessarily get [x, x] = 0.

I’m describing Lie algebras as a purely algebraic structure, but if you have seen
any Lie theory, you have probably seen Lie algebras as arising from Lie groups,
where you start with a Lie group G and then you find you have a Lie algebra
structure on the tangent space to G at the identity. These are the most familiar
Lie algebras, I guess. The first nontrivial Lie algebra we see is usually so(3), in
multivariable calculus, in the guise of the cross product.
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Anyway, because of this relationship, Lie algebras are intimately related to de-
formations of many different kinds of structure, for the following reason: if you
have a structure, any kind of structure, then you can look at the automorphisms
of that structure, which form a group. We can think of deformations as being au-
tomorphisms that are somehow “near the identity” automorphism. If we pretend
this is a Lie group, then every automorphism “near the identity” comes from an in-
finitesimal tangent vector at the identity automorphism, and these fit together into
a Lie algebra. So up to first order, at least, deformations of a structure “should”
be related to this Lie algebra. We’ll explore this relationship more tomorrow or the
next day.

3. Topological background I

I’m actually not going to talk about the Goldman bracket or the Turaev co-
bracket, but thinking about these questions is what led Chas and Sullivan to basi-
cally stumble upon string topology. So I want to, this afternoon, talk about some of
the topological tools we’ll need for this, intersections, loop spaces, and equivariant
homology.

Let me remind you of a couple of things that Gabriel talked about this morning.
If X is a topological space, then you have the cup product on singular cochains of
X

C∗X ⊗ C∗X → C∗X

and this descends to cohomology,

H∗X ⊗H∗X → H∗X

One structure he didn’t mention is the cap product, which goes from chains tensor
cochains to chains:

Ci(X)⊗ Cj(X)→ Ci−j(X)

so we think of the cochain cutting down the chain by the degree. This mixes
homology and cohomology:

H∗(X)⊗H∗(X)→ H∗(X)

I should have put up a big motivating question, what is the algebraic topology
of a smooth manifold? You can think of this qustion as motivating a lot of what
we do. Part of one answer is by talking about Poincaré duality. Here I’ll let M
be an orientable d-dimensional manifold, closed, and Hd(M,Z). This is an infinite
cyclic group, and so I can choose one of two generators for it. A generator [M ] of
Hd(M,Z) is called an orientation class or fundamental class.

You can choose your favorite definition of orientable or orientation, my favorite
one is that it is a choice of this generator. I will pick a representative and give it the
same name. Let a cycle [M ] represent [M ], and there is a map C∗(M)→ Cd−∗(M)
where I’m capping with this representative of the fundamental class, the duality
map [M ]∩. This descends to homology and the theorem is

Theorem 7. The induced map on homology which goes from H∗M → Hd−∗M is
an isomorphism.

This is a special thing we can say because we have a fundamental class because
we’ve got a closed orientable manifold. This is Poincaré duality.

Poincaré duality is great for two reasons, it says something about the algebraic
topology of manifolds, but we’re going to use it to do some intersecting.
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For any set we have the diagonal map X
∆
→ X ×X where x 7→ (x, x). I always

have the same picture that Gabriel drew this morning, this is the diagonal:

Then the Kunneth theorem tells us that

H∗(X ×X)→ H∗(X)⊗H∗(X)

is an isomorphism (over Q), so ∆ induces a map H∗(X)→ H∗(X)⊗H∗(X) and a
mapH∗(X)← H∗(X)⊗H∗(X). When people say that the cup product comes from
the diagonal, they mean that the cup product is the induced map ∆∗. The map of
the Kunneth formula, let me give you some names to google, Eilenberg-Zilber or
Alexander Whitney.

So what we’re going to want on a manifold is a product on homology. So we
can take two homoloogy classes, Hi(M) ⊗Hj(M). By Poincaré duality, each fac-
tor is isomorphic to the appropriate cohomology Hi(M) ⊗Hj(M) → Hd−i(M) ⊗
Hd−j(M)→ H2d−i−j → Hi+j−d(M). This is Poincaré duality again.

If I take this composition, I’ve got a two to one map on homology that is degree
−d. We’re dealing with a manifold. You might have a more general space where
you can do this, certainly on a monifold. This we’ll call the intersection product,
and you might notice that this has degree −d (like Bryan said).

This is kind of really great. We knew that the homology formed a coalgebra,
but it also forms an algebra. So:

Theorem 8. H∗(M) is an associative algebra.

Later Gabriel will talk about what you have here with a coproduct and product
that interact on the same space, you get a richer structure. I want to make a big
deal, you should have one to two, but we made a map that goes the other way on
homology. We’ve created a “wrong-way” map on homology.

I want to discuss this in terms of immersions, which I can do because I’m working
over Q. Let a be an i-dimensional homology class, and b a j-dimensional homology
class, and assume that a and b are represented by immersed submanifolds (closed,
oriented). Let me assume that these immersions A → M and B → M intersect
transversally. Consider, I have maps

A

��

B // M

and I can fill this diagram in with what is called the fiber product

A×M B //

��

A

��

B // M
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or I can say that A×B maps to M ×M , which contains the diagonal, and A×B
intersects ∆ transversally. I’ll say then that equivalently, A×MB is the (transversal)
preimage of the diagonal.

How do these things get to have the same name? Let me write this as a set.
What is it? This fiber product is some subset of A×B. It’s points (x, y) where x
is in A, y is in B, and such that a(x) = b(y).

Because of transversality, A×M B is an oriented i+ j− d-dimensional manifold,
and A×M B sits by the restriction of a× b to A×M B to ∆(M) ⊂M ×M , which
is isomorphic to M .

So define a · b = (a × b|A×MB)∗[A ×M B] ∈ Hi+j−d(M). This is exactly the
same thing as perturbing a and b slightly so that they intersect transversally and
then intersecting them and getting a representative of the homology class which is
literally the intersection product.

It would be nice to draw the picture right now that shows why this is the same as
the cup product. I could draw that picture later, unofficially, maybe. Any picture
that you draw for transversality is the right picture. If A and B are submanifolds
of N , they intersect transversally if, well, for all points in the intersection, I’ve got
tangent spaces to A, to B, and to N , then for all p in the intersection of A and B,
TpA + TpB = TpN . So the picture we drew earlier with two curves on a surface,
you get two independent vectors and so they span the whole space. You write this
as A ⋔ B

More generally, if A is a submanifold and f is a smooth map B → N . You write
f ⋔ B if Tf(b)(A) + dfb(TbB) = Tf(b)N for all b so that f(b) is in A.

This intersection product has us choosing two representative cycles, moving them
slightly, and making them transverse. Here’s a picture of two curves that don’t
intersect transversally. There is something non-transverse here, if you move one or
the other of these curves in the homotopy class, you’ll either get a picture with no
intersection or a picture where there are two points. As soon as I move a map just
a little bit, it’s okay. If f is not transversal to A then it is homotopic to one that
it is. It’s really close to a transversal map.

If we apply this to this setting where a and b are homology classes represented
by A and B, then A×B →M ×M is transversal to the diagonal.

We said that we formed the pullback of the diagonal under this transversality
assumption, let me draw a couple of pictures. If A×B goes to M ×M , here’s the
diagonal, here’s the image, and you get something that intersects transversally, I
can pull this back and get a submanifold of A× B. Maybe I have something that
looks like this degenerate picture; when I pull this back I get something that looks
a little sad, not quite a good submanifold.

So transversality is an important property to have to get submanifolds of the
proper dimension. We can move something just a little bit and get the things we
want, get something generic.

Let me move to a different topic and go to loop spaces and equivariant homology.
String topology is concerned with the homology of a loop space of a manifold.
That’s where the word string comes from in this context. I might rush this a little
bit. The most important thing is the definition. So loop spaces. I’ll use S1 to be
the unit interval [0, 1] quotiented by the relation 0 ∼ 1. I have a distinguished point
on the circle. The free loop space of M is the maps from S1 into M . You could be
talking about different kinds of maps. Let me say once that I’ll be using piecewise
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C∞ maps. There’s a related definition, the based loop space of M at p ∈ M , and
I’ll call this ΩpM , and thats maps from (S1, ∗) to (M,p). Both of these are infinite
dimensional manifolds. If that freaks you out, I’ll share a confession with you, I
pretend they’re not. There are lots of analytical considerations here that I don’t
worry about. Don’t tell anyone.

So let me make a couple of remarks.

(1) If γ is a point in LM , it has a basepoint. It doesn’t have to be a particular
one, it has γ(0). This can be any point of M .

(2) If I’m talking about the based loop space Ωp(M), you can do something
from the first fundamental group, where I can concatenate loops, ΩpM ×
ΩpM → ΩpM . In your exercises, you’ll show that this product is not
associative on strict loops, although the map it induces on homology is
associative.

(3) Also, if I have two different points in M , I can consider ΩpM and ΩqM ,
these are actually homotopy equivalent. You can choose a path going from
one point to the other, and I’ll write ΩM .

(4) I have an evaluation map ev : LM → M which takes γ to γ(0), and I can
write this as a fibration with fiber ΩM :

ΩM // LM

ev

��

M

(5) The last thing I want to say is that S1 acts on the loop space LM by
rotation. If I take an element of S1, I can precompose and everything is
going to shift around, and I get a loop tracing the same path at the same
speed but a different parameterization.

This is what equivariant homology is about. You want something that
captures not just the structure of the space, the group action.

This action is not free. What are the fixed point of this action? Constant
loops.

We’ll be looking at the homology of the loop space, sometimes on its own and
sometimes with this action, meaning equivariant homology. Let me say what that
means. Let G be a topological group that acts on a space X, the action is continu-
ous, and X/G is the orbit space. The naive thing to do is to have the G-equivariant
homology of X, HG

∗ (X) should be something like H∗(X/G), the regular homology
of the orbit space.

That’s the thing to keep in the back of your head. That’s what we would like
for it to be. I’d be happier if it actually were. The orbit space in general might be
badly behaved, it might be non-Hausdorff, those things don’t exist in my world, I
don’t know what to do, or the orbit space might be contractible, that’s not quite
what I want either. This definition is okay if the action is free. Your naive thing is
exactly right. What are we going to do. There’s a really nice trick if the action is
not free. Even if the action is free, the trick won’t give you anything new.

The trick is the Borel construction: fix G, there is a unique (up to homotopy)
contractible space EG on which G acts freely. This is going to solve all of our
problems. Why? One is, if I have X, then X is homotopy equivalent to X × EG.
Then X × EG has a free action by G, G acts diagonally on each factor, since the
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action on EG is free. So we can study the orbit space of that action, which will
give us the G-equivariant homology of the space X.

Definition 7. − (X ×EG)/G we’ll write as X ×G EG, the “homotopy quo-
tient” of X by G, and then

− HG
∗ (X) is H∗(X ×G EG)

If you’ve seen the notation EG before in your past life, this agrees with what
you’ve seen before. Moreover, if you look at EG/G, this is BG, the classifying
space for the group G, and moreover EG is the total space of a principal G-bundle
over BG:

G // EG

��

BG

As a last remark, let me go back to the loop space. For an S1 action, ES1 is S∞

and BS1 is CP∞.
The action is, you can think of S∞ as the colimit of S2n in Cn, and S1 acts on

each of these. We do have tea and coffee, or let’s check.


