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1. John Morgan III

Until this point I’ve been assuming everything is simply connected. Now we’ll
consider what happens for a general connected algebra, meaning the cohomology
in negative degrees is 0 and the cohomology in degree 0 is Q. Now I want to
mimic the cohomology of A with a differential algebra starting in degree 1. So I
start with the exterior algebra on the first cohomology ∧∗(H1), and by the usual
construction I map this into A∗ by taking a basis and choosing representatives.
This map is an isomorphism on the first cohomology. The inductive step you need,
an isomorphism in one dimension but you should have an injection in the next
dimension if you want to move up. If the cup product is injective into H2 we’re
okay, but otherwise we’ll need to put more generators in degree 2 to annihilate. Call
this M1,1, and H2(M1,1) is ∧2H1. So we look at the kernel V1,2 of ∧2H1 → H2(A).
So now we take M1,1 ⊗ ∧∗( V1,2︸︷︷︸

degree one

) with a differential d : V1,2 → ∧2H1 by the

inclusion map. This extends to A∗. We call this stage M1,2, and it includes M1,1

as a sub dga. We know the kernel of H2(M1,1) → H2A∗ is the same as the image
of H2(M1,2). Unfortunately, or interestingly (I can’t keep track of which is better,
optimist or pessimist), this might create new problems.

If I were working on the complement of the Borromean rings from yesterday,
M1,1 would be ∧∗(a, b, c), and V1,2 would be ∧2H1 since the cup product is 0.
So we1d have to add ηab, ηbc, ηac, which annihilates ∧2H1, but we’ve created new
cohomology classes. So for instance ηab∧c+a∧ηbc is closed. What does it represent
in A∗? We don’t know until we do some calculation. In some topological spaces
with the same cohomology ring these classes would be trivial. This is something
captured in the differential forms and the minimal model but not in the cohomology
ring. The kernel at the next stage, you have to continue the construction if there
is a kernel. You continue this construction, and haev M1,1 ⊂ M1,2 ⊂ · · · and at
each stage we’re adding more things in degree one to kill the kernel of the previous
stage. So M1,n = M1,n−1 ⊗ ∧∗(V1,n) with d : V1,n

∼= Ker H2(M1,n−1) → H2(A∗).
Then M1 will be the infinite union (this may not terminate at a finite stage) and
M1 maps to A∗ with an isomorphism on H1 and injective on H2.

This could be dualized, submanifolds, codimension one and two and their inter-
section patterns, so on. I want to say what this is about the homotopy theory of
the space. Now I’m imagining that A is ΩQ(X). This is related to a very nice part
of the fundamental group, which I’ll derive before telling you what it is. Let’s think
about these differential algebras. At each stage we have an exterior algebra on a
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finite dimensional vector space and a d. There’s a well-known construction that
will give us a Lie algebra.

So we take the maximal ideal modulo their square I/I2, and these are the inde-
composables. Let me shift the indecomposables Ln is [I(M1,n)/I2(M1,n)]∗ in degree
0. So L1 = V ∗1,1, L2 is (V1,1⊕V1,2)∗, and so on. Dualizing reverses my arrows and I’ll
get surjections · · · → L2 → L1. Now, d is decomposable, so I get d : I/I2 → I2/I3

which is ∧2(I/I2). Take its dual, and that will be a map d∗ : Ln ∧ Ln → Ln, a
skew-symmetric map. The relation d2 = 0, when I dualize I get Jacobi, so this is a
Lie bracket. We get a projective system of Lie algebras.

It’s even better than that, because, we have the equation that d(V1,n) is contained
in M1,n−1 and when you dualize this, the kernel of Ln → Ln−1 which is V ∗1,n, is
central in Ln. So we have a short exact sequence 0 → V ∗1,n → Ln → Ln−1 → 0
with V1,n central. The first space here L1 is H1(X) with 0 bracket. We get a tower
of central extensions, higher and higher order nilpotent Lie algebras. So Ln is a
nilpotent Lie algebra of length of nilpotency ≤ n over Q. This is the same thing as
a group, because you can use the exponential. The multiplication is given by the
Baker Campbell Hausdorff formula. This is a power series in general but here it
truncates and becomes a polynomial with rational coefficients. So we have a tower
of Q-nilpotent groups Ln → Ln−1 → · · · → L1. This is dual to the construction
putting more generators in degree 1 and taking d. So every center is a rational
vector space.

This is the rational nilpotent completion of the fundamental group. Associated
to any group is a series of nilpotent groups: G, [G,G] = G2, [G,G2] = G3, and so
on. Then G/Gn is nilpotent of length n and maps to G/Gn−1 with kernel Gn−1/Gn
which is a central subgroup, and this is exact. This is universal with respect to
maps from π1(X) into nilpotent towers.

Any time you have a nilpotent group, you can tensor it with Q, one stage at a
time. You can tensor with Q and get a tower of rational nilpotent groups, and this
is what the 1-minimal model gives.

That’s all I’ll say about the fundemental group. Let me just make one remark
about mixing the fundamental group with the higher degree construction. If you
start with a connected algebra, you can build the 1-minimal model, which produces
something isomorphic on H1 and injective in H2.

[What goes wrong if it’s not nilpotent?]
It’s not “wrong,” this is just what you see. For a knot complement, H1 is just

rank one and then you’re done and you haven’t seen the knotting, this is deeper in
the fundemental group than the lower central series.

[Discussion]
I want to give you three kinds of consequences. First of all, I want to look at

the automorphisms of homotopy type. X is a finite complex, simlply connected. I
can look at AutQ(M), which is an affine algebraic group over Q. This means it’s a
subgroup of GLn defined by polynomial equations. This minimal model for X may
be an infinite construction, which may go on above the dimension of X. You can
truncate and forget a couple of dimensions above the space. This automorphism
should commute with multiplication, d, and this is a quadratic and linear formula,
so a rational algebraic group. One problem is that some of these may be homotopic
to the identity. The thing that Dennis wrote down was the following. Think
about the maps i : M → M that are derivations of degree −1 and consider their
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commutator with d: id+di. The collection of maps like that, commutators, make a
Lie algebra of elements commuting with d. Then exponentiate, it’s easy to see that
exp(id+ di) = id+ di+ 1

2 (id+ di)2 + · · · terminates and gives isomorphisms of M ,
and all are homotopic to the identity. It’s not hard to show that all automorphisms
of M homotopic to the identity arise this way.

What we might call the rational outer automorphisms of the minimal model are
this algebraic group divided by, well, we’ll get a unipotent algebraic group in the
image.

It now follows that the automorphisms (actual homotopy automorphisms) is
commensurate with the integral points of this algebraic group. The two groups
have a group of finite index in common. In particular, the automorphism group
was finitely generated.

[That was the whole motivation, I wanted to study that automorphism group.
Surgery theory gave a description of invariants, and this group acts on it. What’s
the nature of it? There’s some algebraic structure.]

Surgery is mainly for connected manifolds of dimension five and greater. These
are true for PL, topological, and smooth manifolds. Such a (simply connected)
manifold is determined up to finitely many possibilites by H∗(M,Z), the ring, the
rational Potrjagin classes, and the minimal model. Now we begin to understand
how the automorphisms act.

In the last ten minutes I want to talk about formality. A differential algebra
or space is formal if the minimal model for the algebra is also the minimal model
for the cohomology; there’s a map M → H∗(A) which induces the identity on
cohomology.

So spheres and projective spaces are formal. S3 minus the Borromean rings is
not formal because in a formal space all Massey products vanish. You can compute
those on both sides, but if you have a dga isomorphism, you can compute the
Massey products, and if it’s zero in cohomology, since d = 0, the way to solve the
equation is to take 0 → 0 so they vanish. Formality is the vanishing of all Massey
products in a uniform way. That will all be captured somewhere in the minimal
model.

What does formality say about the fundamental group? It says that rational
nilpotent completion of the fundamental group is as free as possible given the
cohomology ring.

The theorem that I want to end with, due to Deligne, Griffiths, Morgan, and
Sullivan, was that any compact Kähler manifold is formal. I’d hoped to talk about
how the rational homotopy theory is related to interactions with current stuff today
with A∞ structures. The minimal model in dgas, you can find a quasiequivalent
object has an A∞ structure, but you need the higher structure. Formality means
you don’t need any higher structure.

The basic ingredient is the dd̄ Lemma. I’ll work with the complex differential
forms Ωp,q(X,C), into ∂̄ and ∂, and the dd̄ lemma says that if α is closed under
∂ and ∂̄ (and d) and exact under one of them, then it’s exact under all three
consistently, so there is a β with α = ∂∂̄β.
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It’s proved using the basic Kähler identities, and then this allows us to make a
diagram of differential graded algebras

(Ker∂̄ , ∂ = d) //

��

Ω∗(X,C), d

H∂̄,∂=0

The dd̄ lemma implies that the maps are equivalences and the bottom differential
is zero, so these are formal, at least over C. Then you can see rational formal.

[What about derivations of other degrees?] I don’t know. [If you make a complex
Lie algebra, this makes a model for the space of automorphisms.]

[What is the geography of formal and nonformal spaces?] I think that formality
is a tight restriction. Some spaces don’t have any choice. They’re formally formal.
If the cup product is an embedding, then they’re formal. If you have a possibility
of non-formality, then generically you have non-formality.

[Just about any elliptic space is non-formal.]

2. Graeme Segal

It’s an honor to talk here at Dennis’ birthday. I met him more than forty years
ago and almost at once he changed my view of mathemetics. He made me feel
that in areas I had never felt the tiniest interest in, there were many questions of
interest. I won’t talk about my experiences at his seminar. I thought it was one
of those examples of structures like the eye involving independently in different
regimes. There’s something about this unlike other things. Dennis can be the best
listener and extract the real idea that is sometimes inchoately expressed.

I’m going to talk about field theory, just defining it. This was explained well by
Smirnov, there were problems in the lattice model, once you saw there was a two
dimensional field theory, that many things could come easily. Seeing it was hard.

Field theories are supposed to be crystalline, rare. Above two-dimensions, they
form finite dimensional families, above 4 there aren’t any at all. There’s supposed
to be one in dimension six, all alone, like a six leaf clover.

It’s hard to say what one is. Let me say something now about the traditional
formulation of a quantum field theory. I’ll only consider a toy model. We’ll talk
about a d-dimensional space-time, which I’ll think of as being Riemannian. For each
point x ∈ X we’ll assigno a vector space Ox of local fields, observables, whatever,
not an algebra but a mysterious thing that you can observe at a point. When you
pick a certain number of disjoint points, there’s an expectation map Ox1 ⊗ · · · ⊗
Oxk

→ C ofter written like ψ1 ⊗ · · · ⊗ ψk 7→ 〈ψ1 · · ·ψk〉X . This should depend on
the set, and vary smoothly as we move the points around.

What properties ought these to have? There’s mythology overlying this situation.
If you imagine there is a mythological space ΦX of “classical fields,” locally defined
on X, like functions with values in a vector space or curved manifold, or connections
with values in whatever. There’s meant to be an action functional S : ΦX → R,
which enables one to define a measure dµ on ΦX which formally is meant to be
written dµ(y) = e−

1
~S(y)dy (in the Riemannian setting). For Kevin, a classical field

theory is just the germ of the infinitessimal structure of this space of fields around
the critical set of the function S. The relation is that if we have dµ, then what we
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would do is define Ox as contained in the C∞ functions on Φx so that ψ(ϕ) depends
only on the jet of ϕ at x. Then 〈ψ1 · · ·ψk〉 is meant to be

∫
Φ
ψ1(ϕ) · · ·ψk(ϕ)dµ(ϕ).

About twenty-five years ago, rather as a joke, I proposed a different way to come
at this thing, and it’s been taken in many directions having nothing to do with me.
Let me say it quickly to take it somewhere. The idea I had in mind has not been
pursued very much. My idea is one that I hardly need to mention. I suggested
that one could define a field theory in dimension d as a functor from the cobordism
category to vector spaces.

To a closed manifold Y d−1 it should give a vector space Hy and to a cobordism
Xd : Y0 → Y1 a ctrace class operator UX .

[How did you get this idea?]
There was a meeting near Munich and Witten was giving a talk on how he looked

at this, and the essential property was what happened when you divided into two
regions. You’re saying we have a functor on a cobordism category and everyone
laughed. I kept saying, maybe it’s not such a stupid idea. Atiyah wrote it down in
the topological case. People have talked about it since.

This is the data, and the axioms that this is meant to satisfy is two or three.
The output should be smoothly dependent on the data. There should be functori-
ality, secondarily, which I’ll write down as concatenation, and thirdly, the tensoring
property meaning that if you take a disjoint union of two Y s, then this should be
the tensor on the range, so for the empty manifold you get the complex numbers,
and similarly for morphisms. So it’s a tensor functor.

There are lots of refinements you need to put in. For this talk, the only important
one we need immediately is that HY is defined not for Y but for the germ of a d-
manifold along Y . Think of Y as being a little bi-collared thing from which another
cobordism might step off. You need to keep track of the germ or else you wouldn’t
have a smooth structure on the gluing.

That’s a simple definition, how does it give back the kind of data? Imagine X is
closed, and we cut out a piece around each point, X̂ which is X minus some little
disks. This is a cobordism from q∂Di → ∅ so you should get a map

⊗
H∂Di

→
H∅ = C. So we can define Ox as the inverse limit of H∂Di . This is an ordered
system by inclusion.

The kind of question I was interested in at the time was the question of when two
field theories were the same. I was familiar with the fermion-boson correspondence.
It was an art to show they were equivalent. Describing a theory in the first way
is disingenuous. You pick a vector, you have actual fields, and construct things
in cunning ways using normal ordering and other ingredients and get local fields.
You never know when there might be some new trick. A theory was a murky
piece of data, so it was difficult to say what it would mean to speak of the moduli
space of two dimensional field theories. People think above two dimensions they are
rare, but there are the conformal field theories in dimension two, and string theory
begins with the observation that a certain class of two dimensional field theories are
conformal, they don’t depend on a Riemannian structure, these fall into families of
finite dimension. [Discussion of σ-model.]

There’s a map, one hopes, and it’s not really defined, which to target manifolds
give theories, and Ricci flat manifolds to formal theories. If you take a general
manifold as target, you have the Ricci flow, and on theories of this kind, you have a
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one-parameter family by rescaling, and you can hope that two-dimensional theories
have to do with manifolds and scaling flow to Ricci flow.

I was fascinated at the time with a paper doing perturbation theory near unin-
telligble, and this still exists in what mathematicians call a “physical level of rigor.”
This person started with a conformal theory and parameterized a little neighbor-
hood in the space of theories, not necessarily conformal. He defined a Riemannian
structure and function, and argued something about gradient trajectories.

What is the structure of these things? One thing you see from the second
definition is that you have an algebra structure on these things, but only of the
up-to-homotopy type that we have been hearing so much about.

Suppose you are near x and take the disk D. Then this will inject into the space
H∂D, it’ll be a dense subspace, so think H∂D = Ôx. If you pick a disk, you can
take out tiny disks around them. What you read off is always maps, if you pick k
points, always have maps Ox1 ⊗ · · · ⊗ Oxk

→ Ôx. If you’re willing to work with
completions, you have a product, but you have things defined only up to homotopy
because it’s parameterized by the many points in the small disk.

Suppose one is interested in making a moduli space of theories. What is the
tangent space? What are the infinitesimal deformations? From the physicists’
point of view, it’s supposed to be the space on fields.

Suppose we’re deforming a theory and we get a map HY0 → HY1 , and we can
chop the cobordism into pieces. If we could chop it up into little bits that moved by
a tiny little piece, then UX would be a composite of a whole lot of little pieces. Since
UX is meant to be the composite, if you make a small change, then the first order
change will come from one of those things, which should be completely described
by a tiny piece of X. This should occur on the boundary of those little disks. In
a deformation, you should always have a field ψ in Ox. Assume that the manifold
looks the same near every point, so Ox is independent of x. Then you’d like to say
that the only deformations are of the form δψUX which is

∫
X
UX,ψxdx.

[Picture.]
To make sense out of this, you need more structure. I can’t prove a theorem

of this kind. I need to know something more about the system Ox which was the
inverse limit of the H∂D. The case we started off with was one we knew well. In
the space of two dimensional conformal theories, any two disks are the same. All of
these spaces are the same, let’s call them H. Also, the formal embeddings of D on
◦D acts on H by trace class operators. These should preserve the center. Then you
can say that these fields aren’t all the same, so by differentiating at the identity,
you can get to C×.

We can pick a cofinal system around every point, so we actually have a rather
obvious action just of C×. In particular, you could look for eigenvalues so that
when you’ve contracted it, well, θ′(0) = λ. You might look for ψ so that θ∗ψ = λkψ
or λpλ̄qψ.

The resulting field, we can identify these things, but to get this to a point on
the manifold, we have to choose a coordinate patch tells us that the way theat ψ
behaves is like a differential form on the manifold. We’ll say that the fields have
properties that let us do this. WE could have something that wasn’t an eigenvolue.
That wuold be a derived field.

You immediately see that to deform a theroy you look for a field like a volume
element.
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That was conformal so what’s more general?
I don’t know how to go further without an axiom. This is related to asymptotic

freedom. At small distances, a nicely behaved theory will become something simple,
where a think behaves as it would in Euclidean space.

I don’t see a way of going anywhere without adding an axiom that says the
inverse limit is asymptotic to something conformally invariant on Euclidean space.
It’s naturally attached to the metric tangent space, so the conformal group formally
acts on it, and so far. In all the theories that one can think about, that’s true. There
aren’t many theories, but they all satisfy this.

We still need more properites. We wanted to cut things up into pieces that are
small. My axioms aren’t restricted enough because they don’t tell you in what
senes the space associated to Y depends locally on Y .

[Missing some.]
It would be nice to say that HY were a tensor product HY1 ⊗HY2 If that were

true, physics would be trivia. So the next best hope is that, well. . .
The simplest case is Φ which is maps X → R with action

∫
X

= {dϕ ∗ dp +
unintelligble∗ = ϕ and HY = L2(Ω0(Y,R))X

What is the quadratic form that we have to use? You can compare and think of
a quadratic form as a map like Ω0(Y,R) → Ωd−1(Y,R).

[Missed.]
If we were working in deformation quantization, the spillover will only involve

an infinitesimal deformation.
[Missed, had to stop.]


