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1. Kevin Costello III

So I know I’ve been barraging you guys with definitions and I can’t expect you to
have absorbed everything. What I’ve done so far is introduced language to describe
moduli spaces of solutions to elliptic equations at a formal level.

So M is the derived moduli space of solutions to an elliptic equation. We were
thinking we should define this in terms of a Lie algebra, LM is a sheaf of L∞
algebras on X. Oh, sorry, Dennis. Can you see?

[You should write a bit larger.] [Dennis moves.] [No, that’s good.] [Laughter.]
LM (X), d is an elliptic complex and there are some conditions, unintelligble, so

maybe an example, if X is a four-manifold, I can look at the instanton equations,
solutions, self-dual connections, and the Lie algebra LMinst , in degree 0 is the gauge
group, in degree one is the ways of making connections, and in degree 2 I want the
anti-self dual part to vanish.

Ω0(M, g) → Ω1(M, g) → Ω2
−(X, g)

The reason this is a good space is because this is an elliptic complex. H1 of the
complex is finite dimensional if M is compact.

We were also interested in geometric structures on these guys, like symplectic
forms. So a symplectic form of degree k on M corresponds to an L-invariant pairing
with a shift of degrees (degree k− 2). We’re interested in symplectic forms because
classical field theories are critical points of a function, which correspond in this
derived world to symplectic forms of degree −1. One example to bear in mind, if I
take any elliptic equation, I can take the cotangent bundle, that has a symplectic
form, so I can take the shifted cotangent bundle. If M is any moduli problem then
T ∗[−1]M is a classical field theory.

Suppose I take the instanton equations and take its cotangent bundle. The Lie
algebra LT∗[−1]Minst has two pieces, the original one and then the duals of these
ones:

Ω2
−

// Ω3 // Ω4

Ω0 // Ω1 // Ω2
−

We shifted it because we wanted a pairing of degree −3. In physics this is the
self-dual Yang Mills, actual Yang Mills is a deformation of this.

[Does actual Yang Mills fit in your framework?]
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You can do it for R4, I don’t know how to do it in an arbitrary 4-manifold. You
add a differential Ω2

− to itself by cId. When c = 0 then you get the self-dual Yang
Mills.

Many theories have a large volume limit that looks like a cotangent theory, and
then you add small perturbations.

The aim is to say something about quantization. If U is a subset of X then I
can think of my moduli space M(U), and functions on that, O(M(U)) I’ll define
to be the Chevalley cochains of the Lie algebra C∗LM (U).

If my moduli problem has a symplelctic form, then functions on it have a Poisson
bracket of degree 1. We’d like to talk about a quantization of this structure. What
is quantization of a degree 1 bracket? That has a nice, uniform theory, but the
most unintelligblecase, let me remind you, is ordinary deformation quantization.

A is a commutative algebra, and { } is a degree 0 Poisson bracket, then a
quantization of A is a product a ×~ b, ~ dependent, on A[[~]], which is ~-linear,
such that a×~ −b×~ a = ~{a, b} mod ~2.

We’d like a similar description when we have a degree 1 Poisson bracket. There’s
a very natural degree 1 Poisson bracket. [Is it the BV bracket?] Yes. If A has a
degree 1 Poisson bracket, and again is a commutative dga, then

Definition 1. A quantization of A is an algebraic structure on A[[~]], for defor-
mation quantization it was an associative structure, here it will be something else,
a commutative product and Poisson bracket of degree 1 and a differential on A[[~]],
lifting the structure we already had, such that d(ab) = d(a)b+(−1)|a|ad(b)+~{a, b}.
When we deform, d is not a derivation, and the failure is the bracket.

The failure of A[[~]] ot be an dga at all (that is, to have a product compatible
with d), is measured by {}. You know as a topologist that commutativity is a lot
more information than associativity.

[Is that a BV algebra with an ~?] I call this a BD algebra, for Beilinson-Drinfeld.
In the mid-90s, this was shifted and given degree −1, it’s kind of annoying.

I can see from the audience reaction that this is confusing. Let M be a manifold.
Then O(T ∗[−1]M) has a Poisson bracket of degree 1.

[What is equivalence?] It’s homotopy equivalence. This should be a family where
the base is unintelligbleon the n-simplex, like in John’s talk.

In this situation, what does it mean to quantize? In degree 0 it’s smooth func-
tions, in degree −1 it’s vector fields and so on.

Γ(M,∧2TM) Γ(M,TM) C∞(M)

A volume form on M gives one of these. This is an operadic definition of a volume
form. Let me explain why this is true.

If I choose an n form on M , ω, then we get an isomorphism like C∞(M) I
can associate with top forms, vector fields with n − 1-forms, and so on. I’ll write
down the quantization from this. I can choose to only deform the differential. How
can I do this? I have the de Rham differential on Ω. We can do this using our
isomorphism. That’s the divergence for the volume form ~Divω

The point is that polyvector fields with this differential, O(T ∗[−1]M), ~Divω is
a quantization, so that Divω(α, β) = Divω(α)β + αDivω(β) + {α, β}.

There is a natural set of deformations equivalent to volume forms. Observe that
O(T ∗[−1]M) has an R∗ action by scaling the cotangent fiber { } → λ{ } where we
scale by λ. Now, ~ and the Poisson bracket are next to each other. Let R∗ act on
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functions on ~ by sending ~ to λ−1~, and then our axioms are R∗-invariant and we
can ask for an R∗-invariant quantization.

The lemma is, that here, volume forms give quantizations, invariant quantiza-
tions, and these are all you find. There is a bijection between volume forms on M
up to multiplication by a scalar and R∗-invariant quantizations.

In particular, we can talk about volume forms for these infinite dimensional
things.

[Can you think of this as the unintelligble?] Yes, exactly. I am doing quantum
field theory, so there’s a measure, formally eS/~dµ.

Let’s talk about the infinite dimensional situation. So M is an elliptic moduli
problem. T ∗[−1]M has a degree −1 symplectic form which correpsonds to LM ⊕
L′M [−3] = LT∗M [1−].

If U ⊂ X, I’ll define, again, O(T ∗[−1](M(U))) to be C∗(LT∗[−1]M (U)), the
Chevalley cochains on the Lie algebra. This has a Poisson bracket of degree 1 (it’s
nonessential that this be a cotangent).

Definition 2. A quantization is a quantization of each of these O(T ∗[−1]M(U)),
R∗-invariant, compatible with the natural maps (let me explain these.

There are mapsO(T ∗[−1]M(U1))⊗O(T ∗[−1]M(U2))⊗· · · which maps toO(T ∗[−1]MV )
where Ui is in V , all disjoint, maps of Poisson algebras. If Ui are not disjoint, this
is not a Poisson map.

So we want quantization to be compatible with this structure. This leads
to what we call a “factorization” algebra, where Obs(U) is the cochain complex
O(T ∗[−1]MU [[~]], with maps as above.

If X is compact, then this moduli space M(X) is finite dimensional. The upshot
is that a quantization of the field theory leads to, on the whole space, a volume
form on the finite dimensional dg manifold M(X). In good situations this might
be the germ of a smooth manifold. This is a volume form given by local data on
X.

Let me explain how you might construct these and indicate why the volume form
is unique.

Theorem 1. (Gwilliam)
There is a deformation complex, a sheaf you associate by a simple procedure, ob-
structions on X associated to M , a sheaf of cochain complexes such that H1(X, Obstrn(M))
are the obstructions to quantization, and if the obstructions vanish, then the space
is described by H0, but this describes the deformations of a given quantization. In
many examples, these cohomology groups vanish.

Here is an example. Let E be an elliptic curve, Y a complex manifold, and M the
holomorphic maps E → Y near constant maps. What you get from the cotangent
theory then, T ∗[−1]M is what Witten calls the “N = (0, 2) susy twisted σ-model.
Maybe I’ll tell you, this global moduli space is T [−1]Y , and H≤0(Obstrn) = 0,
H1(Obstr) = C, and the obstruction to quantization is ch2(Y ), so if that vanishes
there is a unique quantization (this gets to Y by pushforward). Then M(E) has a
volume form, V ol(Y E) = Wit(Y, E).

Grady and Gwilliam have this result: Y is copmlex, lecally constant maps S1 →
Y , then there is a unique quantization V ol(Y S1

) =
∫

Y
Td(Y ). A last one, if M

is the instanton moduli space, X a 4-manifold, G a simple group, thene there is a



4 GABRIEL C. DRUMMOND-COLE

unique quantization which gives a canonical, conformally invariant measure on the
instanton moduli space.

I think I’ll stop there.
[unintelligble] [Are these obstructions related to what physicists call anomalies?]

Yes, they’re the same.


