DENNISFEST NOTES

GABRIEL C. DRUMMOND-COLE

1. Kevin Costello III

So I know I've been barraging you guys with definitions and I can't expect you to have absorbed everything. What I've done so far is introduced language to describe moduli spaces of solutions to elliptic equations at a formal level.

So M is the derived moduli space of solutions to an elliptic equation. We were thinking we should define this in terms of a Lie algebra, \mathcal{L}_{M} is a sheaf of L_{∞} algebras on X. Oh, sorry, Dennis. Can you see?
[You should write a bit larger.] [Dennis moves.] [No, that's good.] [Laughter.]
$\mathcal{L}_{M}(X), d$ is an elliptic complex and there are some conditions, unintelligble, so maybe an example, if X is a four-manifold, I can look at the instanton equations, solutions, self-dual connections, and the Lie algebra $\mathcal{L}_{M_{\text {inst }}}$, in degree 0 is the gauge group, in degree one is the ways of making connections, and in degree 2 I want the anti-self dual part to vanish.

$$
\Omega^{0}(M, \mathfrak{g}) \rightarrow \Omega^{1}(M, \mathfrak{g}) \rightarrow \Omega_{-}^{2}(X, \mathfrak{g})
$$

The reason this is a good space is because this is an elliptic complex. H_{1} of the complex is finite dimensional if M is compact.

We were also interested in geometric structures on these guys, like symplectic forms. So a symplectic form of degree k on M corresponds to an \mathcal{L}-invariant pairing with a shift of degrees (degree $k-2$). We're interested in symplectic forms because classical field theories are critical points of a function, which correspond in this derived world to symplectic forms of degree -1 . One example to bear in mind, if I take any elliptic equation, I can take the cotangent bundle, that has a symplectic form, so I can take the shifted cotangent bundle. If M is any moduli problem then $T^{*}[-1] M$ is a classical field theory.

Suppose I take the instanton equations and take its cotangent bundle. The Lie algebra $\mathcal{L}_{T^{*}[-1] M_{\text {inst }}}$ has two pieces, the original one and then the duals of these ones:

$$
\begin{aligned}
& \Omega_{-}^{2} \longrightarrow \Omega^{3} \longrightarrow \Omega^{4} \\
& \Omega^{0} \longrightarrow \Omega^{1} \longrightarrow \Omega_{-}^{2}
\end{aligned}
$$

We shifted it because we wanted a pairing of degree -3 . In physics this is the self-dual Yang Mills, actual Yang Mills is a deformation of this.
[Does actual Yang Mills fit in your framework?]

You can do it for \mathbb{R}^{4}, I don't know how to do it in an arbitrary 4-manifold. You add a differential Ω_{-}^{2} to itself by $c \mathrm{Id}$. When $c=0$ then you get the self-dual Yang Mills.

Many theories have a large volume limit that looks like a cotangent theory, and then you add small perturbations.

The aim is to say something about quantization. If U is a subset of X then I can think of my moduli space $M(U)$, and functions on that, $\mathcal{O}(M(U))$ I'll define to be the Chevalley cochains of the Lie algebra $C^{*} \mathcal{L}_{M}(U)$.

If my moduli problem has a symplelctic form, then functions on it have a Poisson bracket of degree 1. We'd like to talk about a quantization of this structure. What is quantization of a degree 1 bracket? That has a nice, uniform theory, but the most unintelligblecase, let me remind you, is ordinary deformation quantization.
A is a commutative algebra, and $\}$ is a degree 0 Poisson bracket, then a quantization of A is a product $a \times_{\hbar} b$, \hbar dependent, on $A[[\hbar]]$, which is \hbar-linear, such that $a \times_{\hbar}-b \times_{\hbar} a=\hbar\{a, b\} \bmod \hbar^{2}$.

We'd like a similar description when we have a degree 1 Poisson bracket. There's a very natural degree 1 Poisson bracket. [Is it the BV bracket?] Yes. If A has a degree 1 Poisson bracket, and again is a commutative dga, then
Definition 1. A quantization of A is an algebraic structure on $A[[\hbar]]$, for deformation quantization it was an associative structure, here it will be something else, a commutative product and Poisson bracket of degree 1 and a differential on $A[[\hbar]]$, lifting the structure we already had, such that $d(a b)=d(a) b+(-1)^{|a|} a d(b)+\hbar\{a, b\}$. When we deform, d is not a derivation, and the failure is the bracket.

The failure of $A[[\hbar]]$ ot be an dga at all (that is, to have a product compatible with d), is measured by \{\}. You know as a topologist that commutativity is a lot more information than associativity.
[Is that a BV algebra with an \hbar ?] I call this a BD algebra, for Beilinson-Drinfeld. In the mid-90s, this was shifted and given degree -1, it's kind of annoying.

I can see from the audience reaction that this is confusing. Let M be a manifold. Then $\mathcal{O}\left(T^{*}[-1] M\right)$ has a Poisson bracket of degree 1 .
[What is equivalence?] It's homotopy equivalence. This should be a family where the base is unintelligbleon the n-simplex, like in John's talk.

In this situation, what does it mean to quantize? In degree 0 it's smooth functions, in degree -1 it's vector fields and so on.

$$
\Gamma\left(M, \wedge^{2} T M\right) \quad \Gamma(M, T M) \quad C^{\infty}(M)
$$

A volume form on M gives one of these. This is an operadic definition of a volume form. Let me explain why this is true.

If I choose an n form on M, ω, then we get an isomorphism like $C^{\infty}(M)$ I can associate with top forms, vector fields with $n-1$-forms, and so on. I'll write down the quantization from this. I can choose to only deform the differential. How can I do this? I have the de Rham differential on Ω. We can do this using our isomorphism. That's the divergence for the volume form $\hbar D i v_{\omega}$

The point is that polyvector fields with this differential, $\mathcal{O}\left(T^{*}[-1] M\right), \hbar D i v_{\omega}$ is a quantization, so that $\operatorname{Div}_{\omega}(\alpha, \beta)=\operatorname{Div}_{\omega}(\alpha) \beta+\alpha \operatorname{Div}_{\omega}(\beta)+\{\alpha, \beta\}$.

There is a natural set of deformations equivalent to volume forms. Observe that $\mathcal{O}\left(T^{*}[-1] M\right)$ has an \mathbb{R}^{*} action by scaling the cotangent fiber $\} \rightarrow \lambda\}$ where we scale by λ. Now, \hbar and the Poisson bracket are next to each other. Let \mathbb{R}^{*} act on
functions on \hbar by sending \hbar to $\lambda^{-1} \hbar$, and then our axioms are \mathbb{R}^{*}-invariant and we can ask for an \mathbb{R}^{*}-invariant quantization.

The lemma is, that here, volume forms give quantizations, invariant quantizations, and these are all you find. There is a bijection between volume forms on M up to multiplication by a scalar and \mathbb{R}^{*}-invariant quantizations.

In particular, we can talk about volume forms for these infinite dimensional things.
[Can you think of this as the unintelligble?] Yes, exactly. I am doing quantum field theory, so there's a measure, formally $e^{S / \hbar} d \mu$.

Let's talk about the infinite dimensional situation. So M is an elliptic moduli problem. $T^{*}[-1] M$ has a degree -1 symplectic form which correpsonds to $\mathcal{L}_{M} \oplus$ $\mathcal{L}_{M}^{\prime}[-3]=\mathcal{L}_{T^{*} M[1-]}$.

If $U \subset X$, I'll define, again, $\mathcal{O}\left(T^{*}[-1](M(U))\right)$ to be $C^{*}\left(\mathcal{L}_{T^{*}[-1] M}(U)\right)$, the Chevalley cochains on the Lie algebra. This has a Poisson bracket of degree 1 (it's nonessential that this be a cotangent).

Definition 2. A quantization is a quantization of each of these $\mathcal{O}\left(T^{*}[-1] M(U)\right)$, \mathbb{R}^{*}-invariant, compatible with the natural maps (let me explain these.

There are maps $\mathcal{O}\left(T^{*}[-1] M\left(U_{1}\right)\right) \otimes \mathcal{O}\left(T^{*}[-1] M\left(U_{2}\right)\right) \otimes \cdots$ which maps to $\mathcal{O}\left(T^{*}[-1] M V\right)$ where U_{i} is in V, all disjoint, maps of Poisson algebras. If U_{i} are not disjoint, this is not a Poisson map.

So we want quantization to be compatible with this structure. This leads to what we call a "factorization" algebra, where $\operatorname{Obs}(U)$ is the cochain complex $\mathcal{O}\left(T^{*}[-1] M U[[\hbar]]\right.$, with maps as above.

If X is compact, then this moduli space $M(X)$ is finite dimensional. The upshot is that a quantization of the field theory leads to, on the whole space, a volume form on the finite dimensional dg manifold $M(X)$. In good situations this might be the germ of a smooth manifold. This is a volume form given by local data on X.

Let me explain how you might construct these and indicate why the volume form is unique.

Theorem 1. (Gwilliam)
There is a deformation complex, a sheaf you associate by a simple procedure, obstructions on X associated to M, a sheaf of cochain complexes such that $H^{1}\left(X, \operatorname{Obstr}^{n}(M)\right)$ are the obstructions to quantization, and if the obstructions vanish, then the space is described by H^{0}, but this describes the deformations of a given quantization. In many examples, these cohomology groups vanish.

Here is an example. Let E be an elliptic curve, Y a complex manifold, and M the holomorphic maps $E \rightarrow Y$ near constant maps. What you get from the cotangent theory then, $T^{*}[-1] M$ is what Witten calls the " $N=(0,2)$ susy twisted σ-model. Maybe I'll tell you, this global moduli space is $T[-1] Y$, and $H^{\leq 0}\left(O b s t r^{n}\right)=0$, $H^{1}($ Obstr $)=\mathbb{C}$, and the obstruction to quantization is $c h_{2}(Y)$, so if that vanishes there is a unique quantization (this gets to Y by pushforward). Then $M(E)$ has a volume form, $\operatorname{Vol}\left(Y^{E}\right)=W i t(Y, E)$.

Grady and Gwilliam have this result: Y is copmlex, lecally constant maps $S^{1} \rightarrow$ Y, then there is a unique quantization $\operatorname{Vol}\left(Y^{S^{1}}\right)=\int_{Y} T d(Y)$. A last one, if M is the instanton moduli space, X a 4-manifold, G a simple group, thene there is a
unique quantization which gives a canonical, conformally invariant measure on the instanton moduli space.

I think I'll stop there.
[unintelligble] [Are these obstructions related to what physicists call anomalies?]
Yes, they're the same.

