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1 Introduction
Søren Galatius

[I’m Dev Sinha, I’ve been doing some of the non-mathematical bits of putting this on. The
mathematical organizers, most of them, are over there, Søren, Johannes, Oscar, and David.
Nathalie and Paolo couldn’t make it out. The one last bit of essential hosting that I plan to
do is, today at 1:30, I’ll give you a tour of Willamette Hall. We reserved a few different rooms
whose locations might not be obvious from the numbers. We reserved a lot of rooms because
the philosophy is that the most important part is not the talks but getting you guys to talk
to each other and so on. So we’re not sure where people are going to be. The organizers
will have their offices in this building. Hopefully, magically, people will start doing good
mathematics. There’ll be, as is often the case, excursions on Wednesday afternoon, which
could be as simple as taking a long walk on the Willamette river, but some of the locals will
be willing to take people away, and that will be on the wiki. Some people may take a bus
to a hike just south of town. I wanted to introduce Artema, who has done good work, like
putting together the folders. We guessed that people with U.S. addresses need those kinds of
reimbursement forms, and vice versa. If you have questions about reimbursement, you can
talk to Artema. The books that we referenced will also be in Willamette hall. The articles
should be on a website soon. That’s about it, let me turn things over to Søren.]

Thanks, thanks to Dev for putting on everything. I’m not going to say that much. I wanted
to say also a little bit of practical information. In particular the exercise sessions, maybe
we should have called them discussion sessions. The point is to have time to talk about the
talks, talk about related material. The plan is to improvise those. We tried to make some
actual exercises as a way to help you think about what happened and what are the, but you
should think of the exercises as a way, maybe, of starting discussion. They could also be used
to, I know you come from slightly different backgrounds, we could use an exercise session to
fill in some background. So I should say that, if there’s something you’d like to hear more
about, or hear again, well, there’s also several different rooms, we can do several things in
parallel.

[There is one room large enough to hold everybody. But the idea is not to do that the whole
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time.]

There are also evening sessions, maybe those we could have a beer at the same time. The
point of thewhole thing is to learn something, and learning something here, the point, in
the grant, was to have more than talks, also something interactive. We gave these exercises
as sort of one thing you could try to figure out. For the lectures, all the lectures will be
given by you, so they’re all being given by nonspecialists, so as to have a relaxed atmosphere.
Questions should be encouraged but the speaker can feel free to defer them to the exercise
session, to say, “I’m not going to answer that right now.”

Then I thought I would say a little about the recent history of what we’re talking about. Are
ther any questions so far? I’m happy to see that so many people showed up.

So the program is centered around a theorem of Madsen-Weiss, around 2002, but we tried to
make it somewhat broad. The last day, Friday will be a lot about this theorem, but before
that there will be a bunch of other stuff, background, and so on. I’ll maybe talk for fifteen
minutes, not say anything precise, just sort of outline a little bit. So Madsen and Weiss’
theorem is about a space, Mg. From one point of view it is the set of Riemann surfaces of
genus g up to isomorphism of Riemann surfaces. Riemann, I think, realized that these come
in families, and this is a space of [real] dimension 6g − 6. Skipping ahead, this has been
studied from many different points of view. Mumford, in the mid 1980s, raised the question
of the cohomology of this space, H∗(Mg, Q), and defined certain classes κi ∈ H2i(Mg, Q),
now called Miller-Morita-Mumford classes. It was known by Harer in the 1980s, he said,
paraphrasing, that Hk(Mg, Q), if g is large enough is independent of g, if g � k. This
is called the “stable range.” Mumford made a conjecture that the Miller-Morita-Mumford
classes are algebraically independent and generate the cohomology in the stable range. So
Q[κ1, κ2, . . .] → H∗(Mg, Q) is an isomorphism in the stable range.

Skipping ahead a little more, Madsen and Weiss proved this, actually a slightly stronger
integral version, for integral homology. One of the goals of the program today is to give,
formulate the integral homology version, let me say a few words about it. There is a space,
which we will get back to, called BΓg, the classifying space of the mapping class group, which
is classical, which has the same rational homology as Mg, and so the same in cohomology.
Harer proved that Hk(BΓg, Z) is independent of g for g � k. That’s the first step for proving
something integral. In the mid 1990s, around 95, Ulrike Tillmann proved a theorem that
started this way of thinking about it, that there is an “infinite loop space” E0 = ΩE1 =
Ω2E2 = · · · which has the same cohomology as BΓg in a stable range, a map BΓg → E0

which induces an isomorphism in H∗( , Z).

If you know that a space is an infinite loop space, there’s a good chance that it is equal
to something you’ve seen before. Tillmann’s theorem was kind of abstract. She didn’t say
which infinite loop space it is. Madsen made a conjecture about which infinite loop space it
would be, and Madsen and Weiss proved that. They called it Ω∞CP∞−1 and later renamed
it Ω∞MTSO(2). This is a space with rational cohomology Q[κi, κ2, . . .], and Madsen and
Weiss proved that this infinite loop space is in fact this particular one. We’ll talk about this
space later. This rational cohomology is in some sense “easy.” So the theorem of Madsen
and Weiss is that there is a map BΓg → Ω∞MTSO(2) which induces an isomorphism in
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homology in the stable range (integrally). Harer proved that g ≥ 3k was a good range, and
now it means g > 1.5k + c. That settled Mumford’s conjecture, but it’s a much more precise
statement.

We’ll hopefully get to that by the end of Friday. We tried to partition the talks into different
topics each today. Today there will a talk about MTSO(2) and about Mg. Tomorrow will be
about, one main ingredient in their proof is h-principles. I think it’s an important technique.
Thursday will be about Harer’s theorem, that Hk(BΓg) is independent of g when g is large,
and Friday will be about Madsen and Weiss’ result.

Saturday we said wrap up. One thing we thought of doing was talking a bit about what are
the directions this is moving in, what are the relations to other topics. Questions?

[What does the theorem say about integral homology of Mg?]

The first thing is that it’s very complicated. You might think there’s a nice formula, but it’s
much uglier than you thought. You can work quite hard and calculate the mod p homology.
The answer is not something I can just state now. The mod 2 homology is a polynomial
ring on infinitely many generators, but saying what they are is kind of complicated. I think
there’s no reason for a half hour break, so now we’ll start the next lecture a bit early, how
about twenty five minutes past.

2 Teichmüller theory and moduli spaces

The main object of study will be Fg, a Riemann surface of genus g, smooth, oriented, con-
nected, compact, two dimensional manifold without boundary. Consider compact structures
on Fg, that is, smooth endomorphisms J : Fg : TFg → TFg so that J2 = −I and 〈Jv, v〉 > 0
for v ∈ TFg.

The space of complex structures on Fg can be identified with, well, there is a bundle with
fiber C = GL+(R2)/GL1(C) ∼= GL+(R2)/GL1(R) × SO2(R) where M goes to MJ0M

−1,

where J0 is the standard endomorphism
(

0 −1
1 0

)
. Then C is homeomorphic to the unit

disk D, via (
a b
c d

)
7→ µ =

1 + iτ

1− iτ

where τ = a+ib
c+id .

Theorem 1 For Riemann surfaces, complex structures and almost complex structures are
the same.

Theorem 2 the space of complex structures on Fg is contractible.
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Now I want to introduce Diff(Fg), the group of orientation preserving diffeomorphisms of
Fg, and Diff0(Fg), those which are homotopic to the identity. So Diff(Fg) acts on the
complex structures H(Fg) by sending (J, f) to df−1 ◦ J ◦ df .

So here are some interesting things about the complex structures.

1. H(Fg) is a connected complex manifold.

2. Diff(Fg) acts continuously, effectively, and properly on H(Fg).

Moreover, Diff0(Fg) acts freely on H(Fg), and the quotient Tg is H(Fg)/Diff0(Fg), the
Teichmüller space. This quotient is also a complex manifold.

Now an important theorem tells us

Theorem 3 Φ : H(Fg) → Tg is a Diff0(Fg)-principal bundle, and moreover a topologically
trivial bundle. We can show that Φ is holomorphic, but not holomorphically trivial.

Theorem 4 (Teichmüller) Tg is homeomorphic to R6g−6

Theorem 5 H(Fg) → Tg is topologically trivial.

Proof.There is a map g;Tg × I → Tg so that g(T, 0) = τ0 and g(τ, 1) = τ and then by lifting,
f : Tg × I → H(Fg) and f(τ,1) = σ(τ) is a section for Φ. Then H(Fg) is homeomorphic to
Tg×Diff0(Fg). I didn’t introduce the topology, but the idea is that Tg×Diff0(Fg) → H(Fg)
by (τ, f) 7→ σ(τ)f and this is a homeomorphism. 2

What is a Riemann surface with boundary? This is obtained by removing n disjoint open
disks from a Riemann surface. We denote this by Fg,n, and we can imagine this like this
picture.

What is the difference between boundary and punctures? A puncture is just a removed
point. A boundary component is fixed by an automorphism and punctures can be permuted
by automorphism.

Now I would like to show, we’ve seen Diff0(Fg) is contractible, and the same holds for
Riemann surfaces with boundary. So Diff(Fg, D) is the group of diffeomorphisms Fg → Fg

which fix D pointwise. This is the same as the group Diff(Fg−D, δ(Fg−D)), that is, maps
that are the identity on the boundary. The components of this group are also contractible.

Consider the space of embeddings of D into Fg. So Diff(Fg) acts transitively on Emb(D,Fg),
so I can suggest with this picture, so if you embed the disk, you can find a diffeomorphism
between these disks. So the map Diff(Fg) → Emb(D,Fg) is in fact a fiber bundle with fiber
Diff(Fg, D). So we get

Diff(Fg, D) → Diff(Fg) → Emb(D,Fg)
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and so we get that Emb(D,Fg) is a K(π, 1).

For a proof, consider immersions Imm(D,Fg). Let S(f) = max{r|f is injective on |Z| < r}.
If S > 0 then f 7→ f((n− t)S(f)z) is a retraction.

The differential d : Imm(D,Fg) → C∞(D,Fr(Fg)) is continuous but not surjective. For
this map, by an h-principle, this is a weak homotopy equivalence. We deduce that Fr(Fg) is
aspherical, D is contractible.

We will need surface bundles to define some classes.

Definition 1 Let F be a smooth, oriented manifold. An F -bundle is a bundle π : E → B
with fiber F and structure group Diff(F ) (orientation preserving). If F = Fg or Fg,n, then
we would call this a surface bundle.

One motivation for this, we know the topological classification of F bundles, we know that
isomorphism classes of F -bundles are the same as homotopy classes of maps [B,BDiff(F )].
If B = Sn and F = Fg, then [Sn, BDiff(Fg)] ∼= πn(BDiff(Fg))/π1(BDiff(Fg)) =
πn−1(Diff(Fg))/π0(Diff(Fg)).

So now we want to study the object by which we’re quotienting.

Definition 2 Γg = Diff(Fg)/Diff0(Fg).

Remark 1 Γg is discrete.

So Γg acts properly discontinuously on Tg, but Γg does not act freely. So the quotient space
will not have similar properties.

Definition 3 Mg = Tg/Γg, the moduli space of genus g.

So we should get an exact sequence

Diff0(Fg) → Diff(Fg) → Γg

and we’ve shown that the first of theses is contractible, so that BDiff(Fg) → BΓg is a
homotopy equivalence.

This was already said in the introduction, that we have a rational homology equivalence
ϕ : BΓg → Mg. So consider the universal bundle EDiff(Fg) → BDiff(Fg). Look at the
associated bundle with fiber Fg, mapping to BDiff(Fg). Then π−1(b) is a Riemann surface
and BDiff(Fg) maps to Mg by taking b 7→ [π−1(b)]. [To get this map, you need to choose
complex structures on π−1(b). So because this is contractible, you can pick such complex
structures coherently.]
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Lemma 1 Γg has a torsion free normal subgroup H of finite index.

Now consider Γg/H and you get the diagram

BH
h.e. by LES//

finite K-covering

��

Tg/H

quotient

��
BΓg ϕ

// M

Lemma 2 If X is a CW complex and G is a finite group acting cellularly on X. If g fixes
a cell then it fixes it pointwise.

Then H∗(X, Q)⊗QGQ ∼= H(X/G, Q). We can follow and see that H ∗(BΓg, Q) → H∗(Mg, Q)
is an isomorphism.

Now we construct the MMM -classes. We look at Fg-bundles π and consider the associated
Diff(Fg) bundle Eg → B. The fibers are diffeomorphsm preserving maps Fg → π−1(b).

Let ξ be the bundle Eg ×Diff(Fg) TFg → Eg × Diff(Fg)Fg
∼= E, and ξ|Eb

= π−1(b) ∼=
Tπ−1(b). There is an Euler class e(ξ) ∈ H2(E, Z) and ei+1 ∈ H2(i+1)(E, Z) and π(ei+1) =
ei ∈ H2i(B, Z).

Now taking E = EDiff(Fg) and B = BDiff(Fg), you get exactly ei ∈ H2i(BDiff(Fg), Z) ∼=
H2i(BΓg, Z), and by the isomorphism we get classes κi ∈ H2i(Mg, Q). The κi are the classes
from the introduction.

We can once again formulate the Mumford conjecture, that there is an isomorphism Q[κ1, κ2, · · · ] →
H∗(BΓ∞, Q).

3 Pontryagin-Thom Theory I
Hiro Tanaka

[I want to thank the organizers for assigning me this talk. I apologize that you have to learn
it from someone who just learned it. There are two parts. The first part will cover the
Pontrjagin Thom theorem, which gives an isomorphism of two groups. I think it’s actually
rings, but we’ll keep it simple. So I’ll write down π1(MB), which looks like the fundamental
group of a space, but it’s actually a spectrum, and I’ll define that. The other side will be
ΩBf

n . n is a dimension, and this is the equivalence classes of n dimensional manifolds up to
cobordism. This is easier than diffeomorphism. I’ll be using smooth conditions.

I’ve explained almost completely what this is between. I didn’t explain what this is an
isomorphism between. B and f will be what I care about. In general it’ll be oriented or
unoriented cobordisms for these talks.
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Part two will be about characteristic classes and characteristic numbers. The upshot is going
to be, I’ll have Stiefel-Whitney classes and numbers. These are unoriented. In the case of
unoriented cobordisms, these are the best you can do. I gave a big picture, any questions?

All right, Part I A, we’ll talk about Thom spaces. This is a pointed topological space
associated to vector bundles over B. Let me give you the general context. Assume you have

a vector bundle
E
↓
B

. I’m going to define Th(E) as the bundle of disks of unit length Disk(E)

mod out by the spheres Sph(E), and it comes with a basepoint which is the collapse of the
sphere bundle.

Here are some examples.

1. What if you have
Rn

↓
pt

? Then Th(Rn) = Sn.

2. If you have
V
↓
B

and
Rn

↓
B

, what is Th(Rn ⊕ V )? It’s actually ΣnTh(V ).

3. This also is an important example. I hope people have seen this before. So we can
look at the Grassmannian Grk(Rn+k), and we can ask of the colimit of these over
the embeddings into Grk(Rn+k+1). So we’ll call this BO(k) or Grk(R∞). There’s a
tautological Rk bundle over each one of these spaces that passes to the colimit and

gives the bundle
γk

↓
BO(k)

. The fiber over any point in the Grassmannian is the plane

that that point defines.

So now let me give

Definition 4 MO(k) is the Thom space of the vector bundle γk.

I want to point something out that will lead me to spectra. Inside each of these guys
Grk(Rn+k) into Grk+1(Rn+k+1) so that the pullback of the canonical bundle is the canonical
bundle summed with the trivial bundle. So we get

γk ⊕ R //

��

γk+1

��
BO(k) // BO(k + 1)

So I get a map Th(γk ⊕R) → Th(γk+1). But the left hand side is the same as ΣTh(γk). So
we get a sequence of spaces which are Thom spaces of the tautological bundles, with maps
σk : ΣTh(γk) → Th(γk+1). This is a spectrum (or a prespectrum).
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Definition 5 A spectrum is a sequence of pointed spaces Xk and structure maps ΣXk →
Xk+1 indexed over k ≥ 0.

Let me give you enough information for you to understand the right hand side of what I
wrote down. Let me define the homotopy group of a spectrum.

Definition 6 If X = {Xk} is a spectrum then πn(X) = colimπn+iXi.

What diagram is this a colimit over? Say you have a map f ∈ Hom(Sn+i, Xi), we can apply
suspension to get a map in Hom(Sn+i+1,ΣXi) and by composing with the structure map of
X, I get a map in Hom(Sn+i+1, Xi+1). So then MO is this spectrum, and the right hand
side is a homotopy group of this spectrum.

Let’s talk about the unoriented cobordism group. I’m just going to fix a dimension to make
things easier. The empty manifold has whatever dimension you want. The empty manifold
is a manifold of dimension n. So as, well,

Definition 7 There are several ways I can say this. Two n-manifolds M0 and M1 are
cobordant if there exists a compact manifold N so that the boundary of N is M0 t M1, the
disjoint union of the two manifolds.

I’m assuming people have seen this but examples help. As an example, this is reflexive, since
the boundary of M0 × I is M0 tM0.

As a set, Ωn is the set of closed n-manifolds modulo cobordism. The unit of the group I’m
putting on this is the empty manifold, and the addition is disjoint union.

[Do you want to say a few words about this being a set?]

[Whitney embedding theorem.]

I couldn’t find a definition of this B, f thing that didn’t seem a little hairy, so I apologize.
The spirit is that after defining a bunch of trivial line bundles, things are the same. That’s
the spirit.

So let me say something about cobordisms with orientations. What I want to note is that
there is a natural space that looks like a cover of the Grassmannian of k-planes, that’s the
Grassmannian of oriented k-planes Gror

k (R∞), and I can denote the sequence of spaces as Bk.

Say that we have a manifold M with a bundle on it of dimension k,
E
↓
M

, then by general

classifying space theory, this gives rise to a homotopy class of maps M → Grk(R∞). What
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we can ask is, we have the space Gror
k , and we can ask if there’s a lift:

Gror
k

��
M

ξ
//

ξ̃
==

Grk

Such a lift is called a Gror
k , fk structure. This would generalize to a Bk, fk structure.

An observation: Since Gror
k embeds in Gror

k+1, a Grk, fk structure induces a Grk+i, fi-
structure on E ⊕ Ri.

[Discussion]

To be continued, maybe. You can forget the last three pages of your notes. A cobordism
of oriented manifolds M0, M1 is a compact manifold N , oriented, such that the induced
orientations on the boundary are the assumed and reversed orientations of M0 and M1,
respectively.

This still allows the cylinder to be a cobordism from M to itself. Now we have an idea about
the construction of the map. I’ll just give you two maps.

Ωunor
n

α --
ll

β

πn(MO)

So to construct α, given i : Mn → Rn+q, the normal bundle
ν
↓
M

1. gives a classifying map M → BO(q) and

2. gives a Thom space Th(ν).

The first thing means we have a map Th(ν) → Th(γq) and the tubular neighborhood theorem
gives a map Rn+q → Th(ν), which we can think of as Sn+q → Th(ν) because everything near
infinity is mapped to the basepoint. The composition gives an element of πn+q(MO(q)).

Once you have this, you can collapse Rn+q in two stages, collapsing everying off near infinity,
and then collapsing the points at ∞.

The resulting element of the group does not depend on the choices involved, the representative
of the cobordism class and the embedding. You can show independence of the embedding by
embedding in a big enough Rn. You also need to show independence of cobordance class.

So now let’s give β. Given f : Sn+q → Th(γq), let’s look at f |Rn+q⊂Sn+q and let’s also look
at the the zero section Grq(R∞) ⊂ Th(γq). I can find something in the homotopy class
transversal to this section, so find a homotopic f transversal to this. This is what they
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teach you in your first differential topology class. Then I can look at the preimage of the
intersection and the preimage is again a smooth manifold sitting inside Rn+q. What is the
codimension? The codimension is q so we get a manifold of dimension n. This one it’s easy
to answer, whether two homtopic maps give rise to a cobordism. You’ll get a cobordism in
the preimage assuming transversality.

I claim this is an isomorphism of groups. This should respect the group map in both direc-
tions. The theorem is that these are inverse group homomorphisms.

I have ten minutes for part II, which is what I thought would be the fun part.

Let me tell you what Stiefel-Whitney classes are. I apologize for thinking I had a ninety
minute talk.

It would be nice if we had cobordism invariants. So let me give a definition.

Definition 8 A characteristic class is a way to associate to a vector bundle
E
↓
M

, elements

in H∗(M). The coefficients depend on your interest. We will use Z2 coefficients. Let wi(E)
be in Hi(M, Z). These should satisfy (at least) the properties:

1. w0(Rn) = 1 and wi(Rn) = 0 otherwise.

2. w∗(V ⊕W ) = w∗(V )⊕ w∗(W )

3. Naturality: w∗(f∗(E))) = f∗w∗(E)

4. If |E| = n then wk(E) = 0 for k > n

5. w∗(
γ1

↓
RP1

) is not 1 [0]

We have cohomology classes. You can get numbers by integrating over a fundamental class.
We can take products that end up in the top dimension and integrate over [M ]. So such
products for TM integrated against [M ] are the Stiefel-Whitney numbers of M .

Proposition 1 If M = δW then all Stiefel-Whitney numbers are zero.

Proof.If M = δW then TW |i = TM⊕R over M . Using the properties I wrote down, when we
pull back Stiefel-Whitney classes associated to TW we get those associated with TM . Then
[M ] ∈ Hn(M, Z2) = δz for z ∈ Hn+1(W,M, Z2). So given a polynomial f of Stiefel-Whitney
classes, 〈f, δz〉 = 〈i∗fW , δz〉 = 〈fW i∗δz〉, but i∗δ is part of the long exact sequence of a pair
and thus gives zero.

I’ve gone five minutes over so I have twenty-five minutes. Just kidding. There’s just one
more observation I want to make. When I did the Thom space construction we were looking
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at normal bundles. If we have an embedding Mn ⊂ Rn+r, we can look at two vector bundles
associated to this, the tangent or normal bundles. The Stiefel-Whitney [unintelligible]vanish
for the tangent bundle if and only if the same is true for the normal bundle. You can see
this from axiom number two. Then this is a cobordism invariant. The really big theorem
is that these form a complete invariant, two manifolds are cobordant if and only if their
Stiefel-Whitney numbers are the same.

[Let me give a quick proof. You can get M → BO(n). If it’s oriented, you get [M ] 7→
HnBO(n). All characteristic numbers are doing is telling you about where this lands. This
is like evaluating the monomials in H∗(BO(n)). If all of the numbers vanish it’s like getting
a null homology. They’re just encoding which homology class you get.]

[I think Thom’s theorem, a surprising thing is that you can calculate these explicitly, the
cobordism groups. You can get a product with the product. The cobordism ring is F2[yi, i 6=
2k − 1].]

4 Pontryagin Thom Theory II

Let’s define MTSO(n). So now G(n, k) is the Grassmannian of oriented n planes in Rn+k,
and these sit inside each other, G(n, k) ↪→ G(n, k + 1), where the pullback of γ is R⊕ γ.

We can apply the Thom space construction to get a spectrum with spaces MTSO(n)n+k =

Th(γ⊥n ) with structure maps. Given a fiber bundle M
i

↪→ E → B of closed manifolds,
Embedding E ↪→ B × Rn+k for large enough k, over B, this has a normal bundle, let’s call
it −τ i.

Now over each point of the base we have a map Sn+k ×{b} → Th(−τ i)|Eb
. Taking the maps

together gives a parameterized Sn+k ∧B+ → Th(−τ i).

Let τ be the tangent bundle along the fibers with classifying map E → G(n, k), the fibers
are n-dimensional. This has two structures on it, the maps τ → γn and −τ → γ⊥k . So we get
Th(−τ) → Th(γ⊥n ) so you get Sn+k ∧B+ → Th(−τ) → Th(γ⊥n by composition.

So B → Ωn+kTh(γ⊥n ) ↪→ Ω∞MTSO(n). You can always associate to a spectrum an infinite
loop space, by colimit of spaces. So it’s the colimit of Ωs+nTh(γ⊥s ).

This map I want to call αB . These are in one to one correspondence with maps Σ∞B+ →
MTSO(n) by adjunction.

First, homotopy class of α does not depend on i. Second, H∗(E) ∼= H∗+kTh(−τ) and we
can use β to get from there to H∗+k(Sn+k ∧B+) ∼= H∗−nB which coincides with p. I won’t
prove this. I can use the Serre spectral sequence or take this as a definition [laughter].

We have an embedding from −τ
j→ E × Rn+k over E and we have an Euler class e = e(τ)

and now, let x ∈ H∗(E), then the following formula is true: I can take p!(e∪x) = σβ∗j∗σ(x)
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All of these remarks in the construction, they are due to a paper in the [sixties? 74? Names
given that I missed]

Now we consider the universal case. Fix an oriented manifold Mn and let G = Diff+(M),
the orientation-preserving diffeomorphisms. Then we equip the space of embeddings of
M into Rn+k with the Whitney C∞ topology and define Emb(M, R∞) as the colimit of
Emb(M, Rn+k). I want particular embeddings, which are actually embeddings restricted to
the unit disk bundle. You can show that the inclusion of such into all embeddings is a weak
homotopy equivalence.

Now Emb(M, R∞) is weakly contractible. This follows from Whitney embedding theorems.
Furthermore, it carries a free G-action via precomposing with diffeomorphisms. The projec-
tion is locally trivial so we get the model for the universal G-bundle

G → Emb(M, R∞) → Emb(M, R∞)/G

So this is a model for G → EG → BG.

[Do you need fat embeddings?]

[They are preserved by the diffeomorphism group.]

Let me sketch what this means. You want to have something like what follows. If P → B is a
principal G-bundle, and P is weakly contractible, then we have a one to one correspondence
between classes of maps from X to B and principal G-bundles over X. Let me sketch that
this is onto. Given some bundle over X, I can form the associated bundle over X with fiber
P and this admits a section. The fiber is weakly contractible. You can show that a section
of this bundle corresponds to a G-equivariant map Q → P , and you can take quotients, and
get

Q //

��

P

��
Q/G // P/G

Now we have an embedding from Emb(M, R∞)×G M → BG× R∞ over BG:

Emb(M, R∞)×G M

p
((PPPPPPPPPPPP

// BG× R∞

yytttttttttt

BG

So we can take I(ϕ, M) = ([ϕ], ϕ(M)). Now we want to proceed, consider the normal bundle
of M .

So let BGk be the space {x ∈ BG|I(p−1(x)) ⊂ BG×Rn+k}. Then define EGk = π−1(BGk).
Now we can define the normal map −τk as (EGk ×G TM)⊥ ↪→ (EGk ×G M)× Rn+k. Note
the following. If we pull back −τk+1 over EGk+1×G M this again splits as −τk and a trivial
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line bundle. Now we can parameterize TP . We get

Sn+kBGk+ → Th(−τk) → Th(γ⊥k ).

This gives us a map BGk → Ωn+kTh(γ⊥k ) which in the colimit gives BG → Ω∞MTSO(n).
For this construction it was not necessary for B and E to be manifolds. We started when B
was a manifold, and then we did it on BGk. The last step is to extend this all to BG.

Now let me compute the cohomology of this loop space with Q coefficients. This is done in
three steps, to H∗Ω∞MTSO(n). First, we calculate

H∗BSO(n) =
{

Q[p1, . . . , pm] , n = 2m + 1
Q[p1 ldots, pm, e]/(e2 − pm) , n = 2m

Then we show the stable Thom isomorphism H∗BSO(n) ∼= H∗−nMTSO(n), and then we
define a sectrum Bm = ΣmG(n, m− n)+, and we can show that B ∼= Σ∞+ BSO(n).

Now we consider from these spectra, the n + k space and consider cohomology

H∗(Bn+k) = H∗−n−kG(n, k) ∼= H∗−nTh(γ⊥k )

The isomorphisms on the spaces induces an isomorphism on the inverse limit in Q coefficients.
In general it is not true that isomorphisms of all the spaces are isomorphisms of spectra.

The last step is to take the infinite loop space of MTSO(n). Let’s start with the identity,
which gives us a spectrum map Σ∞Ω∞MTSO(n) to MTSO(n), which induces a map in
cohomology, w∗. The next statement is that this induces an isomorphism if we take the
universal graded commutative algebra U(H∗>0(MTSQ(n))) which maps via w∗ to one con-
nected component Ω∞0 MTSO(n). The right side is a Hopf algebra and you can ask, you can
say it’s generated by the primitive elements, but I’m not totally sure about the proof.

The last part will be about characteristic classes. I want to define the universal MMM -
classes. Let c ∈ H∗BSO(n) and e the Euler class of τ and f be the classifying map of τ .
Then an MMM -class with respect to c is p!(e ∪ f ∗ c) ∈ H∗BG. This is a class in BG, the
natural place for characteristic classes of G-bundles.

This definition works for all manifolds M You can construct characteristic classes in the
cohomology of BG. Here we define them for all diffeomorphism groups G and all manifolds
M . Here I can take ci

1 and pull back along f∗, getting ei and then get p!(ei+1) = κi.
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I want to close with one diagram:

Σ∞(EG×G M)+ // Σ∞BSO(n)+

M(−τ) //
?�

OO

MTSO(n)
?�

j

OO

EG×G M //

��

BSO(n)

BG

::

Proposition 2 MMMc = α∗ ◦ j∗(c)

[Some discussion of the fat embeddings]
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