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1 Sheaves on Categories

The last lecture we saw an equivalence between Ω∞−1MTO(d) ∼= |Dd|. Today, we’re going to
complete the proof from |Dd| to BCd I’ll start with generalities about categories of sheaves,
sheaves of categories, and then we’ll approach the proof.

So again, X is the category of manifolds without boundary with smooth maps.

Definition 1 A sheaf of categories is a functor X op → Cat, satisfying the sheaf condition.
That is, we can look at ob F (U) and mor F (U), and we require them to be sheaves.

For each sheaf of categories we will get a topological space in the following way

Definition 2 The realization of F is a topological category |F |, where ob|F | = |obF |, the
geometric realization, [q] 7→ obF (∆q

e). Morphisms are the same: mor|F | = |morF |, · · ·

Now we have a topological category, we can take its classifying space, B|F | = |N.|F ||. The
first time we use a simplicial set to evaluate a sheaf, and the second time we have a simplicial
space given by the nerve of a topological category.

Now we have a trick, where we can do these in the opposite order. Given F ∈ Sh(Cat), there
is a sheaf of sets βF , so that |βF | ∼= B|F |. This is in the Madsen-Weiss annals paper. I
won’t prove the equivalence but I’ll describe βF in some detail. Fix a big enough set J . An
element of βF (X) is (U,Φ), where U = {Uj} is a locally finite open cover of X. Over each
piece of U , we will have morphisms, for US =

⋂
j∈S Uj , Φ = {ϕRS ∈ morF (US)|R ⊂ S ⊂ J}

satisfying conditions.

1. ϕRR = idCR
for some CR in the objects of F (UR).

2. ϕRS should be from CS → CR, which is restricted to US .

3. a cocycle condition, for a triple R ⊂ S ⊂ T , we should have ϕRT = varphiRS |UT
◦ϕST
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Here is an example. Let F = Map(—,C ), for C a topological category. Then the objects
of XU are qR⊂JUR and the morphisms are qR⊂SUS , the poset of (R,X) for X ∈ UR an
element (UΦ) in βF (X) gives Φ : XU → C .

Now we’re going to construct a map X → BXU → BC , with a partition of unity.

Look at the case where C = G, then this data is exactly a principal G-bundle over X. The
cocycle condition tells you how to patch together pieces.

So we’ve constructed βF (X) → Map(X, BG). Recall we have a notion of concordance, so
when we go to concordance classes and homotopy classes of maps, we get βF [X]→ [X, BG]
which becomes [X, |βF ] and [X, B|F |]. So the equivalence of these two spaces implies exactly
the classification of vector bundles.

Maybe I’ll write the steps on the side of the board and leave them up for good.

Ω∞−1MTO(d)
√
∼= |Dd|

A← |βDt
d |

√
∼= B|Dt

d |
D→ B|Ct

d |
C← B|Cd|

B∼= BCd.

We’ll go alphabetically, proving things along the way.

The main tool will be the relative surjectivity condition (RSC). So F1 → F2 of Sh(Set)
induces |F1|

∼=→ |F2| if for all closed A ⊂ X and all germs near A, that is, elements S of
colimU⊃AF (U), the map

F1[X, A, S]→ F2[X, A, τ(S)]

is surjective.

Definition 3 Let Dd(X) be the set of sets W ⊂ X ×R×Rd−1+∞ equipped with π : W → X
is a submersion with d-dimensional fibers and (π, f) : W → X × R is proper.

Now let Dt
d (X) be pairs (W,a) where W ∈ Dd(X) and a : X → R so that f : W → R is

fiberwise transverse to a. So a(X) is a regular value for fX : WX = π−1X → R.

The morphisms are a poset (W,a) ≤ (W ′, a′) when W = W ′ and a ≤ a′. As a poset it becomes
a category with a single map between comparable objects from the lesser to the greater.

This defines our first couple of sheaves of sets and categories, so now let’s show the equivalence
labelled A above.

Let’s first think about what this map is, |βDt
d | → |Dd|. An element (U,Φ) ∈ βDt

d (X) is a
cover U of X and Φ = {ϕRS : (WS , aS)→ (WR, aR)} where WS = WR|US

and aS ≤ aR. We
get (U,Φ) 7→W = ∪Wj .

Let’s first do global surjectivity βDt
d [X] → Dd[X]. Pick a W ∈ Dd(X). We have W ⊂

X × R × Rd−1+∞. So π will always project to X and f to R. For each x ∈ X we can find
aX ∈ R which is a regular value for fX : WX = π−1(X)→ R.

So there is an open neighborhood of x so that ax is a regular value for by : Wy → R, for
y ∈ Ux. We’re picking an element of Dd[X], and we want to lift it, we need to find an open
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cover and then find these objects over our open cover. So we can find a nice covering U and
numbers aj : Uj → R such that bj : Wj = π−1(Uj) → R is fiberwise transverse to aj . Thus
we have constructed an object (Wj , aj) ∈ obDt

d (Uj). Let aR be the minimum of {aj} for
j ∈ R. Then if R ⊂ S it will follow that aS ≤ aR.

In other words we have a morphisms ϕRS : (WS , aS)→ (WR, aR) so (U,Φ) is a lift of W .

Now we have to do surjectivity for a closed subset of A. We’re given an element on all of X
with a lift in a neighborhood of A. The hard part is figuring out how to align the elements
of the neighborhood of A with elements nearby, and there’s some fiddling one needs to do
near the boundary of A.

Now let’s go to the other side and look at B. I’ll have to define Ct
d (X, ε : X → (0,∞)) =

{(W,a0 ≤ a1 : X → R)|W ⊂ X × (a0 − ε, a1 + ε) × Rd−1+∞} W is given by (x, t) so that
|a0 − ε)(x) < t < (a1 + ε)(x), so that π : W → X is a submersion with d-dimensional fibers,
(π, f) is proper, and (π, f) : Ki = W |X×ai−ε,ai+ε) → X × (ai − ε, ai + ε) is proper. Then
we want to let ε not be part of the data so we let morCt

d (X) to be the colimit as ε → 0 of
morCt

d (X, ε).

Let’s do B next, the classifying space is the realization of the nerve of Cd, that is, the
simplicial space N.|Cd|, which itself is the realization of the simplicial set which at level [q]
is NkCd(∆q

e), and now we have to use the fact that this is a represented sheaf, so that this
space is C∞(∆q

e, NkCd). We didn’t define a manifold structure on either of these spaces. The
intuitive idea was discussed yesterday. I want to say that this is equivalent to Map(∆q, NkCd),
which is SqNkCd, and so this is equivalent, under realization, to NkCd. So when you take
classifying spaces you get equivalences, since you have equivalences beforehand. That does
B.

So the only difference between Cd and Ct
d is that one of them has collars. We’ll prove that

at each level of the nerve we have a weak equivalence which will show that their realizations
are equivalent. I’ll use relative surjectivity and just draw a picture for k = 1. [picture]

We haven’t yet defined the map Dt
d → Ct

d . Recall that we have W ⊂ X × R× Rd−1+∞, a :
X → R) ∈ Dt

d (X). Choose ε : X → (0,∞) such that (π, f) : Wε = (pi, f)−1(X × (a− ε, a +
ε)) → X × (a − ε, a + ε)) is a proper submersion. [Missed some.] We’ll start instead with
|NkDt

d | → |NkCt
d |, and we’ll show this is a weak equivalence with RSC. Then W ∈ NkCt

d (X).
So pick W,a0 ≤ · · · ≤ ak) so that W ⊂ X × (a0 − ε, a1 + ε) × Rd−1+∞. Now choose a
diffeomorphism which is the identity near the collars to X × R.

So that shows D and I guess I’m done.

2 Group completion

[Before the next talk, I want to say a little bit about what’s going on tomorrow. It would be
nice to talk about something that you’re interested in. Tell one of the organizers if you have
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an idea about what would be interesting to hear.]

Here’s my outline: we’re going to cover a lot of background.

I. Toplogical categories acting on spaces

II. Group comp. theorem

III. Applying GCT to prove the generalized Mumford conjecture

I’m always going to let E denote “spaces” which can be spaces or simplicial sets. We’ll start
with a definition. Let h∗ be a homology or homotopy theory on E . An h∗-equivalence is
a map that induces isomorphisms on the homology. The examples we should keep in mind
are h∗ as integral homology or homotopy groups. This works for h∗ a generalized homology
theory that commutes with filtered colimits and takes inclusions which are h∗-equivalences
to h∗-equivalences [?]

So C is going to be a category in spaces E (also called a topological category). Recall that
C is determined by what I’m just going to call domain and codomain maps that go from the
space of morphisms mor(C ) (remember this is a space) to the space of objects ob(C )

mor(C )
d0=domain

--

d1=codomain

11 ob(C )

Let me define X as a C -diagram. X is determined by maps

X
π=proj // ob(C )

mor(C )×ob C X
a=action // X

So these satisfy standard relations you can find in [unintelligible]-Moerdijk.

From a C -diagram X we form a new topological category (X o C ) the category of ele-
ments. This is a topological category, and it has object space X and the morphism space is
mor(C )×ob C X, the pullback over d0.

The domain map of X o C is

mor C ×obC X
π=proj

X

and the codomain is
mor C ×obC X

α=action

X

We’ll make an observation that X → ob C induces a functor of topological categories (X o
C ) → C . We can take the nerve of this map, the projection map, and we get a map on
spaces N (X o C )→ N (C ) in E∆op

, and now we can work on the group completion theorem.

I’m going to state the theorem, then [unintelligible]
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Theorem 1 (The group completion theorem)
Let M be a topological monoid. The canonical map of M -spaces

M → ΩBM

induces an isomorphism H∗(M)[π0(M)−1]
∼=→ H∗Ω(BM) if π0(M) is in the center of H∗(M)

Before I try to prove it, I’m going to make a remark from algebra. If you take R a ring and S
a countable multaplicative subset, and A a right R-module, then we can construct a universal
R-module A[S−1] where all of the elements of S act by the invertibly. This is the colimit of
the sequence A

ps0→ A
ps1→ · · · where each s appears infinitely often. If R is commutative, then

you don’t need countable.

Sketches for the proof, starting with a few notes:

1. H∗(M)[π0(M)−1] and H∗(ΩBM) both commute with filtered colimits, and if π0 is in the
center of H∗(M), then we can write M as a union of submonoids, [unintelligible]you can
enumerate elements of the components, [some handwaving], assume π0(M) is countable.

Pick an m ∈ M on each component. Let {mi|i ∈ M} is a sequence where each vertex mi

appears countable many times. I’m going to denote by ρmi : M → M the multiplication by
mi on the right.

Now let M be the homotopy colimit of the sequence M
ρm0→ M

ρm1→ · · · , and M acts on this
homotopy colimit from the left. Then M̄ oM is the category of elements associated to the
M -action.

This is a homotopy colimit of many copies of M oM . Also, N (M oM) is contractible, and
together, this means N (M oM) is contractible.

The homotopy fiber of |N (M oM)| → |N(M)| = BM is ΩBM is to show that the homology
H∗(M) is H∗(M)[π0(M)−1], and we want to show that this has the same homology as the
homotopy fiber H∗(hofiber|N (M oM)| → |N(M)|) by Quillen theorem B.

Let’s use Cd,δ, the positive boundary category. The objects in this topological category is
the same as the objects of Cd, but we’re taking the space of morphisms to be a subset of
mor(Cd) where we onl/y take the disjoint union over W where each nonempty component
has nonempty outgoing boundary, so that π0(M1) surjects on π0W . The hard theorem for
the next talk

Theorem 2 (Galatius-Madsen-Tillman-Weiss)
For d ≥ 2, the inclusion BCd,δ → BCd is a weak equivalence.

The proof is the next talk. Using this, we consider a topological category C ⊂ Cd,δ, a special
one, just so you know, which has objects pairs (M,a) with a < 0 and for which we have a
stability theorem.
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Okay, we have a diagram X : C → E , so if you look in the paper, you’ll see something
(C op → E), and you construct a diagram in C , right? And, I think I might have time to
explain roughly how you do it. It’s in the following way:

1. Fix S1 ⊂ R2−1+∞. Choose bi = {i}×S1 in Cd,δ. Then choose βi ⊂ [i, i+1]×R2−1+∞.
These are morphisms from bi → bi+1. The βi are connected surfaces with g = 1. I’ll
just say all the orientations are compatible. So we’re going to make a sequence of
objects, it’ll be a homotopy colimit of these little diagrams. Each Xi(c) is Cd,δ(c, bi).
Then I construct X to be the hocolimit of the maps

X0(C)
◦β0→ X1(C)

◦β1→ · · ·

So due to our general setup, skipping quite a bit, we have X(C) ∼= Z × BΓ∞,n+1 Then we
can apply group completion, or a similar idea, to imply the theorem

Theorem 3 (Madsen-Weiss, generalized Mumford conjecture)

α : Z×BΓ∞,n+1 → Ω∞MT (2)+

is a homotopy equivalence.

Let’s just say Xi(C) ∼= qg≥0BDiff(Wg,n+1, δ) ×Diff Bunδ(—), that will be enough of a
description for now. Fundamentally, n depends on c.

Somehow my attempts to cut out everything possibel still didn’t work. I guess we can talk
about some of the middle stuff later.

3 The positive boundary category

So this talk was billed as a proof of the fact that the classifying space BC +
δ,d → BC +

δ is
a weak equivalence. I’ll prove this indirectly. Recall that the main theorem of Galatius-
Madsen-Tillman-Weiss is that BC +

δ → Ω∞−1MTSO(2) is a weak equivalence.

So I’ll start by showing that we have BC+
d,δ → Ω∞−1MTSO(2), and then that gives the

weak equivalence. So let me remind you about the positive boundary category. The ob-
jects are basically manifolds, and the morphisms are basically cobordisms, of a special kind.
[Pictures]. Every component intersects the outgoing boundary. So how am I going to prove
this second equivalence? We can take the proof from earlier today, and modify everything
in obvious ways, and everything goes through, except we have to show |βDt

d | → |Dd| is a
weak equivalence. If you do the program that I just described, you need a positive boundary
version of that sheaf |βDt

d,δ|. This is the non-easy part, and this is what I want to talk about
today.

Let me define the three sheaves. For X a smooth manifold, let Dd(X) be the set of subman-
ifolds W in X × Rd−1 +∞× R with projections π and f to X and R1, which satisfy three
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conditions: that π is a submersion with d-dimensional fibers, that (π, f) : W → X × R1 is
proper, and that for all compact sets K, π−1(K) ⊂ X × Rd−1+n × R1 ⊂ X × Rd−1+∞ × R1

for some n.

W ⊂ X × Rd−1+∞

π

wwoooooooooooo
f

''OOOOOOOOOOOO

X R1

Let’s start with the example where d = 1 and X is a point. Then my space is R1×R∞. This
is a one-manifold that extends to ∞. If X is not a point, the fiber looks like this. If we have
a path between two points, you can vary the fibers smoothly. To extend the path, you may
move compact components off into ∞.

Definition 4 Let me define βDd. This is a functor from [unintelligible], but I’m just going
to describe the set-valued sheaf. Let J be a fixed uncountable set, and X a smooth manifold.
Let BDt

d (X) be a set of triples (W, {Uj}, {aR}), where W ∈ Dd(X), for all j ∈ J , Uj ⊂ X
is open, and for all finite R ⊂ J , aR is a smooth function from

⋂
j∈R Uj → R. This should

satisfy the conditions that {Uj} is a locally finite open cover of X, that if x ∈ UR then aR(x)
is a regular value for f |π−1(x) (“f is fiberwise transverse to aR), and for finite R ⊂ S ⊂ J ,
aS ≤ aR|Us and this inequality is strict except on an open set.

What does this look like? [Picture]

Definition 5 βDt
d,δ(X) is a subset, the “positive boundary version,” which is the subset of

triplets so that π−1(x) ∩ f−1(aR(x)) ↪→ π−1(x) ∩ f−1[aS(x), aR(x)] induces a surjection in
π0. That is saying that the cobordism from aS to aR intersects the positive boundary in each
component.

There’s an obvious inclusion and forgetful maps βDt
d,δ → βDt

d → Dd The forgetful map
takes (W, {Uj}, {aR}) to W . The composition of these two is α.

Theorem 4 For d ≥ 2, α is a weak equivalence.

The forgetful map is a weak equivalence, so this will imply the weak equivalence we want and
hence the main theorem. As a remark, this can be modified to handle tangential structures.

It suffices to sho that BDt
d,δ[X, A, s] α→ Dd[X, A, α(s)] is surjective, where X is a manifold,

A is closed, and s is a germ over A. Assume A = ∅; the other case is “similar.” We want to
show that up to concordance W ∈ Dd(X) can be pulled back.

We want W ′ ∈ Dd(X×R) such that W ′|X×0 = W and {Uj}, {aR} such that (W ′|X×I , {Uj}, {aR) ∈
βD⊥

d,δ(X).
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First I’ll choose promising choices of Uj and aR, and then choose my concordance, and finally
show that the surgeries in each fiber fit together.

For x ∈ X, choose a regular value ax ∈ R of f |π−1(x). I claim that f is fiberwise transverse
to ax over a neighborhood Ux containing x. I can extract a finite subcover Ej ⊂ {Ux}.
Since each one had a regular value ax, we have a regular value aj for each Ej . Let’s define
Ejk = Ej ∩ Ek.

For each finite R ⊂ J , define aR = minj∈Raj . So I have a triple, W , {Ej}, X. This doesn’t
quite lie in the positive boundary component. Now I’ll introduce my first attempt at surgery.
A slight modification will make it work and I’ll get to that at the end.

So our two components, take a little disk, and draw a move where we pull that litle disk up.
[Picture]

I desire a conccordance W ′ in Dd(X × R) such that the original inadmissible configuration
is the fiber over (x× 0) and the fixed version satisfies the positive boundary condition. But
we’re missing coherence.

First let’s make sure that we can do the surgery in a little neighborhood. I’ll claim that
π−1(Ejk)∩ f−1[aj , ak] is a fiber bundle over Ejk. We can demand that Ejk

∼= ∗ or 0. So the
fiber bundle is trivial, and

π−1(Ejk) ∩ f−1[aj , ak]

((PPPPPPPPPPPPP
∼ Ejk ×M

zzuuuuuuuuu

Ejk

I want to specify surgery sites, that is, embedded disks Dd ↪→M in each offending component.
I want to cut out Dd, cut them out, and then glue in some prescribed manifold.

2 //

��

π−1Ejk −qD2

��
Ejk×R // Ej,r,p

We’ll need bump functions λj : Ej → [0, 1] and so that the support of λj is in Ej . Let Ẽj

denote the interior of λ−1
j (1). We demand that UẼj = X, that Ẽjk = Ẽj ∩ Ẽk and λ.

[Picture]

If you’ve done this rigorously, we hope that (W ′|X×1, {Ẽj}, {aR}}. There is one catch.
[picture]

Now let me revise the surgery so that it does work and we’ll be done. Okay, ready? [Picture.]

Our new surgery involves pulling down, not up, going out through infinity, and continuing
to pull down to get to negative infinity again from the top, and then bringing up the two
different components with the pulled down part attached, and then smooth everything out.
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