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1 h-principles, I

I’ll start with an outline. The goal this morning is to introduce and rigorously define Gromov’s
h-principle. I’ll introduce jet bundles and differential relations and natural fiber bundles and
then I’ll tell you what Gromov’s h-principle is.

Okay, so if we have, we can consider maps f : Rn → Rq, and pick some coordinates yj =
fj(x1, . . . xn) for j = 1, . . . , q and we have a differential operator

Dα =
∂|α|fj

∂xα1
1 , · · · , ∂xαn

n

and we say ψ(x, f,Dαf) is a collection of differential equations or inequalities, let’s call this
collection R. This is a “differential relation.” If we have a system of differential equations or
operators like this, we can replace the differential operators with algebraic variables zα and
get an algebraic version R′.

If we have a solution to R we call it a genuine or holonomic solution. If we have a solution
to the algebraic system, this is called a formal solution. The h-principle says that the space
of genuine solutions is weakly homotopy equivalent to the space of formal solutions.

This is good because formal solutions, the existence is necessary for the existence of genuine
solutions, and it tells you the topology for formal solutions gives you the topology for genuine
solutions, which usually involves some geometry.

Now to define what this stuff means. This is the gist of an h-principle, in this context.
There are other ways to state h-principles, but they usually are ways of showing that formal
solutions that involve only topology are the same in some sense as genuine solutions that
need some geometry

So f : Rn → Rq can be viewed as a section of the trivial bundle
Rn × Rq

↓
Rn

. So f̄(x) =

(x, f(x)). So let me define slowly using examples the jet bundle and I’ll give a rigorous
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definition at the end.

The 1-jet of f at x ∈ Rn is

J1
f (x) = (x, f(x),

(
∂fi

∂xj

)
)

in Rn × Rq × Rnq. We can take the jet bundle J1(Rn,Rq), the space of these over Rn, and
look at sections of these.

So in the simplest case we have J1(R,R) = R×R×R and you can think of the variables as
x, y, and y′. So if f(x) = ax+ b then f ′(x) = a. So the section is y = ax+ b shifted up to be
at z = a. This line represents the one-jet of f , J1f . If I draw a section, it looks like a graph
of a function along with tangent planes. I want to draw this because I want to compare it
to an arbitrary section. If I just pick any section of the jet bundle, it’s not a given that the
“derivatives” come from the second coordinate in Rq. They’ll be in general unrelated to our
curve. So this [picture] is an example of a section. So if they happen to be tangent, then they
will be holonomic or genuine solutions, and if they are not necessarily, they will be formal
solutions.

So we have to define the jet bundle of a smooth fiber bundle, so if we have a smooth fiber

bundle
E
↓
X

, then I’d like to define a space of 1-jets of sections into E. To do this, I’ll first

say that sections over U will be denoted Γ(U) = {U s→ p−1U |sections}. I’ll also define the
space of germs, for x ∈ E,

E1(x) = {(U, s)|U ⊂ X, s ∈ Γ(U)}/ ∼

where (U, s) ∼ (V, t) if there exists W ⊂ U ∩ V with x ∈ W and ds = dt restricted to W
from TW → Tp−1(W ).

[Some discussion of this definition]

Let’s change the conditions, this is too strong, let’s let x ∈ X instead of E and say that two
germs are equivalent if s(x) = t(x) and ds(x) = dt(x).

Hopefully this is okay now. So π([U, s]) = x for [U, s] ∈ E1x.

So if we have a section f : X → E then we can define J1
f (x) = [U, f |U ] and now I trivialize

everything and explain where the transition maps come from. Let

E =
⋃
λ∈Λ

Wλ, ϕλ : Wλ → Rn+q

and
X =

⋃
S∈X

Vδ, ψδ : Vδ → Rn

, assume p(Wλ) ⊂ Vδ. Then x ∈ Wλ and [U, s] ∈ E1
x. So ds|p(x) : Tp(x)Vδ → TxWλ. So

ds|p(x) ∈ Hom(Rn,Rq) ∼= Rnq. Then π−1(Wλ) d→ Wλ × Rnq. So now I have one-jets, and
then E2, the two-jets are one jets of one jets, E2 = (E1)1, and so on.
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So we have these bundles, with, if
E
↓
X

is a fiber bundle, then we write ΓE for the space of

sections with the C∞ or Cr topology, and we also have this Er jet bundle ΓEr for the space
of sections of the jet bundle Er with the compact open topology.

So the act of taking r-jets gives a continuous map Jr : ΓE → ΓEr.

Definition 1 A differential relation R of order r on sections f : X → E is a subset of ΓEr.

So Gromov’s h-principle says that the space of holonomic solutions is all there is of the
homotopy, the inclusion of the space into formal solutions is a weak homotopy equivalence.
Let’s go back into the trivial examples that we can draw, take R = { dy

dx = y} ⊂ J1(R,R) =
x︷︸︸︷
R ×

y︷︸︸︷
R ×

z︷︸︸︷
R and so if we were to draw this, we would have R3, and we would have a

plane, and the solutions would be of the form y = Cex sitting in the plane y = z Any other
section f : R → J1(R,R) having f ⊂ R is homotopic to one of these.

We have a more complicated example, R = { dy
dx = y2}, and this gives us a surface in R3 So

y = − 1
x+c and [unintelligible][h principle does not apply?]

So now let me talk about natural fiber bundles. Let
E
↓
X

be a fiber bundle, and let DiffXE

be diffeomorphisms hE of E so that there exists hX such that

E
hE //

��

E

��
X

hX

// X

A fiber bundle is natural if there is a section j from DiffX to DiffXE. So if I have
TM
↓
M

,

then h ∈ DiffM gives me dh : TM → TM . The observation is that if
E
↓
X

is a natural fiber

bundle, then
Er

↓
X

is also natural.

Now we can state Gromov’s h-principle. Maybe one more definition.

[Some discussion]

Definition 2 R ⊂ Er is invariant if it is invariant under the DiffX action via j
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Theorem 1 If X is open and R ⊂ Er is open (a condition on components) and invariant.

Then the inclusion of Γ(E)|R
Jr

↪→ Γ(Er)|R is a weak homotopy equivalence.

Let E = M ×N over M . Then E1 = Hom(TM,TN) which contains R which is of rank at
least k. Then we have a map Γ(E) → Γ(E1) via J1 on k-immersions, and this will be a weak
homotopy equivalence.

There will be more examples and a proof today, basically by induction on a handle decom-
position of the base space.

2 Applications and the first part of the proof of Gro-
mov’s theorem

Recall notation. We start with E(M) a natural fiber bundle over M . By natural here I mean,
if E(U) is the restriction of E(M) to U , then U → V induces a map E(U) → E(V ).

So we can define the jet bundle
E(r)(M)

↓
M

where E(r)(M)x = Γat xE(M)/ ∼ where f ∼ g

iff ∂αf(x) = ∂αg(x) for |α| ≤ r.

Then ΓE(M) J(r)

→ ΓE(r)(M) is the h-principle map which takes s to (x 7→ [s]), and the
theorem is

Theorem 2 Let M be an open manifold, meaning M\δM has no compact components, and
E

(r)
0 (M) ⊂ E(r)(M) open and invariant by the action of local diffeomorphisms of M then

J (r) is a weak equivalence from J (r)−1
ΓE(r)

0 (M) → ΓE(r)(M).

Let’s start with applications.

A Theorem 3 (Phillips) Let M be open, with dimension greater or equal to that of N .
Surj(TM,TN) are defined to be fiberwise surjective bundle maps. Then

Sub(M,N) d→ Surj(TM,TN)

is a weak equivalence.

Proof.Take E(M) = M ×N →M . Then E(1)(M)X = Γlocal at x(M ×N →M) which
is local maps M → N up to the equivalence that f ∼ g if f(x) = g(x) and dfx = dgx.
Therefore this is the same as the union over y ∈ N of Lin(TxM,TyN) by the map
taking f to dfx. Sections of this ΓE(n)(M) are maps TM → TN . It is a map from the
union over x and y of linear maps TxM → TyN , and we can take a bundle map
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TM //

��

TN

��
M // N

The top map takes vx to s(x)(vx) and the bottom takes x to prTNs(x)(σx). So we can
identify sections of the one-jets with bundle maps. On the other hand, a bundle map
gives a section which takes x to αx.

Now we know the sections of the one-jets. We need to impose a relation, E(1)
0 (M)

are maps α which are surjective. So sections of this are fiberwise surjective bundle
maps Surj(TM,TN). So we can go Γ0E

(1)(M) is a weak equivalence with target
Surj(TM,TN). But what is the domain of this map? Since M ×N is trivial, ΓE(M)
is maps from M to N . So a map from M to N with a fiberwise surjective induced map
is a submersion. So the domain is Sub(M,N).2

B Sphere eversion

Theorem 4 (Smale) Let i : S2 → R3 to be the standard embedding of the sphere.
Let i′ be the map given by taking this embedding and inverting the inside and outside,
essentially.

Let M have dimension less than N and take the trivial bundle again M × N → M .
Now we let E(1)

0 be the bundle maps which are injective on the fibers. Then for M
open we have immersions of M into N weak equivalent to injective maps TM → TN .
This is also true (due to Phillips) when M is closed.

If we know that, just take M = S2 and N = R3. Then by the h-principle, these two
immersions are homotopic if and only if the derivatives di and di′ are homotopic by
injective bundle maps. That’s checkable.2

C closed manifolds
For example, Sub(S1,R) d→ Surj(TS1, TR) = Map(S1,R) ×Map(S1, GL1) which is
nonempty but submersions of S1 into R are maps where dfx = 0 for all x which is
empty for S1 by compactness. So you can’t always use closed manifolds.

Now let’s start a sketch of the proof. The idea is to decompose M into pieces (handles),
prove it for handles, and then patch together the handles. That’s the idea.

Definition 3 A manifold N of dimension n is obtained from M by attaching a k-handle if
N = Mq tφk

Dk ×Dn−k. Here Mq = M tδM {(x, t) ∈ δM × [0, 1]|t ≤ g(x)}︸ ︷︷ ︸
=:U

for g : δM →

(0, 1]. This is to give a collar. Also φk : (collarδDk)×Dn−k ↪→ U .

[Picture]
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Definition 4 A handlebody decomposition for M is

Dm = M0 ⊂Mq
0 ⊂M1 ⊂Mq

1 ⊂ · · ·

so that M ∼=
⋃∞

Mi and Mi+1 = Mi with a handle attached.

Proposition 1 For M open, there is a handlebody decomposition with handles of dimension
strictly less than the dimension of M

This is proven via Morse theory. How do we use the handlebody decomposition to prove
Gromov’s theorem?

The idea now is to go by induction on the dimension of handles and the number of handles
attached.

Here is the key proposition that will be assumed, which will be proven in the next talk

Proposition 2 The h-principle map is a weak equivalence for M = Dn

Proposition 3 Restrictions
ΓE(r)

0 (Mq) → Γ(r)
0 (M)

and
Γ0E(Mq) → Γ0E(M)

are fibrations (and weak equivalences)

Proposition 4

ΓE(r)
0 (Dk ×Dn−k) → ΓE(r)

0 {x ∈ Dk|1
2
≤ ||x|| ≤ 1} ×Dn−k︸ ︷︷ ︸

A

is a fibration, and likewise for Γ0E for k strictly less that n.

Here is the point of the proof:

Lemma 1 Suppose that the h-principle map is a weak equivalence for M . Then it works for
M ′ = Mq tφk

Dk ×Dn−k.

The proof is by induction on k. For k = 0, attaching a zero-handle is taking the disjoint
union with Dn. Then we know this because it is true for Mq and for Dn.
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Now let’s see the induction step. Suppose our statement is true for handles of dimension
[index] less than k. Consider

Γ0E(Dk ×Dn−k) //

��

ΓE(r)
0 (Dk ×Dn−k)

��
Γ0E(A×Dn−k) // ΓE(r)

0 (A×Dn−k)

By our proposition, the vertical maps are fibrations and by proposition one, the top hori-
zontal map is a weak equivalence. Then by induction the bottom horizontal map is a weak
equivalence, since A × Dn−k is just Dnq with a k − 1-handle attached. So A × Dn−k =
(Dk tφ D

k−1 ×D1)×Dn−k.

So by the five lemma, the fibers of these two fibrations are weakly equivalent.

Now consider another diagram

Γ0E(M1) J(r)
//

��

ΓE(r)
0 (M1)

��
Γ0E(Mq) // ΓE(r)

0 (Mq)

The vertical maps are the pullbacks of the vertical maps of the last square by the restriction of
A×Dn−k to Mq. Therefore they are fibrations. Note that this means Γ0E(M ′) → Γ0E(M)
and ΓE(r)

0 (M1) → ΓE(r)
0 (M) are fibrations.

The lower horizontal map is a weak equivalence by hypothesis, supposing that the h-principle
holds for M , and then the fibers of this diagram are the same as the fibers of the other
diagram, and those fibers were equivalent, so by another five lemma, the top map is a weak
equivalence.

The end of the proof is, I have two minutes. Take a decomposition Dn = M0 ⊂Mq
0 ⊂M1 ⊂

· · · for M By our assumption, the h-principle holds for the disk. By our lemmas, it holds for
each Mi. If the sequence is finite, we are fine. We notice that ΓE(r)

0 M is the inverse limit of
ΓE(r)

0 Mi. The second thing is the same for Γ0E(M) and Γ0E(Mi). We also know that these
maps Γ0E(Mi+1) → Γ0E(Mi) and ΓE(r)

0 (Mi+1) → ΓE(r)
0 (Mi) are fibrations. So it holds for

the limit as well.

3 Second part of the proof of Gromov’s theorem

Proposition 5 Γ0(D)︸ ︷︷ ︸
Cr-sections of E landing in E

(r)
0

→ Γ(D)︸ ︷︷ ︸
continuous sections of E(r)

via f 7→ jrf is a weak

homotopy equivalence.
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Proposition 6 Γ(Mq) → Γ(M) and Γ0(Mq) → Γ0(M) are Serre fibrations and weak ho-
motopy equivalences.

Proposition 7 Γ(A) → Γ(B) or Γ0(A) → Γ0(B) are Serre fibrations for A = D
[0,2]
λ ×Dn−λ

and B = D
[1,2]
λ ×Dn−λ

Let’s prove the first proposition. We want first to see that Γ(D) → Γ(0) is a weak equivalence,
where the map is evaluation at 0. First we see D ⊂ Rn ⊂M , and have maps Ty : Rn → Rn

mapping x 7→ y+ x, just translation by the vector y in Rn. We try to construct a homotopy
inverse to evaluation at zero using these. We want to try to start with a section over zero
and make a section over the disk. More concretely, I define I : Γ(0) → Γ(D) just by
I(j)(x) = Tx(j). Now by naturality, this Tx is

E
Tx //

��

E

��
Rn

Tx

// Rn

So ev0 ◦ I = idT (0). On the other hand, I ◦ evt
∼= idΓ(D) where H(g, t)(x) is an explicit

homotopy defined by {
g(x) x ≤ t
Tx− tx

|x|
g( tx

|x| )

Now to prove the statement it’s enough to show ρ = ev0 ◦ jr is a weak homotopy equivalence.

To see that, we first trivialize and F is the fiber of
E
↓
D

and embed F ↪→ RN with a tubular

neighborhood W → F . So ρ goes from Γ0(D) → Γ(0). So let’s see surjectivity. Given
f : Si → Γ(0), we want to show that it’s the restriction of an element in a homotopy group
of Γ0(D). Using several identifications, we see Γ(0) ⊂ Jr

0 (D,F ) ⊂ Jr
0 (D,RN ), which because

these have polynomial representatives, we can take these as in C∞(D,RN ). I call this total
map here G. It associates to a jet at zero, a polynomial function defined on the whole disk,
in Rn. So for each s ∈ Si, G ◦ f(s) is a polynomial function on D.

So there existss an ε > 0 so that for all s ∈ Si, G◦f(s)|Dε(0) has values in W and its r-jets lie
in Er

R. Then we can look at k(s) = r ◦G ◦ f(s) has the correct r-jet at 0. Now we just have
to make this globally defined, we will take h from the unit disk to the ε-disk an isomorphism
which is the identity on a small neighborhood of zero, then s 7→ h−1k(s) ◦ h can be chosen
as f . This is Si → Γ(D).

Let’s go to proposition two, we want to show that the restriction from the collared neighbor-
hood is a Serre fibration.

I want to identify Mq = M ∪ (δM × I) and we want to show that Γ0(Mq) → Γ0(M) is a
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Serre fibration. That means, you have some diagram

Q× {0} //

��

Γ0(Mq)

��
Q× I //

99

Γ0(M)

and you want to lift the homotopy to the dotted arrow. So H : Q× I×M ∪Q×{0}×Mq →
E ×Q× I →Mq ×Q× I and I want to extend it to Q× I ×MqtoE ×Q× I.

So if I have this H, I can extend it still to a small neighborhood of the domain. I use here an
exponential property. The function and derivatives are continuously parameterized. I first
claim that I can extend to H̃ : Q× I × (M ∪ δM × [0, ε]) ∪Q× [0, η]×Mq → E ×Q× I.

You use, I guess, that C∞(Mq,R) → C∞(M,R) are Serre fibrations, and use openness and
so on, adapted tubular neighborhood.

Now, if one has that, it is reasonably easy, one takes isotopy of the large domain into this
domain. Should I write that down?

For the other thing, it’s much easier, because Γ(Mq) → Γ(M) is a Serre fibration just follows
from the covering homotopy property of locally trivial fiber bundles, with Er

R over Mq.

So the weak homotopy equivalence is similar to the last one. These are the beginning, now
let’s get really involved with the third proposition.

Again, show that these two maps Γ(A) → Γ(B) and Γ0(A) → Γ0(B) are Serre fibrations.
The first one is again easy, so I’ll concentrate on the holonomic sections. So again I’ll write
down

Q× {0} //

��

Γ0(A)

��
Q× I //

::

Γ0(B)

Again, you can transform that into f : A × Q × {0} ∪ B × Q × I → E × Q × I. We are
given such an f and now the task is to extend it, extend the domain to A × Q × I. That’s
much more difficult. Happily, first a tubular neighborhood, at least we can extend it to some
small neighborhood. So we can assume f is defined on a slightly larger domain which is
D

[α,2]
λ ×Dn−λ× : ×I ∪Q× {0} ×A. Here α < 1.

Now, we have f on a larger domain but it’s still not easy. We construct a family of additional
functions µi with a partition 0 = t0 < t1 < · · · < tN = 1 where µi : D[α,2]

λ × Dn−λ × Q ×
[ti, ti+1] → E|A ×Q× I.

I should also choose α < β < γ < 1. These µi can be chosen so that µi(x, y, p, t) =
µi(x, y, p, ti) for |x| ∈ [α, β] and t ∈ [ti, ti+1]. We forget the Q and I factors and project to
E|A, it’s time independent for |x| in this range.
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The other property is that µi restricted to D[γ,1]
λ ×Dn−λ ×Q× [ti, ti+1] ∪D[α,2]

λ ×Dn−λ ×
Q× {ti} = f restricted to the same domain.

The distance between the ti one has to choose very small, and between f at the beginning
and f at the end, one takes these sufficiently close to each other, so that the values of f are
sufficiently close. One flows along the geodesic, but only at that one end, on the other end
there is no flow at all. f traces a path, and for each t̃, if we take the geodesic between it
and the next one, and fixing t̃ and vary x y and p, define the function where you take the
endpoint of the geodesic to f(x, y, p, t). You can also say, take the beginning point of the
geodesic. In between one takes a fixed portion of the geodesic, and walks along it to the
endpoint.

So assume you have such µi. We can still construct a global function only stepwise. So we
introduce a new name, namely gi. We want gi : D[0,2]

λ ×Dn−λ× : ×[0, ti] → E. These should
have the properties that gi|t=0 = f |t=0 and

gi|D[εi,2]
λ ×Dn−λ×:×[0,t]

= f |same domain

for 1 > εN > · · · > ε1 ∼= γ. So we lose ground but it doesn’t matter, as long as we stay the
same between 1 and 2.

If we can construct these gi then gn will do the job. It is everywhere defined, agrees with f
for t = 0 and then is okay from a little before 1 to 2. We’ll construct this by induction. Start
with i = 1 and

g1(x, y, p, t) =
{
µ1(x, y, p, t) |x| ≥ α
f(x, y, p, 0) x ≤ α

for t ∈ [0, t1]. We can extend this by time independence to the left. Okay? Assume by
induction that we have constructed gi. Now we want to construct gi+1. To construct gi+1

consider the following isotopy of D[0,1]
λ ×Dn−λ. Here is the first and last time we use λ < n,

to construct this isotopy. I will draw a picture, slightly asymmetric. Now the isotopy, we care
what it does with an ε-tube around 0. The image of this tube at the end of the isotopy looks
like this [picture]. What are the important things about the picture? The first property is
that Ht = id for t ≤ ti+1

2 . The second is that on a neighborhood of the boundary, Ht = id.
On a neighborhood V of Sεi

λ ×D[0,ε]
n−λ also Ht = id. Next Ht(D

[α,2]
λ ×D[0,ε]

n−λ ⊂ D[α,2] ×Dn−λ,

and the most important property, Hti+1(H
[a,b]
λ ×D[0,ε]

n−λ) ⊂ Int(D[α,β]
λ ×Dn−λ). The important

thing is that the part that was between a and b is now over the part between α and β, which
was important because our µi was time independent. That only works if we have a dimension
in Dn−λ.

If we have the homotopy, I can write the definition of gi+1 on the region that I erased. So
gi+1 on Dλ × D

[0,ε]
n−λ is by the following picture. [picture] So gi+1 is defined as gi, f ◦ Ht,

µi+1 ◦ Hti and a trivial deformation in different parts. It’s not everywhere gi, we always
change it. So it’s gi until ti and εi, f ◦Ht from εi to 1 until ti, ui+1 ◦Hti from b to 1 and
from ti to ti+1, elsewhere being the trivial deformation.
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