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1 Jacob Lurie

So, it would have made more sense to give these lectures in the other order. I want to give
an overview of higher category, and I’ll start with the definition of ordinary category theory.

Definition 1 A category C consists of

• A collection of objects X, Y , Z,. . .

• For every pair of objects (X, Y ) set of morphisms HomC (X, Y )

• Composition maps HomC (X, Y )×HomC (Y, Z) → HomC (X, Z)

• Associativity and unit (identity) for the hom sets.

We talked about a category Cobn. There the objects and morphisms looked similar, they were
both manifolds. So there you might ask about weaker notions of equivalence on morphisms,
like if the manifolds were bordant.

So this is a natural category to try to promote to a 2-category.

Let me give a bad definition of a strict 2-category:

• We have a collection of objects

• the morphisms Hom(X, Y ) form a category

• the composition maps are now functors

• the associativity is strict. If we look at the functors Hom(W,X) × Hom(X, Y ) ×
Hom(Y, Z), we can get to Hom(W,Z) in two ways, and we insist that these be equal.
This strictness is what is bad about the definition.
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Let me give you an example. Let X be a space. You can, fixing a base point x, look
at π1(X, x), a group whose elements are homotopy classes of loops. You could consider a
slightly more sophisticated object π≤1(X). The objects here are points in X, and morphisms
Hom(X, Y ) are paths up to homotopy relative to endpoints. This is a special category
where morphisms are invertible. This knows about path components, which are isomorphism
classes. It also knows about π1(X) because that is the automorphism group of x in the
category.

To get π2 in the picture, this will be an example of a 2-category, we can do something a little
fancier. So again the objects are points, the morphisms are paths, and I will need morphisms
between morphisms. So suppose you have paths p and q from x to y, then 2-morphisms from
p to q are given by homotopies between p and q fixing the endpoints, up to homotopy.

This is supposed to be one of the basic examples of a 2-category. This should be an example
of the type of structure we’d like to define, but the strictness fails. It can be made to hold
but it requires some effort. Let’s see what goes wrong.

To talk about strictness, I should talk about composition. In pictures what you are supposed
to do is glue paths together. More precisely, a path is a map from the unit interval into
X, and to compose them, to write q ◦ p, I have to concatenate paths. You do this from
[0, 1] → X. On the first half of the interval you could follow p but twice as fast, and then
on the second half you could follow q, again twice as fast. You could compose (r ◦ q) ◦ p and
this will be r four times as fast and then q four times as fast and then p half as fast, and
you’ll get something different if you do r ◦ (q ◦ p). This isn’t a problem for the fundamental
groupoid because you’re dealing with homotopy classes of paths. But it is a problem for
this two-category because you’re dealing with paths, and the associativity only holds up to
homotopy.

I made a choice by saying that paths have length one. You could let paths have variable
lengths, so that lengths add. This gets rid of associativity, but by means of an ad hoc trick
that doesn’t generalize well.

Now we should go even higher, above 2 to higher categories.

Definition 2 (bad)
A strict n-category consists of

• some objects X, Y, . . .

• Hom(X, Y ) which is a strict n− 1-category.

• There should be composition functors, which satisfy

• strict associativity.

That’s an example of a definition. On this board let’s write down an example. We’d like
π≤n(X). Let me give you an informal description. Objects are points, morphisms are paths,

2



2-morphisms are homotopies between paths, 3-morphisms are homotopies of homotopies, and
so on. At the last level, n, we mod out by further homotopies. If you try to shove this into
the hole described above, you can’t get around this in generality. So you can’t get π≤3 as a
strict n-category, up to equivalence.

So you might try to correct the bad definition, by dropping the word strict. You might say
that you have objects, that the morphisms are some other kind of category, and then you
would say that you want this to be associative up to coherent isomorphism. What does that
mean? It means you require this to be associative up to isomorphism, but these are part of
the structure and they behave well, satisfying further conditinos. Even in the case n = 2
it’s hard to spell these out. In n = 3 it’s prohibitively complicated. If this is the definition
you really want to work with, there are some strategies, I want to consider this example.
This example is very characteristic in the following sense. For any space X, its fundamental
n-groupoid should be an example of an n-groupoid, an n-category so that all morphisms at
all levels are required to be invertible.

Let me state a thesis: Every n-groupoid should arise this way, not uniquely. When n = 1, the
fundamental groupoid of any simply connected space is the same. You can try to correct this
by letting n → ∞. There should then be a theory of ∞-groupoids, with higher morphisms
and homotopies, and if you require everything to be invertible, you can give examples, spaces,
paths, homotopies, and so on.

Let me state a more precise version of this thesis. Every space X should have a fundamental
∞-groupoid and every ∞-groupoid should be the ∞-groupoid of a space X unique up to
homotopy equivalence (weak). So I called this a thesis and not a theorem because I haven’t
defined anything. This is something that should become a definition. This should be a
requirement for what an n-category is. If I get a definition, I can consider when all morphisms
are invertible, and if that models homotopy theory, it passes the bar, otherwise, throw it back.

There’s an easy way to construct an∞-groupoid, I could use this rubric and say this is exactly
X, and then I’m not forgetting anything. I can also replace the spaces with simplicial sets.
If you then wanted to give the definition of an n-groupoid, you could truncate and say it’s
an ∞-groupoid with nothing above a certain point. So this is like saying, it’s a space where
homotopy groups vanish above n. It takes more space on the blackboard to define an n-
groupoid than an ∞-groupoid. This tends to be a feature of many of the useful approaches
of higher category theory. It’s easier to go all the way up the ladder than to make a restrictive
definition.

Maybe n-categories are hard, but n-categories where all morphisms are invertible are easy.
Let me define a term that Bertrand already defined.

Definition 3 (sketch) An ∞, n-category, is a higher category in which all k-morphisms are
invertible for k > n.

What are some examples? When n = 0, saying that all morphisms are invertible, this is the
same as an ∞-groupoid, which is then the same thing as a topological space.
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Now you’d like to build on this, so let’s rewrite the iductive definition I did earlier but starting
with ∞-groupoids.

So you might try to say that an ∞, n-category is a collection of objects, for every pair
of objects, a collection Hom(X, Y ) of morphisms which is an ∞, n − 1-category with a
composition law on these things, and an associative composition law (in some reasonable
sense). When n = 0 we have a definition, that it is a topological space. You might try to
apply this definition here and see what pops out in the case n = 1. What is this idea? It
should tell us that it is a category where the homs are topological spaces. Let’s say for a
second that we want the associativity to be strict. The morphisms will be organized into
topological spaces, and you get compositions that are continuous. If you prefer your spaces
to be simplicial sets, then you can substitute that.

This is a correct definition, because you won’t lose anything by adopting it, but it’s inconve-
nient in many respects. The inconvenience is illustrated in that, well, we tried to write down
an example. We had to do some work, and what came out naturally was an ∞, 2 groupoid
where associativity only held up to equivalence. It’s hard to construct the strictly associative
models; it’s a lot easier to talk about associativity up to coherent isomorphisms.

The strategy that Bertrand describes implements one strategy to do this. He required that
composition is only defined up to a contractible space of choices. In a Segal category, you
have objects, Homs, and Hom(X, Y ), but you have no associativity on the nose. You have
Hom(X, Y, Z) which maps to Hom(X, Y )×Hom(Y, Z) as a homotopy equivalence and also
to Hom(X, Z). To loosen up you don’t have a composition at all, instead you have only
something that has induces composition up to coherent isomorphism.

I wanted to consider extended field theories. Last time I defined Cobn, which was just an
ordinary category, and an extension of it Bordn, which you can think of as a fancy version
of Cobn. Now I can describe another version C̃obn. This will be an ∞, 1-category. This
isn’t fancy because of lower dimension, it’s fancy because of higher dimension. If I say that
morphisms are diffeomorphism classes, I’m forgetting the diffeomorphism. This will contain
information about the diffeomorphism groups. Let me describe it informally and then more
formally.

All right, let me describe what I’ll call C̃obn. The objects are n−1-manifolds. The bordisms
are morphisms between n−1-manifolds. I’ll have higher morphisms too. So the 2-morphisms
are given by diffeomorphisms. The space of diffeomorphisms has a natural topology, so you
can consider homotopies, paths in that space, isotopies, and now I’ll put in ellipses, and this
should be like the infinity groupoid applied to the space of diffeomorphisms (relative to the
boundary), I’ll have isotopies, and then homotopies of isotopies, and so on.

This looks like it should be an ∞, 1-category because everything above the first morphisms
are invertible. Can you actually describe this structure in a precise way? You might let the
objects be n−1 manifolds. Then you want Hom(M,N) to be a classifying space for bordisms
from M to N , a space over which you have a fiber bundle where fibers are bordisms. You
want it to be universal, a pullback of a universal bundle. This space exists, and by general
nonsense is uniquely determined in the homotopy category. It’s not uniquely determined on
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the nose, so it won’t give a strictly associative topological category. I can choose classifying
spaces (M,N) and then composition laws. The product of Homs gives me a classifying space
classifying pairs (M,N) and (N,P ). Given two such bordisms, I can get something from N
to P . This was only defined up to homotopy so you can’t check associativity except up to
homotopy.

So maybe if you are more careful about your classifying spaces you can get something strictly
associative. You should be able to do this if you believe what Bertrand said, and what I have
said. But it’s easier to describe this using the language that Bertrand introduced, as a Segal
category.

So what do you have to do? He called it a bisimplicial set, but for me it will be a simplicial
space. So what we want is a simplicial space Ẋ with X0 some discrete set. This is the set
of objects of the ∞, 1-category, which is the set of closed n − 1-manifolds. We can fixthe
problem that this is not a set.

Let me give you the nth space. I want a disjoint union over all things these morphisms can
be between, over tuples (M0, . . . ,Mn), of Hom(M0,M1, . . . ,Mn), where Hom(M0, . . . ,Mn)
is, well, I’ll tell you the set and you can imagine how to topologize it. I’ll want real numbers
t0 ≤ · · · ≤ tn ∈ R and m-dimensional closed submanifolds B contained in the interval from
[t0, tn] such that B is transverse to ti×R∞, and the intersection is associated with Mi. We’ll
regard our manifolds with an embedding into R∞. I mean B is properly embedded in this
manifold with boundary. When n = 3 you should specify t0, t1, t2, t3, and then a 1-manifold,
which is embedded in an interval cross a large Euclidean space. The intersection with the
slices at the times ti should give me Mi. This is a sequence of composable bordisms, which
is tautologically a simplicial space. The composition law from this point of view, I can erase
the line where t = 1 and now I’ve composed bordisms.

Modulo issues about how to topologize this, you’ve got a description of C̃obn as a Segal cat-
egory. Similarly, you can describe more elaborate bordism categories using a more elaborate
version of the theory of Segal spaces.

Bertrand described Segal categories. We have an approach that gives ∞, n-categories for any
n. Instead of slicing things in only one direction, you could slice along other sorts of slices.
I don’t want to get into the details, but just mention that we can use this idea, use these
ideas to define an object that I will call B̃ordn. Recall Cobn could add manifolds of lower
dimension to go to Bordn and also higher dimension to go to C̃obn, and now you can do
both at the same time. The objects will be zero manifolds, 1-morphisms are bordisms, and so
on, and then the n-manifolds will be bordisms with corners, and then all higher morphisms
are diffeomorphisms, isotopies, and so on. These ∞, n-categories are the objects of study for
extended topological field theories. This is more elaborate, and enjoys a similar property,
which I will take up again in the next lecture, connecting to Galatius-Madsen-Tillman-Weiss
on the Mumford conjecture.
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2 Ben Zvi

Last time we talked about a toy example of a two dimensional extended topological field
theory. This was associated to a finite group. We know that ZG(·) was RepC(G). We got
S1, which gave us a Frobenius algebra C G

G and this had maps to and from EndG(A), the
action and class map. The action was CG

G = Z(CG) where here this means the center. The
character was that the identity could be assigned the character χA ∈ CG

G

So where will I find representations of G? I can take a subgroup, and get a natural repre-
sentaiton, and this will be C[G/K]. We can plug this in and see what we get. What are our
action and character? I will repeat all this story later on for complex Lie groups. In order to
describe it, I need to describe the endomorphisms of the representation. This is HG,K , the
endomorphisms of VG,K . One thing this is is a representation of a functor Rep G → V ect
which assigns to A the K-invariants in A. So HomG(VG,K , A) = AK . In particular, this tells
me, if I look at endomorphisms of this representation, it acts on the space of K-invariants in
any representation.

This allows us to describe the Hecke algebra. It’s given by K-invariants in VG,K , hich is
C[G/K]. So this will be double cosets C[K\G/K]. This is an algebra and has a multiplica-
tion. I can think of this as functions on double cosets, this is a subalgebra of K-biinvariant
functions. We had the multiplication G × G → G. If I want to put mod K, then I put
the K everywhere. All these pictures come naturally from the TFT picture. We’re doing
G gauge theory so studiying principle G bundles. I could study these on the interval, and I
have only one bundle, ·/G. But what if I mark the two endpoints with the subgroup K. I
have G bundles, but at the two points at the end I do reductions on the two ends. This gives
K\G/K. The Hecke algebra is what happens when we mark the endpoints of an interval
with the subgroups. Suppose that K is trivial. Then we’re looking at G bundles on an
interval that are trivialized on the endpoints. We’ll get the group algebra. So then you could
draw two of these, and glue them along the endpoint and get a single interval, this is the
convolution product.

That’s a toy picture for the Hecke algebra. Now I’d like to write down my character and
action maps. I’m going to draw the same picture I did last time.

I’ll think I have an interval with K along an interval as part of the boundary of a cylinder.
Fields MG are fields on the cylinder with a reduction to K on a contractible set. I can map
his to the fields on a circle, which is G

G . On the other side we get K\G/K, and in the middle
it’s G

K . Now I’ll take functions on this and pull back and push forward. I want you to show
that if I pull back and push forward, I’ll get endomorphisms.

What about the character, I have the same picture, and then I have the function 1 at the
identity double coset, which I pull back and push forward, I get the character of the induced
representation. You didn’t need topological field theory to do this but it will be crucial in
the future.

For now I’d like to replace G with a complex Lie group, or maybe even an affine algebraic
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group over C, perhaps Gln(C) or Spn(C). The first thing to do is look at the space of
fields. For me, to keep things clear, my fields MG(M) will be G-local systems, which are flat
G-bundles or π1(M) → G maps.

What about the circle? A flat bundle will be G up to conjugation, MG(S1) = G
G . Or Mg(Σg)

will be sets A and B in the group satisfying
∏

[Ai, Bi] = 1, which [unintelligible]

In order to get some kind of invariants out of this, I need to figure out how to count the
points in the set. One answer you might say, you should, looking at a finite field, I can look
at MG(Fq)(Σg). If you’d like, I get a family of theories depending on q. This in algebraic
geometry, this counting, is an avatar for looking at cohomology. Let me point out that this
point of view is at the heart of Hausel and Rodriguez-Villegas. Counting points over Fq

corresponds to vector spaces, and this is an avatar for some kind of sheaves which are now
a category. Instead of assigning a number of points, I’ll assign a vector space, instead of a
vector space for a circle I’ll assign a category.

So this is a passage from 2d topological field theory (extended). That’s how these field
theories come out of physics. In physics, I’d write down an action S but here I’ll start with
a point and build up.

So let’s move to function theory, but we will need to replace CG-modules when G is more than
a finite group. I’ll start with a complex algebraic variety (or some kind of stack) and assign
to it a categorification. I’ll be using a lot of ideas from Bertrand’s talk. The two variants
I’ll give are quasicoherent sheaves and D-modules. Our first solution, to X we assign Q(X),
which will be quasicoherent sheaves on X, which will form a dg category. These, well, we
have the basic example, a holomorphic vector bundle, of fiite or infinite rank. I can take
direct sums of infinitely many of them. I can take these basic objects and generate others by
taking things like kernels, cokernels, complexes of such vector bundles.

A quasicoherent sheaf is just a module over R. Everything is in the derived category, so this
will be compelexes in this. Then Spec R I can assign to X and I’ll invert quasiisomorphisms
and invert these. Localize by quasiisomorphisms as Bertrand explained. I don’t want to get
into the technical condition, but, uh, and more generally, with any variety or stack X you
define these by gluing Q(U) for an open cover of X. I think it’s not helpful for me to say
this.

For the purpose of function theory it is more useful to turn to Dmodules. So turn from X
to D(X). What are D-modules? The basic objects are vector bundles with flat connection.

This is a map ∇ : F → F ⊗ Ω1 with ∇2 = 0. That’s the same as a map T ⊗F → F , so
this extends to an action of all polynomial differential operators.

That’s what a D-module is. Why am I introducing these? One motivation is that D-modules
are closer to counting points over a finite field. So I can take f ∈ C∞(X), for example
eλx, you might say, how do I capture this algebraically, I can multiply f on the left by all
polynomial differential operators. That’s a subspace of C∞(X), but it’s a D-module, because
I can act on f . If my function is nice, then the D-module almost captures it. What is Deλx?
This looks like D/D(∂ − λ), so that (∂ − λ)eλx = 0. So similarly, Dδx is D/D(x− λ).
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Now some algebra. We can replace functions with Q(X) or D(X). I want to say that Q(X)
and D(X) are both kind of commutative. They’re commutative algebra objects of dgCat/C.
To make sense of this I need to say a lot. The collection of categories over C has a notion of
symmetric monoidal ∞, 1 categories. Then you can do algebra there. The foundations are
in Lurie’s Derived Algebraic Geometry II and III.

Let me move to pullback and pushforward. If I give you a map π : X → Y I get a map
π∗ : Q(Y ) → Q(X) and D(Y ) → D(X) but then also pushforwards Q(X) → Q(Y ) and
D(X) → D(Y ). This is very general. I don’t need any kind of compactness. This means take
cohomology along the fibers. This is very general, although you may have to restrict based
on what you need.

Once I have this, why am I going through this so quickly? I want to convey the idea that
this is similar to what you might do on finite sets. You can do all of the basic things you did
on finite sets and all the basic results hold. For example, let me say, let me make the analogy
morp precise, if we had finite sets X and Y , if we look at X ×Y , which maps to X and Y , if
you look at Fun(X×Y ), this looks like n×m matrices, this is Fun(X)⊗F (Y ), or I can write
it as HomC(Fun(X), Fun(Y )). If X and Y both map to Z, you can look at X×Z Y , and then
Fun(X ×Z Y ) = Fun(X)⊗Fun(Z) Fun(Y ) and then this is HomFun(Z)(Fun(X), Fun(Y )),
so block diagonal matrices where this is linear over “scalars” in Fun(Z). Suppose I give you
a sheaf K on X × Y , so K ∈ D(X × Y ), this induces a functor D(X) → D(Y ), which sends
F → K ? F , which is πY ∗π

∗
XF ⊗K which I’ll write maybe to indicate path integrals∫

πY

F (x)K(x, Y )dx

Theorem 1 Q(X)⊗Q(Z) Q(Y ) ∼= Q(X ×Z Y ) ∼= FunQ(Z)(Q(X), Q(Y )) Then D(X)⊗D(Z)

D(Y ) = D(X ×Z Y ) = FunD(Z)(D(X),D(Y )). So the same things we had before for finite
groups are true. All functors are linear transforms, and you can also represent them this
other way. So what are the hypotheses? Bertran Toën for X and Y schemes, and Ben Zvi,
Francis, Nadler for perfect stacks, which I won’t say what that is exactly. The theorem for D
is me and Nadler for smooth schemes.

Let me now motivate what I want to do next time. I want to build TFTs using the cobordism
hypothesis. I want modules over the various notions of group algebra. So Q(G) and D(G).
I’ll try to build modules over group algebras. The basic motivation for this kind of story is
Beilinson Bernstein. If you look at D(G/B), you get a module for D(G), we’ll write down
the diagram, and take a pushforward. That will be a module, this B.-B. tell me that this
is basically complex representations of g, with the parameter 0, forget it, studying these for
flag manifolds captures the representations for the Lie algebra. I’ll get a lot of interesting
things about complex Lie groups and Lie algebras, therefore by looking at these.

[So among these functors, there are symmetric monoidal ones]

There are not many. Q(X), for example, that recovers X. You don’t have a lot of flexibility.
You don’t have a lot of interesting operations.
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3 Wockel

Thank you for the introduction, and also for the opportunity. This is about higher dimen-
sional covers. Perhaps to motivate, [missed several sentences]

The approach I want to take is via the categorification of the structure group for gague
theories. So let me in the beginning fix the notion of cover. This, when you’re working
with topological spaces, it’s clear what you mean. If X is an n − 1 connected space, you
consider a space which is same, but with some homotopy group trivial. It should have all
homotopy groups equal to the homotopy groups of X except that bottom one. This should
be a fibration Y → X with πk isomorphisms for k ≥ n and π(Y ) = 0.

How can you construct these spaces? Because X is n − 1-connected, you have a map
X → K(πn, n) which is an isomorphism on πn. Then let Y = f∗(P (K(πn, n)). This is
unsatisfactory when you’re interested in topological groups or Lie groups, if you started with
a topological group X you lose the group structure. The P is the path space.

What are important examples? Let’s look at n = 1. The simply connected cover of a group,
say Spin → SO. For n = 2 you get for instance ΩSpin, so we can get one with π2 6= 0
because it’s infinite dimensional. The failure of π2 to vanish gives certain counterexamples.

For n = 3 we would like to map into spin as well to kill the π3. So what is the most basic
example we can consider? This is the case n = 1. No a simple but instructive example. In
this part of the talk, G will be connected and probably a Lie group (topological or simplicial
group). If G is connected you have a simply connected cover with π1 ⊂ G̃. This is a
π1 principal bundle. This is a twisted version of a direct product of G with π1. It’s a
central extension of G by π1. What you know now from group cohomology is that this
central extension can be realized in a very specific shape as G̃ = π1 ×θ1 G. The 1 in θ1 is
[unintelligible]. That’s a group. The map is G×G → π1, so the multiplication is (a, g)(b, h) =
(a + b + θ1(g, h), gh).

Associativity requires that θ1(g, h)+ θ1(gh, k) = θ1(g, hk)+ θ1(h, k) and θ1(g, e) = θ1(e, g) =
0. This defines the group structure but how about the smooth structure? If I assume that
θ1 is smooth on some unit neighborhood U ×U , so if I assume that this is smooth, since the
target space is π1, the smoothness here means a particular constant. Because of the second
condition I had, this means that the constant actually vanishes. What you can derive from
this is a Cech cocycle τ (for transgression) in H∨1(G, π1), and this is a good candidate for a
principal bundle, I want this cocycle to be the classifying cocycle for the bundle.

On π1 ×θ1 G we now have the structure of a central extension of a Lie Group. Let me
give a construction. How do you get this cocycle? For this example you can write it down
very explicitly. For g ∈ G, choose a path from e to the group element which is smooth.
Now from e you can travel to g via γg, or to h via γh, or to the product via γgh. You
can construct an element in π1, you can construct θ1, you can get a loop by going along γg

then gγh and then γ−1
gh , and this can be given by the group differential, this is dgp(γ)(gh),

which si γ(g) + gγ(h) − γ(gh). This is closed so defines an element in π1, and you want
θ1(g, h) = q(dgp(γ)). This is a map from Z1(G) → H1

∼= π1. I claim it’s a cocycle, it’s
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already written as d of something. It’s dgpθ1 which is dgp(q ◦ dgpγ), and now q is linear, and
we get qd2

gpγ = 0.

Theorem 2 [θ1] is universal which amounts to saying that it describes the universal cover of
G for 2-cocycles which vanish on some unit neighborhood. We had the requirement that if θ1

vanishes, it defines a topology on the simply connected cover, and the statement here now is
that each other such cocycle with values in an abelian group actually factors over this cocycle.
That means that we can take [f ] = [varphif ◦ θ1] for a group homomorphism ϕ : π1(G) → A.
Then Hom(π1, A) → H2

gp(G, A) via ϕ 7→ [ϕ ◦ θ1]

You can use standard covering theory, in particular the path lifting property. We understood
now how to rephrase this in terms of group cohomology. So let me say that Hn

gp(G, A) will
be locally smooth.

So let me generalize the notion, understand the notion of an n-cover of a topological group.
Let me look at n = 2. You want to understand the covering of ΩSpin. From now on G is
simply connected. The assumption that G was connected was important because I needed
a path from the basepoint to each group element. I want to use simply connectedness to
describe the similar thing for n = 2. Because I don’t have any theory that I have to match
with, I can start directly with a construction.

It’s construction of θ2 : G × G × G → π2(G). For all g, h in G I can write triangles as
before, and choose an ηg,h so that the topological boundary ∂ηg,h is dgpγ. (The choice of
γ is unique up to equivalence because of simple connectedness) So now C∗(∆2, G) is where
this map lives, with ∗ meaning that it’s pointed. Now dgpη evealuated on g, h, k describes a
closed thing in G.

[I miss a calculation where this is shown to be a tetrahedron.]

So you define θ2 = qdgpη for q : Z2 → H2 = π2. The theorem now is that this cocycle here,
and this is joint with [unintelligible], the cocycle that I have here is in H3

gp(G, π2(G)). This is
universal for locally constant 3-cocycles, that is, and then the same statement I had before.
The proof here is by making use, remember that in the case n = 1 I used covering theory and
the path lifting property, but here with parallel transport on 2-bundles. The questions now
is to what extent describes θ2. At the beginning I said a 2-connected cover is [unintelligible],
and that’s now encoded in this cocycle. If I now take topology into account, then here I get
a central extension of 2-groups, a weak group object which is [unintelligible]. The extension
I get is Bπ2 → G → G, so this has one object and morphisms labeled by π2.

What is the topological interpretation? So now I get [τθ2] ∈ H∨2(G, π2), what I will get is
the following theorem:

Theorem 3 Principal G 2-bundles over G are classified by Cech cohomology of G with co-
efficients in the two-group G and in particular if G is now this very basic 2-group Bπ2, then
the coefficients H∨(G , Bπ2) give H∨2(G, π2), and you would hope that you can do the same
thing, get a Lie 2-group and get an extension of Lie 2-groups. That’s a bit too much. What
would be nice is a Lie 2-group structure on the principal bundle associated to τ .
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When you classify ordinary principal bundle, you take a direct limit, but doing the same
thing here leads you to classifying principal bundles not up to isomorphism but a weaker
notion of equivalence, Morita equivalence. The point here is exactly the same. An example
is a Cech group coming from an open cover, and you know that this groupoid is Morita
equivalent to the direct limit, the union. That’s not good, you don’t have a smooth map
backwards. You cannot come smoothly back, choose representatives, and that’s the same
problem that occurs here. But if it’s discussed this way, the process still works. When you
convert these equivalences here, the ones leading to the same stack, [unintelligible].

Now what I can do here is realize Pτθ2 by obstruction of stacks. So we invert Morita equiva-
lences and pass to smooth stacks. Now I will get a group object in the 2-category of stacks,
a “stacky Lie group.”

Let me shortly say what this is good for. The way I stumbled into this was methods of
integrating Lie algebras which do not integrate to Lie groups. Infinite dimensional Lie al-
gebras may not have Lie groups. Using θ2 we can write down, the failure comes from the
nontriviality of π2, killing this π2 can show the failure in this situation. Other interesting
questions involve killing n = 3, but [unintelligible]. Thank you.
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