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1 Corbett Redden, string structures, 3-forms, and tmf
classes

Before I get started, I’d like to write down notational conventions. So M will be a smooth
closed n-manifold, compact, no boundary. g will be a Riemannian metric. If I say Spin →
P

π→ M , this is a principal Spin(n)-bundle, and if I say A, this will be a connection on P ,
and finally, the only nonstandard notation is that S is a string class, which I’ll define in a
minute. This goes nicely into Konrad’s talk next, and we’ll use the same conventions.

Let me give you a quick outline of where I’m going. I’ll start with

1. String structures and string structures up to homotopy, which will be very concrete

2. I want to look at harmonic representatives, which will involve talking about harmonic
3-forms on P

3. Geometry and tmf? (That’s what I’ll call this last part) Your motivation will depend
on your interest, but these come up in a lot of places, so that’s why I want to go into
the third, but you can view the first two parts as motivation for the third if you’re
interested in tmf.

What do I mean by a string structure? I’m going to define a space BString(n). I have

BSpin(n)
p1
2→ K(Z, 4), and I’ll take BString to be the homotopy fiber.

Then a string structure on some bundle P →M will be a lift of the classifying map

P

��

BString

��
M

::

// BSpin

Other work has said that there’s the string group, and then you can take its classifying space,
but up to homotopy this is still BString.
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Now, what does this mean? When does a string structure exist? It’s easy to see that it
exists if and only if p1

2 (P ) = 0 in H4(M,Z). Now I want to look at string structures up
to homotopy, which as a set is the sam as string classes, namely S ∈ H3(P,Z) such that
ι∗S = 1 ∈ H3(Spin,Z). These are ordinary degree three classes on the total space of a spin
bundle, but not all of them, nly the ones that satisfy this condition.

I’ll describe this canonical isomorphism. Finally, if I think about these string classes, this is
a torsor for the integral third homology of the base under the natural action of the pullback
S 7→ S + π∗H3(M). This is bad notation.

So here’s the proof of this identification. Let me look at the universal example:

π∗ESpin //

��

ESpin

��
BString // BSpin // K(Z, 4)

Because ESpin is contractible, π∗ESpin is the same as the homotopy fiber of BString to
BSpin which is then K(Z, 3).

If I want to think about string structures, I can think about geometric string structures,
but universally you can see this. You can tell the average graduate student what a string
structure is.

Let me say now why string structures. What’s a motivation? Well, first off, string structures,
there’s sort of a slogan that says string structures on P transgress to a Spin structure on the
bundle LP → LM , where the fibers are the loop group. If you want to talk about spinors,
the positive integer representations are projective, so you need to take an S1 extension
S1 → L̂Spin→ LSpin. If I think about what this means, then you want

L̂Spin

��

// L̂P

��
LSpin // LP

So S ∈ H3(P,Z) goes to (πiev∗)S ∈ H2(LP,Z) which goes to H2(LSpin,Z) and degree
two coefficiencts classify S1 bundles. Topologically this is the obstruction for this central
extension.

Related to this is the string orientation of tmf, which is known as topological modular forms,
constructed by Hopkins, [unintelligible], lots of people, which means I have a map from
MString (also known as MO(8)) to tmf , namely

MString−n(pt) σ→ tmf−n(pt)

And this is exactly what you need for a spin manifold and string class before, so you can go

M,S → [M,S] → σ(M,S)
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and get a piece of tmf of a point.

You have this map
tmf

��
MString

σ

66nnnnnnnnnnnnn

Witten genus
// Modularforms

so σ is a lift of the Witten genus, which is the S1 index of the Dirac operactor on the loop
space LM , well, at least in quotes, and σ, if you want to think about index theory on loop
spaces, you need to go to tmf.

I’ll return back to this picture. Is there any questions? If you replace Spin with a compact
semisimple Lie group, p1/2 with another class, this whole thing carries over.

So now I’ve said what, how I can think about string structures, and now what I want to
do is say what is the harmonic representative of this class. The answer should make you
say this was a good question even if you’re not a geometer. A quick reminder, if you have
a manifold and choose a metric g, it picks out the adjoint d∗, and you can get the Hodge
Laplacian ∆ = dd∗ + d∗d, and Hk(M,R) ∼= Ker∆k

g ⊂ Ωk(M). Once you pick a metric, you
get a canonical form. I want to put a metric on my principal bundle, and then pick a metric
and see what this is.

Construction 1 Start with (P π→ M, gM , A); if you want, you can let A be the Levi-Civita
connection. Choose a bi-invariant metric gSpin, and there is a one-parameter family of these.
The connection gives me an orthogonal splitting of the tangent space, π∗gM⊕gSpin, and I use
the connection to define this. The picture is, well, [picture], and if I look at the tangent space
of the total space, I can take the tangent space of the fiber and the choice of the horizontal
space is given by the connection.

One thing I had to do was choose a biinvariant metric which is only unique up to a scaling
factor. I want this unique so I’ll scale it away. I’ll introduce a scaling factor δ > 0, and I do
the same exact thing as above, but I rescale the fiber direction, gδ := π∗gM ⊕ δ2gSpin, and
then take the adiabatic limit, as δ → 0.

Now I’ve got a one-parameter family, where I can think of the kernel of the Laplacian, which
is ordinary homology, but when δ goes to zero, the metric becomes singular, so you have to
be careful, but fortunately others have already been careful.

Theorem 1 Mazzeo-Melrose, Dai, Forman
ker ∆k

gδ
extends smoothly to δ = 0, and comes from a filtration that is isomorphic to the

Serre spectral sequence for the fibration Spin→ P →M

This is a really nice theorem and it would be a nice talk, but this is a situation where the
two definitions of spectral coincide, the spectral sequence is related to the spectrum of the
Laplacian.
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[Kevin: what do you mean comes from?]

There’s something finite after E2 and you can identify it [I miss something], so the filtration
is a geometric thing, and you can write down a Hodge theory spectral sequence.

Okay, I can’t really talk any more about this, but this means that

Hk(P,R)
∼=→ lim

δ→0
Ker∆k

gδ
=: H k(P )

Now I have the string class in the third cohomology of this bundle, and now I can pass to
the real class and see what I have in this isomorphism

Theorem 2 (Redden)
Given P →M, g,A and p1

2 (P ) = 0, then what do I get with H3(P,Z) → H3(P,R) → H 3(P )?
Well,

S → CS3(A)︸ ︷︷ ︸
Chern-Simons 3-form

− π∗H︸︷︷︸
∈π∗Omega3(M)

So the way you describe H, you subtract your string form from the Chern Simons form and
you get a pullback.

Now what I want to talk about is, what does this mean and what are the properties of H?

[Dan Freed: If I don’t scale to zero, what do you get, is it still a pullback?]

That’s a very good point. In general, I can talk about the harmonic representative as a
one-parameter family of forms, and [S]gδ

= CSg(A) − π∗H + O(δ), but the O(δ) terms are
not in the pullback of the base. You get this splitting of the tangent bundle, the purely
vertical and purely horizontal, the Chern Simons has some in various pieces, but if you don’t
go to zero you’ll get other things in the mixed degrees.

[Dan: Is there a more general theorem about subtracting the Chern Simons from anything
like this in the adiabatic limit?]

Yes, but I want to be careful because I just worked this out.

I’m running slighly short and I wanted to say what is H, I want to make a slight digression.

Theorem 3 Cheeger-Simons, possibly Chern’s name should be here
If I have P → M,A, then p̌1

2 (A) ∈ Ȟ4(M), you have this differential class. Now remember
that when you have a differential theory you have the sequence

Ω3
Z(M) // Ω3(M) // Ȟ4(M) // H4(M,Z) // 0

H // p̌1
2 (A) // p1

2 (P ) = 0
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So H is the this pullback. In particular, you know that thinking about this as a differential
character, you get a map to R/Z, and integrating H gives me a lift of this up to R. The differ-
ent lifts are what you get modulo torsion from a string structure. It needs to be topologically
trivial for this to exist, but this gives exactly a lift to R

[The differential character gives you this without the metric, what is the role of the metric?]

You also have d∗H = 0 , and so the first condition determines H uniquely up to H 3
Z (M), and

this is the kernel of ∆g. This is where the metric condition comes in. When you set d∗ = 0,
this is like in standard Hodge theory, once you set d∗ to zero it determines it uniquely. In
fact, there is a natural equivariance, and this is that

HS+π∗ψ = HS + π∗Hψ

where ψ ∈ H3(M,Z) and the pullback will be harmonic on the bundle, which will only be
true if you take the limit. That was the construction, and overall what this tells me is that
I go from M × {String Class} → Ω3(P ) → Ω3(M), and I should have said, I have

Met(M)×A(P )× {string classes}

��

g,A,S

��
Ω3(P )

��

CS3(A)− π∗Hg,A,S

��
Ω3(M) Hg,A,s

It’s not clear yet that we’re getting anything additional. Let me do an example, it’s too
abstract. Again, I have this map

tmf−n

��
MString

σ
99rrrrrrrrrr
// MF

Conjecture 1 (Stolz) If M is string and admits positive Ricci curvature metric, then the
Witten genus of M is zero

This should remind you of this theorem from index theory.

So playing wishful thinking how about also σ(M,S) = 0? This thing here, no way, this
couldn’t be true. There’s lots of torsion in tmf, and I’ll show you an example, but there’s
maybe something else that we can do.

A hypothesis, this is even less than a conjecture, but it should be, like, tested and stuff, say
M is a spin manifold that admits a metric and string structure (g,S), ad P is Spin(TM)
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with A the Levi-Civita connection, then there is a simultaneous pair of conditions, what if
the Ricci curvature is strictly positive Ric(g) > 0 and Hg,S is zero in Ω3(M), then σ(M,S) =
0 ∈ tmf−n(pt). The condition of H being zero is very strong.

Let M = S3 = SU(2), and let p1 ∈ H4(S3) = 0. Then H3(S3,Z) = Z is the set of string
classes, and dH = d∗H = 0 implies just H ∈ H3(S3,R) ∼= R. So you have these string classes
and I want to go down to MString−3 = πS3 = tmf−3 = Z/24. So one, this is a three-sphere,
so it’s the boundary of a four-ball. I can also do a left invariant framing because it’s a Lie
group, and there’s also a right one. So ∂D4 goes to zero, and the left and right ones go to
generators, and you can see how this works. The first thing to note is that there’s no way
that [unintelligible]. Now what I want to do is just say, consider, there’s a one parameter
family of Berger metrics on S3, which is just rescaling the fiber in the Hopf fibration. Now
I’ve got some variables I can play with, I can draw a graph, with one axis the family of
metrics gx, nad the other dimension Hg,S ∈ R, and then there are some special values of gX ,
and I get a picture like [Picture].

This equivariance says all these graphs are translates of each other. I can put in ∂D4, left,
and right, and I can point out that the minimum is the round metric, and where you cross
zero, the metric is not Ricci positive. I start looking at when this is satisfied, and I see
that it’s zero and Ricci positive in the trivial string class. Where else is the form zero? It’s
not when it’s Ricci positive for the right invariant metric. In fact, in the limit as it goes to
infinity, it is all Ricci positive as well. It’s not quite a stupid hypothesis. If you weaken the
condition, it’s evidently false. That’s all.
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