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1 D. Ayala

I’m going to talk about the topology of bordism categories, and for me, CobFd will be a
monoidal category in Top. The objects will be d − 1-dimensional manifolds (M, g) where
g ∈ F (m), so F is some geometric structure like metrics or metrics of constant negative
curvature, or, say pairs consisting of the complex structure and a holomorphic map to a fixed
target.

This should be local data so embeddings is a non-example. This will be some model for a
moduli space

q[M ]ModF (M)

My morphisms are compact d-manifolds with geometric structure (W, g) where these are
closed with boundary. This is a model for the moduli space of d-dimensional F -manifolds.

One thing we can do is look at the classifying space of this category. I’ll give you an interpre-
tation of this in a moment. I’m inclined to think of these in terms of higher category theory.
So let’s think that there are k-morphisms, which are maps from a k − 1-cube into the space
of morphisms. A three-morphism is a map of intervals, and composition is concatenation.
I can do the path category construction on the classifying space. There’s a universal arrow
C → P |C|. This sends an object to itself viewed as a 0 simplex in the nerve of C. It takes
a morphism to the path corresponding to that morphism. This arrow C → P |C| is the
groupoid completion of C. Why am I saying this? I can think of the path category as a
groupoid. Every morphism has a canonical inverse. It’s a functor to a groupoid universal
among all such.

That said, we get maps for each d-manifold from ModF (W, g) → Ω∂ |CobFd |. Suppose we
want to understand moduli spaces, well this map gives us invariants of moduli spaces. I’ll
call these invariants universal invariants because they don’t see W .

So I might want to identify the homotopy type of the right hand side
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Theorem 1

|CobFd | ∼= Ω∞−1
−γd

F (Rd)//O(d))︸ ︷︷ ︸
Thom spectrum

Think of the right hand side as being accessible. This is coherent with Galatius-Madsen-
Tillmann-Weiss. If I like this idea of having identified the homotopy type, there are two
questions I’d like to address. The first question is: of what are universal invariants invariants?
In other words, I’d be happy with a geometric interpretation of this classifying space. We
might think the map is a good approximation of the moduli spaces:

Theorem 2 (Madsen-Weiss)
Modor(W 2

g ) → Ω|Cobor2 | is an isomorphism in some range depending on g, which ges better
as g increases.

Theorem 3 The moduli space M d
g (CPn) of genus g curves in projective space maps to

Ω|CobCPn

2 | is an isomorphism on homology in a range

Theorem 4 Modor(W 3) → Ω|Cobor3 | is zero in rational homotopy. This was also proved in
rational cohomology by [unintelligible].

So this is a non-theorem. Any three-manifold is parallelizable. This somehow, well, the
right hand side, rationally this lifts to the sphere spectrum, and a three-manifold can be
parallelized, it has a lot to do with this. Another is, there’s a moduli space a lot of people
are interested in, the Deligne-Mumford compactification, and we might hope to touch that.
So question two is, is there a version Cob?2 so that M̄g(Y ) sits inside of the morphisms?

Okay, so this is setup for what I’m going to talk about for the rest of the talk, which is an
attempt to answer the questions in terms of singular manifolds.

A very small discussion of singular manifolds.

Definition 1 A singularity type is a stable germ RN+d → RN at the origin.

It’s represented by a map between Euclidean spaces of negative codimension. Two germs
are the same if crossing them with R gives the same thing. I’ll say g is local of type Σ if
[unintelligible].

Here are some examples:

1. Σ = ∅, this is represented by Rd → ∗. Such a map is a submersion.

2. Foldk = Rd+1 → R1 given by (x1, . . . xd+1) 7→ x2
1 + · · ·+ x2

k − x2
k+1 − · · ·

3. Node = R4 → R2 given by (z, w) 7→ zw.
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A collection J of singularity types is proper if

• All are of finite codimension in co limN Map0(RN+d,RN )

• For f ∈ Σ ∈ J minimal, then, well, f : RN+d → RN , and [germxf ] ∈ J for all
x ∈ RN+d.

Now I want some kind of moduli space of singular manifolds. The picture of the double cone
is a singular manifold, but I should realize this as the fiber over zero of a map R4 → R2. So
a singular manifold is the data of how it resolves. I have to capture somehow resolution of
singularities. So to do that I’ll use sheaf stuff.

Let Man∂ be a category with objects smooth manifolds with corners and morphisms are
embeddings sending k-dimensional faces to k-dimensional faces. So the simplices and their
face maps are in this category.

Now consider a sheaf BJN from Manop∂ → Set. This will send Xr → Er+d ⊂ Xr
e︸︷︷︸

extension

×RN

such that the projection E → Xr
e , the class of this projection is in J and so that the map to

Xr
e × R1 is proper. Also the restricted map on faces should also be in K.

Bear with me for a moment and consider another sheaf on the same category Manop∂
B̄S

N→ Set.
Let Xr go to E ∈ BJN (X) and a ∈ R1 so that E → R1 is fiberwise transverse to a.

Overline just means it’s equipped with this a, and B̄JN is naturally a sheaf of posets were
(E, a) ≤ (E′, a′) if E = E′ and a ≤ a′.

A poset is a category in a canonical way.

Definition 2 A cobordism category of J-singular manifolds

CobJd = lim︸︷︷︸ homotopy colimitN |B̄N (∆)|

So I think of this as being long in one direction, and there are a and a′, it should be a
cobordism between these two slices.

Theorem 5 |CobJd | ∼= |BJ∞(∆.)| ∼= Ω∞−1MTJ Here MTJ is a spectrum with the N + d
term equal to Map(RN+d → RN ) which are J-singular, modulo O(N). Then I pull back γN .
The point is, it’s something fairly easy that you can get your hands on.

So we’re going to take this theorem and try to classify maps from |CobJd |.

in words, I don’t think you can have a Madsen Weiss theorem. You can split into irreducible
pieces of low genus which will always be in the boundary. I can see Deligne Mumford space
as a component of the morphism space of this boundary. It is a component. We get a map in
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particular from Deligne Mumford into this realization. One way that this shows up is looking
at coarse Deligne Mumford.

So, in the spirit of trying to understand these maps, the classifying space comes with
a filtration as we remove singularity types. Suppose J ′ is proper. Then the stratum
strat(Σ) ↪→ limN MapJ0 (RN+d,RN )//O(N), and Strat(Σ) ∼= B AutΣ which are automor-
phisms of RN+d,RN , orthogonal transformations, which preserve the singularity. If Σ is a
node, then Aut(Σ) = Z/2 o S1

This group comes with maps into O(N+d) and O(n), whcih I will call −ν and γ. I was going
to do some examples but I’ll jump to the node case. Say J consists of the empty and nodal
singularities. Then there’s a functor Cob→2 Cob

J
2 , which regards a smooth manifold as a nodal

one with no nodes. This gives me on the level of classifying spaces a map MTO(2) →MTJ .
In light of what I said as the stratum identification, and I forgot to say, with the inclusion of
the normal bundle, you have this mapping to B Aut(Node)γ+ν and this is a cofiber sequence
of spectra.

With any cofiber sequence, I can recognize the middle term as the cone of MTO(2) being
mapped in by a desuspended version of B Aut.

So a map MTJ → Σ−1(C) is equivalent to a map MTO(2) → C, and a nulhomotopy of the
map Σ−1B Aut(Node)γ+ν →MTO(2) → C.

This classifies not field theories but field theories landing in groupoids as this thing I spelled
out. So geometrically (then I’ll finish), by, when we take the infinite loop space, we can
geometrically interpret, the answer is, a map |CobJ2 | → Ω∞C is the data of a section D2 →
Σ∞C|α(S1) = Z0([unintelligible])}//Aut(node) over B Aut(node).

2 Orlando

Let me tell a story about sitting in on Raoul Bott’s geometry class. Someone asked him,
“don’t you need the axiom of choice for that?” He said, you must be a logician, turned
around, and went on writing. I might do that, “you must be a mathematician.”

Mike asked me to talk about why you need p1 vanishing for elliptic cohomology. I’m going
to try to talk about that, and today I’m going to try to tell a little bit about path integrals,
and how the second Stiefel-Whitney class has to vanish. Mapping a torus into a manifold in
field theory is what gives you p1 vanishing.

The first thing that I want to warn you is that when you talk about topological quantum
field theory, I won’t talk about that at all. I’ll talk about supersymmetric models. In a
topological quantum field theory, there are no time evolutions. For us, where things are is
going to matter. We’ll have geometry, not topology, but you will be able to have topological
information.

So we should have an operator Q with Q2 = 0. So in a supersymmetric theory, you have
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Q2 = H, where H is the Hamiltonian and that acts as time evolution. So for instance if
Q = d+ ιx then Q2 = Lx, the Lie derivative in the direction of x.

We use the following terminology. There’s always time, so we write things like n+ 1, where
n is spacial and 1 is time. So quantum mechanics is 0 + 1 and quantum field theory is all
of the other cases. For example, for p1 = 0, this comes out of path integrals three different
ways, the modular properties, anomalies, and renormalization. They seem very different but
it’s interesting to see how they come together.

When you read a physics paper, you’ll see some physics terminology. So I’ll talk about the
Dirac operator and Dirac-Ramond operator. In colloquial speech, let me translate what a
physicist means by a Dirac operator.

You have a map S+ → S− in spinors, that’s what mathematicians call Dirac, and physicists
call the chiral Dirac operator. Physicists call the matrix

D/ =
(

0 D∗

D D

)
Then we have γ5, it’s standard notation to call it the block diagonal matrix with I and −I.
This is also sometimes called (−1)F .

So now I want to make a historical comment about this which goes back originally to basi-
cally the heat kernel proof of the index theorem. That’s the observation that Tr e−tD

∗D −
Tr e−tDD

∗
. This is indepenet of t and is the index of D. We think of Schrodinger evolution,

∂ψ
∂t = −Ht.

A formal solution is e−tHψ(0). So if you know what the heat kernel is, you can evolve it in
time.

The question that you can ask is, is there a physical system whose Hamiltonian allows you
to solve this problem? I would like to describe this.

The last thing I wnated to do is write this way, this is the Tr (−1)F e−tD/
2
.

So let X be a map (1|1) → M2n, a map of a supermanifold to M2n, so let Xµ(t, θ) =
xµ(t) + θψµ(t). I am leaving out coefficients, so for me 1 = 2 = π = i because it will take a
long time.

Now what is the supersymmetry transformation SUSY ? That takes θ 7→ θ+ε and t 7→ t+θε.
Then δx = εψ and δψ = εẋ. Then SUSY 2 has δ x = ẋε1ε2 and δψ = ψε1ε2. If you have a
symmetry, it can be written in terms of a vector field. These are written in terms of operators.
They will generate the Dirac operator and the Hamiltonian.

As an exercise dt − θdθ, maybe, there’s an invariant form, something like this, maybe, its
square is a metric. In higher dimensions there’s a gamma [unintelligible]here.

Let me just say one thing about the Dirac operator. I just want to make a story about the
Dirac operator. Look at the tangent space to M at a point. I can move in a variety of
directions. Because I have a basis, I have Clifford multiplication. Then γµ = C( ∂

∂xµ ), and so
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you have the symbol part of the Dirac operator and you want to try to complete it.

So L = 1
2 (dxdt )

2 + 1
2
dψ
dt ψ and the map L→ L+ d

dtS.

So we have ψµ = ∂L
∂ẋµ = ẋµ and πmu = ∂L

∂ψ̇µ
= ψµ, and you have the Poisson bracket

[xµ, φν ] = δµν , which is the same thing as {ψµ, πν}. So here Q = ψµφµ.

Quantization, we have this Poisson algebra and you want to represent it in terms of operators.
You want to represent it so that 1

i~ [x̂µ, φν ] = δνµ, and 1
~{ ˆψµ, ψν} = δνµ So in L2(E2n) has

φ̂µ = −i ∂
∂xn . I have one nice representation, with ψ̂µ as the Dirac gamma matrix γµ. Then

Q̂ = γµ ∂
∂xµ . Then this is L2(E2n)⊗ C2n.

What if I curve the manifold. What you get is the Dirac operator on that manifold, and the
quantization ar the square integrable sections.

I can rewrite L as pẋ − 1
2p

2 + ψψ̇. Writing this way, you see that we already have an odd
symplectic manifold type variable.

We try to turn this algebra, this Poisson algebra, to find a Hilbert space on which it operates.
We find a representation of p̂ as the derivative with respect to xµ and on the other side we
have the Clifford algebra.

On a manifold these things just become L2 sections of the spin bundle.

γµ is just the matrix for the operator ψ̂µ.

One last thing, the operator hatQ2 = p2. Dirac asked how to take the square root of the
Hamiltonian.

Let’s talk about path integrals. What I want to do is, so, the idea of path integrals is due
to Dirac. There’s a great paper where he asks how Lagrangians enter the Hamiltonian view.
It’s all there except for computation. Feynman sat down and did the computation.

Let’s talk about the path integral. Let’s ask the following question. Assume I start at |xI〉,
and ask, what’s the probability amplitude that I’ll end up at xF ? So what is 〈xF |e−TH |xI〉?
Well, it’s

∫
M [Dx]e−

R T
0 L where M = {x : (0, T ] → M such that x(0) = xI and x(T ) = xΓ.

In this one dimensional case the right hand side has rigorous mathematical meaning.

So earlier we had a trace. You want to take the diagonal part of the matrix for the trace. So
the trace of e−tH is the integral over periodic paths of∫

per.

[Dx]e−
R T
0 Ldt

I’ll move to the SUSY case.

So L = 1
2 ||

dx
| |

2 + 〈ψ, Ddtψ〉. We can evaluate∫
[Dx][Dψ]e−

R T
0 Ldt
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Have to stop. Too fast.

3 Kevin Costello, Bosonic string theory

[Our next speaker is Kevin Costello.]

My title is overly ambitious. I’m going to talk about, first, some general approaches to QFT,
and I’ll be very handwavy and broad. What I really want to talk about is how to apply this
to a particular example which is called bosonic string theory. We’ll see some fun Lie algebra
homology calculations. I’ll start with the general idea. This approach is kind of analagous
to the deformation quantization approach to quantum mechanics. There will be algebraic
structures encoding quantum and classical field theory, and quantization is turning a classical
field theory into a quantum field theory. The key theorem is that one can do this. There
is a cohomological problem about quantization. I should start by telling you what these
structures are. The structure that I claim encodes quantum field theory is a factorization
algebra.

Definition 3 A factorization algebra on a manifold M is the data (this should be the space-
time of the theory) of

1. for each open set a cochain complex. The structure is sheafy. Just like with a sheaf,
there will be maps between open sets.

2. If U1, . . . , Un are disjoint open subsets of V , then there is a map F (U1)⊗· · ·F (Un) →
F (V ). In particular if n = 1 there’s a map, so it’s a cosheaf, but there’s this multi-
plicative structure.

3. There are evident compatibility conditions you want this to satisfy. If I have small open
subsets, I can map to middle size subsets, and then to large ones, or I can go directly
to the large ones. [Picture] I should have associativity.

4. This is sheafy. Kevin calls this blob homology, Jacob calls it topological chiral homology.
F (V ) is built from sums of products of elements of F (U) where U is arbitrarily small.
This is rough. Slightly more precise, it is the colimit of F (U1)⊗ · · ·F (Un).

You might ask why this has to do with quantum field theory, so the idea is that this vector
space F (U) is supposed to be the set of observations one can make on the open subset of
spacetime U . The key thing we would like to know is what the correlations between various
bservables are.

There’s no algebra, this higher dimensional structure is the replacement for the algebra
structure. In good cases, if our manifold is compact, H(F (M)) = R[~] so we get these maps
F (U1)⊗ · · · ⊗F (Un) → R[[~]] and these are the correlation functions.
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If we start with an isolated classical solution, we get this; if it is not isolated, then we have
to do some second [unintelligible].

I should mention how this will relate to the previous talk. This purports to encode much
of quantum field theory. Let me say, for ordinary quantum mechanics, M = R, we have
F (0, ε) is the algebra of observables for quantum mechanics. This was some kind of bundle,
combination of Clifford and Heisenberg algebras, so F (I1) ⊗ F (I2) → F (I3) is just the
product in this algebra.

We wouldn’t expect to have such a simple structure in higher dimensions, because time isn’t
discrete like this.

[How do you put in that observables which are spacelike separated have to commute?]

I don’t understand what happens in the Minkowski signature.

[Argument from Alvarez.]

I wanted to try to explain how to construct these gadgets using obstruction theory.

We’d like to start by saying what happens at the classical level. Suppose we have some
classical field theory. Let for the first example, fields be smooth functions and the action be
something standard, like

S(φ) =
∫
φ∆φ+ Φ∆

The second example has M a surface Σ and fileds are (J, ϕ) a pair of a complex structure on
Σ and ϕ a map to Rd modulo the gauge group of diffeomorphisms of Σ. The action is

S(J, ϕ) =
∫

Σ

〈∂ϕ, ∂̄ϕ〉dR

I want to explain what structure classical observables satisfy and what structure they have
in these examples.

For classical field theory, we find a factorization algebra where F (U) is also a commutative
algebra and all maps respect this structure. This is a classical factorization algebra. (A
classical field theory needs a Lagrangian and fields, which can be made precise).

If we have an action, let EL(U) be the derived space of solutions to the Euler Lagrange
equation. These must be taken to be infinitessimally close to a fixed one.

[Jacob: how big is this space?]

The quadratic term is elliptic, so if U is compact, it will be finite dimensional. Now F (U)
will be O(EL(U)), which is a commutative differential algebra.

The Euler Lagrange equation is the critical points of an action and [unintelligible]is a critical
points of a one-form. Let me say what it looks like to take the derived critical locus. What
do these look like?
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In finite dimensions, for X finite dimensional and F : X → R a function, then O(Crit f)
looks like

· · · → ∧2TX
∨df→ TX

∨df→ OX

which is ∧TX,∨df . So x ∈ π0Crit f ⊂ X then the tangent space Tx Crit f = TxX → T .xX
via the Hessian of f .

So what is the derived critical locus in infinite dimensions? The easiest thing to grasp is
what the tangent space looks like. In bosonic string theory, fix (J, ϕ = 0). The tangent space
T(J,0)EL(Σ) is, well,

Ω0,0TΣ
∂̄ // Ω0,1TΣ Ω1,0T .Σ

∂̄ // Ω1,1T .Σ

Ω0(Σ,Rd) ∂∂̄ // Ω2(Σ,Rd)

−1 0 1 2

The physicists call the top parts ghosts and their antifields.

What is the quantization procedure? In the finite dimensional situation, we’ve taken these
polyvectorfields, which have the bracket. This means that functions on the derived critical
scheme have a bracket of degree 1 in the classical setting. This is also true in a homotopical
sense in the infinite dimensional setting. This means that F cl(U) should be not just a
commutative algebra, but a commutative algebra with this Poisson bracket, what Jacob
would like to call a P0 algebra.

A quantization of a P0 algebra A is a differential d̂ on A[~] so that d̂2 = 0, |d̂| = 1 which
restricts to the ordinary differential d̂ = d mod ~, and the relation that we want to move
to the chain complex world, d̂(ab) − ad̂x − (d̂a)b = ~{a, b}. We try to find quantizations
over every subset in a coherent fashion, so a d̂ on every U which are compatible with the
factorization structures. So the map F (U1)⊗ · · ·F (Un)[[~]] → F (V )[[~]] is a cochain map.

The theorem is that you can quantize if the obstruction groups vanish.

Theorem 6 There is a deformation or obstruction complex Def cc for deforming classical
theory. If we have a quantization modulo ~n, then there’s an obstruction On ∈ H1(Def cl).
If On = 0, then quantizations to order n+1 is a torsor for H0(Def cl). Topologists would say
that we should turn this guy into a simplicial set, and it’s a torsor for the simplicial Abelian
group. So H1(Def cl) is automorphisms, and so on.

The way I’m writing it, this is just a complex. I only understand the linearization. If you
had a complete description of the moduli space of quantum field theories, you’d know the
L∞ structure here.
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So how do we compute this? I left the example on the board for a purpose. To describe a
moduli problem, to give an all order description, I need to know that the tangent complex is
a Lie algebra. We’ll have a sheaf of Lie algebras on the space on which we’re doing quantum
field theory. Let’s discuss the case T(J, 0)(EL(Σ)). This is a differential garded Lie algebra,
in fact a sheaf of such. So what’s the Lie bracket? Vector fields are a Lie algebra and act on
everything else. Another piece comes from, if we deform our complex structure, we change
our ∂̄. There’s a pretty evident Lie algebra structure here. So let, call this complex E. It’s
a vector bundle on Σ, but the bracket is not a bundle map, but a differential operator. This
means I can take jets of sections, and this is a DΣ Lie algebra. I can form a new one at a
point made of germs of sections, and it always has a flat connection. When we take jets, it’s
perfectly fine. What’s the punchline? What is the deformation complex? The deformation
complex, we take cochains, Lie algebra cochains,

Def = ωΣ︸︷︷︸
top forms

⊗DΣ Cered(J(E))︸ ︷︷ ︸
Lie algebra cochains

Theorem 7 In bosonic string theory,

1. H1(Def) = R2

2. H≤0(Def) = 0

3. Only the first obstruction O1 can exist for a symmetry reason, and O1 = 0 if and only
if d = 26.

This should preserve the C ∗ action that I didn’t tell you about.

When you have this quantization, you get from uniqueness the flat connection, and it’s the
square root of the determinant of the complex, so that’s determinant of one complex times
the Pfaffian of the other one, and so you can calculate this.

One thing I wanted to say briefly, the key point is that the obstructions can only lie in the
piece of the Lie algebra Ω0,0 → Ω0,1 by symmetry. So obstructions really come from Lie
algebra cochains of jets of holomorphic vector fields. Locally, it’s just the cohomology of
C .(C [[z]]∂z), and we know that Gelfond Fuks, H3 of this thing is R2. I’ll stop there.
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