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1 D. Nadler I

I’ll be talking at you a lot. Let me give you an overview of my plan. The breakdown of the
three talks is roughly the following. Today I’d like to talk about perspectives on D-modules.
Next time I’d like to talk about D-modules on flag varieties, and in the third one maybe I’ll
talk about geometric Langlands. So the second talk will have to do with three dimensional
TFT, and the third with four dimensional. This talk is for no audience member left behind.

I’m not going to talk much about my work, but much of this is joint with David Ben-Zvi,
and I’ve been very influenced by him.

Let’s start with the basics. Let X be a smooth scheme over C. The ring of differentials DX

is the enveloping algebra UOX
τX of vector fields, which is⊕

n

τ⊗n
X /vf − fv = v(f), vw − wv = [v, w]

Just to be specific, if X = An, DAn = C〈x, ∂〉/∂x− x∂ = 1 Our main object of study will be
D-modules, modules over this algebra.

A D module is a quasicoherent sheaf on X with a compatible action of DX , where functions
act as they would in the sheaf. If X is Spec R, then an quasicoherent sheaf is an R-module.
You could have imagined, well, more complicated things, on any open set you take an R-
module, and you localize it.

[Dennis wants more definitions]

A module is a module over coordinate functions, so you can forget quasicoherent sheaves to
just think about this a little. It’s important to know that locally this is something that looks
like a module.

Where do these come from? Let me give you several perspectives on moduls. How to think
about them? The first way I’ll give you is analytic. Any time you have a linear PDE you
have a D-module. Let me give you an example. Say we’re on A1. One favorite is just ∂f = 0.
This, you can think of as D/D · ∂.
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Once one has this, why is this a reasonable idea? If I have P (f) = 0 I get D/D · P , then
HomD(MP → F ) with F a function space like analytic functions, then these homomor-
phisms are solutions to P in F .

So to see this, for a map MP → F , I need to say where 1 goes, it goes to f . Then P 7→ P (f),
but P is 0 in MP , so P (f) = 0.

My more general example is M = D/D(x), wel, D/D · ∂ = OX . Now D/D(x) = ∆[, the
delta functions and derivatives at 0. This is the analytic starting point, trying to algebraicize
linear PDEs.

Now some geometric perspective, recall that DX is naturally filtered by the order of dif-
ferential equation OX ⊂ D≤1

X ⊂ D≤2
X , and this filtration has an associated graded, and

gr DX = OT∗X . We take a commutative algebra, functions on T ∗X, and deforming it to
a noncommutative one. To think of a D-module, we can think of it as living on a noncom-
mutative version of T ∗X. So if we’re bold enough, we can think, roughly, a subvariety of
T ∗X.

I’d like to make a little more precise dow to think of these. Let’s assume for the moment, say
a D-module is coherent if it’s finitely generated. In other words, it’s reasonable from some
perspective. So given a coherent D-module, we can always choose a good filtration on M .
Let me tell you what a good filtration is. It’s a filtration by coherent submodules compatible
with the filtration of D. So for example, let M0 be generators over DX, and M≤i = D≤iM0.
It’s extra structure, not canonical, but easy to find. We can then consider gr M which is
an OT∗X = gr DX -module. This is not canonical, but what is canonical is the set theoretic
support gr M ⊂ T ∗X. This is called the singular support. Sheaves have support, but on
the cotangent bundle, well, there are interesting codirections. I’ll calculate examples in a
moment.

For the time being, this is the best we can do for M , draw its singular support.

Exercise 1 The singular support SiS(M) is conical and coisotropic. The cotangent bundle
is naturally Poisson. Locally, we used the symplectic pairing. That’s the hint.

So I should be drawing only conical pictures, like this: [Picture].

Dennis says, if you take Y ⊂ X and look at distributions ∆Y along Y , and SiS(∆Y ) = T ∗
Y (X).

So let’s classify some D-modules based on pictures of their singular support. Let’s classify
D-modules on A1 with singular support in the union of the the 0 section and the cotangent
bundle at 0, that is T ∗

A1A1 ∪ T ∗
0 A1.

Let’s start with my favorite PDE, D/D(∂−1). This is a test of how effective my lecture was,
this corresponds to the exponential. I’d like to draw this diagonally but this is not conical.
The singular support is just the zero sections. If your friend who lives at infinity calls you,
he’ll say this seems weird. The guy living at ∞ thinks it’s quite frightening. So let’s assume
our D-modules extend to P1 ⊃ A1. That will rule out my favorite PDE. So we’ll try to
classify these on P1, with support in the zero section and the cotangents at 0.
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So let’s get to work, audience participation. Does anyone have a D-module living in this
category? Let’s take OP1 , looking for things with singular support just in the zero section.
That’s perfectly good. Also ∆0 has singular support T ∗

0 P1. So in coordinates, these look like
C[x], C[δ]. These are all you’re going to get by fixing one or the other. Now let’s draw the
cross, try to draw something whose support is the union of these two, looking at the equation
xξ = 0. So M∗ = D/D(∂ · x) or M! = D/D(x∂). These are not the same, and both have
singular support this cross.

Here’s an exercise, a short exact sequence:

OP1 → M∗ → ∆0

∆0 → M! → OP1

Can anyone think of any others?

[What about D/Dx2. You can find an isomorphism with a direct sum of these.

There is one more indecomposable. It can’t fit into too interesting a family. Let me call
these three and four, so that number five can be T = D/D(x∂x). This one has singular
support which can be upgraded to more than just a subset, everything, but with the vertical
component doubled.

If you understand this exercise, you understand representations of sl2.

So that was supposed to be, some general nonsense, some categorical background. That was
a sort of intro to what I mean by a D-module. I will give other pictures later. I’m going to
need to pass to derived categories of D-modules. I’m not sure if I should, but I’m going to
apologize for this. Now D(X) will be the derived category of D-modules. Dennis already
gave the definition. These will be complexes of D-modules, with quasiisomorphisms inverted
somehow. You can add boundedness, finiteness, all these games that one plays. For the
cogniscenti, I want to work with an ∞-enhancement. I don’t know if this level of subtlety
will come up. Why do we work with derived categories? Because the functors we use are
too silly until we derive. So for f : X → Y I’ll define f†, the O-module pullback. There’s
nothing fancy about it. This produces D-modules from D-modules, pull back OY and there
will be something completely canonical. The pushforward f∗ will be the coflat sections along
the fibers. Normally you tensor rather than Hom so it’s coflat. There are tons of books, but
let me write that if Y is a point, then f∗(M) = f†︸︷︷︸

O−module pushforward

(ωX ⊗DX
M).

Let me make a comment for experts. This will be a version of de Rham cohomology. If M
is O it will be de Rham cohomology. If you push forward from an affine to a point, you
don’t lose information, but here you lose information, only get the de Rham cohomology. An
unhappy representation theorist here is unhappy with this fact.

Let me finish with a definition and an exercise, we can go from schemes to Artin stacks. So
if I give you a stack X I can think of it as being resolved by a simplicial scheme X0, X1, . . ..
Then I let D(X) = lim D(X.), so compatible collections of D-modules with respect to f†.
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Exercise 2 Let X be a point over G, so BG, resolved with a point, G, G × G, and so on.
Then D(BG) = C−∗(G)-modules. This doesn’t recover.

Next time we’ll get to flag varieties.

2 Perspectives on Moduli Space

[For travel, talk to Robbie Miller in room 325. If you want your laptop on the internet, talk to
me after. For suggestions for dinner, ask after the talk. Tomorrow morning the breakfast will
be on this floor because it’s the welcoming day for the first year graduate students. Tomorrow
evening we have our own food for dinner. I’m very pleased to have Curt McMullen.]

I didn’t know that I was giving this talk at four until 12:30 today. [That’s your way of
thanking the organizers?]

I have the fortune to be one of Dennis’ early students. I’m going to give a talk summarizing
what I learned in the hope that it is somehow relevant. This will be a survey of classical basic
ideas regarding the moduli space of Remann surfaces. I’ll start with a topological surface of
genus g ≥ 2. The algebraic topologists attach to this H1(Σ, Z) = Z2g with the symplectic
intersection pairing. But there’s something that gets you more into the topology, the space
of isotopy classes of simple closed loops on the surface, S. That means that the curve can
be represented without any crossings. It could be trivial in homology, but it need not be
isotopic to the identity. On this space, you can put curves in minimal position; then the
number of points in that intersection gives you a number S ×S → N, and this is without an
orientation. So α · β = 2, even though α is homologically trivial.

Then there’s the fundamental group π1Σ, which is a hyperbolic group Γ which has one
relation. Scale the word metric to give it finite diameter. If you do it to this surface group
you get the circle. This is hyperbolic because the relation involves many letters. This is part
of small cancellation groups (or maybe the other way around?)

Now, these isotopy classes, in principle, can correspond to conjugacy classes in π1Σ, but
figuring out which ones can be represented is hard. One thing that you can do is the following,
you can make an embedding of the space of all curves into the space of functions on curves,
RS

+. So now we could take a collection of aiαi, and just as we required that the α were
simple, we can require that the components of the multicurve are disjoint (call these finite
laminations), and then we can send this to the sum of the intersection numbers, a linear
extension, which maps {finite laminations} → RS

+, and then we can take the closure of the
image, which is the measured laminations on Σ, ML.

Now we can take a surface of genus two, and cut it in half, and then each half looks like a
torus with a point removed. So you get a curve γp/q that lives on one half. Rescale these
by multiplying by 1

q , let these go to ∞, and you’ll get a lamination. So a very long simple
closed curve with a small coefficient in front of it. Now ML is homeomorphic to R6g−6. If
you projectivize you get a sphere of dimension 6g − 7.
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The next level is the automorphisms of these surfaces, so let me introduce the mapping class
group Modg, the group of homeomorphisms that preserve orientation up to isotopy. The
reason these objects I’ve introduced are interesting is that the mapping class group acts on
them. It acts on homology, Sp2gZ. It acts on simple closed curves, the measured laminations,
and then on S6g−7. This is like the fundamental group acting on the circle at ∞.

That’s the topology, topological perspective on the mapping class group.

The problem with the mapping class group is that it’s populated by large Abelian subgroups.
What about geometry. The next step is to change your perspective to X a hyperbolic
Riemann surface, a quotient of H by a surface group Γ. This comes with a hyperbolic
metric, a metric of constant negative curvature. Everything has been tautological. Let’s
consider the space Tg of all possible hyperbolic structures. So we choose not just X but a
fixed homeomorphism Σ → X, modding out by isotopy of the map ϕ and isometry in X.
This is the Teichmueller space of genus g.

Why would we do this? Now the simple closed curves have canonical representatives. You
have unique geodesics, and it turns out they realize the minimal intersection number. So
now we have S as the space of simple closed geodesics. The topological boundary is now the
boundary of hyperbolic space, and now the action on the boundary is by Mobius transfor-
mations.

Now you can take the unit tangent bundle, and once you have a vector, you can follow it
on the geodesic flow. It looks like all the structure is very geometric, but it’s not. You can
construct this from the topological data, even with the leaves of the foliation by the geodesic
flow. You see this because the tangent bundle is S1 × S1 × S1 minus some diagonal with
an action of π1Σ. Two points at ∞ determine a geodesic, and then the third point on the
boundary gives the tangent to it. So we get a tangent direction (along the line) and the point
of intersection.

It’s a kind of spectacular thing that the topology of the geodesic flow is independent of the
choice of metric.

A little nuance here so that you don’t find this too hard to believe. Just knowing the
fundamental group you can build this. You can see the simple closed curves. What’s not
canonical is the projection of this bundle to X. There’s a very interesting invariant. If you
have three geodesics that intersect in a triangle, it could look one way or the other.

Okay, so, what is this Teichmueller space, now? It’s the set of possible shapes for this surface
of genus g. It’s actually a nice object (this goes back to Fenchel-Nielsen). So you can choose
a decomposition into pairs of pants by 3g − 3 simple closed curves. Up to homeomorphism,
a pair of pants decomposition is the same thing as a trivalent graph with 2 loops. There are
only finitely many pair of pants decompositions, then.

There are three numbers we can attach, then, `i, the length, but if you specify three legs
arbitrarily, then there exists a unique surface that has those three lengths. I want to dwell
on this. It’s true for the same reason that you can build a spherical triangle when you pick
three angles whose sum is greater than 180◦. So α, β, and γ determine a 3× 3 matrix, which
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has ones on the diagonal, using cosines. Then this information is just saying that the matrix
is positive definite.

Taking this hexagon [Picture], using geodesics at three proscribed distances, you can attach
across this and get a pair of pants. There are many intuitive reasons this should exist. I
wanted to point out one of them.

Now we just have to glue them together. There are points on each boundary component
closest to every other. These might or might not match up. Specifying lengths and twists
determines the surface. So Tg

∼= R2g−3
+ × R3g−3.

There’s a natural action of Z3g−3 under Dehn twists, and using this you get (C∗)3g−3 In-
credibly, or, if you like, trivially, there is a symplectic structure on this Teichmueller space.
So Scott Wolpert wrote it down, so you just take d`i ∧ dτi. It’s a miracle that this is invari-
ant under Dehn twists. It’s invariant because it agrees with the obvious symplectic form.
The tangent space is the same as the space of deformations of this representation, which is
H1(π1(G), sl2R)e). To be even more pedantic, [unintelligible].

Now you can start to see things that are really incredible. When you have a space with
a symplectic flow, it cries out for Hamiltonian flows. If you take a loop, you can consider
its length. That’s a function on Teichmueller space. Each α ∈ S gives a function τg → R
given by X 7→ L(X, α). Associated to this there is a Hamiltonian flow and vector field
Twtατg → τg. The flow associated to x is just shearing. This is a map of Teichmueller space
preserves lengths of the specified curve. You cut the surface open, twist it a little, nad glue
it in. This is, essentially, dτα.

The amount of time you have to flow depends on the surface you started with. That’s already
interesting. What I want to point out, you don’t have to be ambitious, you can take for a
lamination λ the same kind of length function Lλ which is real analytic. You can still cut
open, twist, and reglue. You’re taking a limit of Hamiltonian flows. Those paths are called
earthquake paths, and they connect any two points on Teichmueller space. Namely

Theorem 1 (Kirkhoff (?), Thurston)
There exists a unique earthquake λ ∈ML so that Twλ)X = Y .

One corollary is that any finite group H ⊂ Modg has a fixed point on Teichmueller space.
Now I realize I forgot to mention that Modg acts on τg, you can modify the map to X by
precomposing with an automorphism of Σ. This modifies, and the quotient of this action is
Mg = {RShypX of genus g} up to isometry, is the quotient of Teichmueller space by Modg.
This quotient is not a covering map, it’s a description of an orbifold, shouwing that Mg is a
K(π, 1) in the orbifold sense, there’s an orbifold universal cover that’s contractible.

[unintelligible]. There’s a solution using length functions and earthquakes to show this fixed
point. So you take a combination of length functions, as a convex function, and then show
[unintelligible].

Now what were these laminations introduced for in the first place? They’re great for com-
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pactifying Teichmueller space. Thurston observed that you can glue onto τc the space PML.
This space is a sphere of just the right dimension to form the boundary of this ball, and the
action of the mapping class group extends. Thurston introduced this because if you want to
analyze the mapping class group, this is a ball, the Brouwer fixed point theorem tells you
that you have a fixed point. You can give an analysis by saying what happens if the fixed
point is in the interior or the boundary.

What does it mean for Xn in Teichmueller space to converge to [λ] ∈ PML. Well, [`(Xn, α)] →
[i(λ, α)] when [unintelligible]. The lengths of curves are just intersections with some lamina-
tion, so then you say the curve is that lamination. Takee Xn where α has length 1

n . The
area is constant by Gauss-Benet.

If you try to predict the length of a curve is approximately a constant times the number of
times it crosses α. This is a collection of copies that converge to the class of [α] in δTg.
Now you can also take τn

α (X0) = Xn, where we let the markings change, with n Dehn twists.
Every time that β crosses α, it gets wrapped by α some large number of times. So this is
about `(α, X0)i(α, β)n. There’s a joke that there are two ways of killing a Riemann surface.
You can strangle it or wring its neck. You can go straight toward α or go toward along a
horocycle. The horocycle is a level set of the length function.

[If I want to mod out the action, in this example I want to restrict to rational points in the
circle. Is there a generalization of that?]

I might need five more. . . days.

We’re getting to very good questions. I want to emphasize the central role of laminations.
They come up all the time and turn out to be one of the main things you have to appreciate.
But they’re attached to Teichmueller space, not moduli space. The question, what is the
boundary of moduli space, it’s not as exotic as PML.

Let’s ask, what does moduli space actually look like? Here’s a first approximation [cusp].
It’s not compact in a very simple way. There’s only one way to go to infinity, and it’s via
strangulation. If you look at X ⊂ Mg so that the length of the shortest closed geodesic is
at least r > 0, then this space is compact.

This should remind you of the fact, when it’s thin, there’s an obvious short loop in moduli
space, the Dehn twist around the short loop. Then let me postulate the Teichmueller metric,
so that moduli space has finite volume and the injectivity radius goes to zero.

[Could there be many?]

I’ll answer this and end. You could add in limits. One thing you can do is glue on δMg, the
Deligne Mumford compactification, where you allow the length of a curve to become zero.
Here’s a surface I want to describe to you. The length of this geodesic is L, of this one is
L′, and of this one is 0. What you get is a stable curve, a degeneration where there are two
components. Fenschel Nielsen coordinates provide beautiful coordinates near any your point.
There’s a natural stratification from how many curves have been pinched. The symplectic
structure is just the same.
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That’s one way of compactifying moduli space, which gives you a look at the boundary.

The last thing, let me say what the curve complex is, and state a theorem. Remember we
had the set S of simple closed curves. Take these to be the zero simplices, and then say
a collection of simple closed curves forms a simplex if and only if you can draw them so
that they are disjoint (and not parallel). This is a simplicial complex of dimension 3g − 4
with an action of the mapping class group. One reason people don’t like this is that if your
collection of curves don’t fill the surface, how many one cells are attached to this vertex?
Infinitely many. But there is a beautiful theorem of Minsky and Mazur that says that Cg is
a hyperbolic metric space, there is a canonical way to interpolate between them. That’s one
remark. You can also take Cg/Modg = C̄g. The top cells are pair of pants decompositions.
The number of top cells are the number of trivalent graphs with first Betti number equal to
the genus. There are two top dimensional cells in g = 2, the theta graph and the barbell.
The vertices of the theta graph are the nonseperating curves. This space in the case of genus
two, well, these edges are identified, This is something you can get your hands on.

What does moduli space look like? This has big differences from a hyperbolic manifold. A
cusp is fundamentally Abelian. This is not true in moduli space. A neighborhood of the end
of moduli space maps onto the fundamental group of moduli space. To force yourself to stay
in the end, you can hold one curve short somewhere else. This is easy to verify, and quite
surprising. The end has all the combinatorial complexity of moduli space. But it has finite
volume. There is a known way to answer this. Take moduli space, and multiply the metric
by ε. Take the limit as ε → 0. This exists in the Gromov-Haussdorff [unintelligible]. The
final theorem is that εM goes to the cone over C̄g, not just topologically, but as a metric
space, using the Teichmueller metric on Mg.

[Can you say a few words about how this, the foliation given by Dehn twists, it passes to the
moduli space?]

No, it doesn’t, the curve is not preserved. The foliation are the horocycles, circles tangent
to the axis at that point. It’s invariant to the parabolic subgroup of Dehn twists, but not
the whole group. We had to choose a particular lamination to define this flow. You can take
ML× τ and let Modg act on both factors.

Does the last theorem work for punctured Riemann surfaces? Almost all the results have
natural analogues there.

If you take a periodic surface and scale it, it converges to the real axis. If you take one that
admits a homothety, it would be invariant under scaling. The really cool example is if you
take hyperbolic space, multiply by ε, and the geodesics joining give very thin triangles. So
the ideal triangles go to cones on three points. So this doesn’t converge, but a subsequence
goes to an R-tree.

There are geodesics in Teichmueller space staying a nonnegative distance apart. The curve
complex is dual to Deligne Mumford. Pairs of pants give 0-cells of Deligne Mumford, and
top cells of the curve complex.

[If you take the homotopy quotient on Cg, do you recover Deligne Mumford?]
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You have the notation Cg//Modg, where you make this free by crossing with something
free. If you take a compactification. Cut off ∞ to make it a manifold with boundary, then
Cc//Modg

∼= δMg
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