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1 Soren Galatius
Homotopy type of the cobordism category

So I’ll talk about a paper which is joint with Ib Madsen, Ulrike Tillman, and Michael Weiss.
It’s on the arxiv as 0605429.

Let me first remind you of classical Pontrjagin Thom, that’s a result that interprets smooth
closed d − 1-manifolds up to cobordism as homotopy groups of a spectrum MO or if you
would like spaces better, it’s πd−1Ω∞M or π0Ω∞+d−1MO.

Let me remind you what is MO and what is the map. This is πd−1+nMO(n) where MO(n)
is the Thom space of the canonical bundle over BO(n).

Embed Md−1 in Rd−1+n and it has a tubular neighborhood with a normal bundle NM which
induces a map to the Grassmanian of n-planes in Rd−1+n with the normal bundle mapping
to the canonical bundle U over it. Then the Pontrjagin Thom construction gives a map from
Sd−1+n into the Thom space of the normal bundle into the Thom space of U , and then this
can be embedded in the canonical bundle over n-planes in R∞.

That’s the classical construction and the main theorem of that paper is in some sense a
refinement of this. We prove a homotopy equivalence where the stated isomorphism is π0 of
the equivalence.

To any category C there is the classifying space BC defined as the geometric realization of
the nerve |NC |. You start with a point for each object, an interval for each morphism, a
2-cell for each decomposable morphism, et cetera. That builds a topological space, and π0 is
the set of objects modulo equivalence generated by morphisms.

As we learned in Peter and Stephan’s talks, we can think of cobordisms as morphisms in a
category so if I let C be Cd, where the objects are closed d− 1 manifolds and the morphisms
are cobordisms then this general result about π0 of the classifying space says that π0 of the
classifying space is exactly the set of smooth closed Md−1 up to cobordsim. So “classical”
Pontrjagin Thom is a calculation of π0BCd, and the main result of the paper is the calculation

1



of the homotopy type of this category.

Definition 1 Consider the Grassmanian of d-planes in Rn. Over that I have the canonical
bundle and the complement Ud,n⊥ with fiber dimension n − d. Take the Thom space of that
and then the n-fold loop space, and the direct limit

co lim
n→∞

ΩnTh(Ud,n⊥)

I call Ω∞MTO(d). Then Ω∞−1MTO(d) is the colimit of Ωn−1Th(Ud,n⊥).

Theorem 1 Galatius, Madsen, Tillman, Weiss
BC ∼= Ω∞−1MTO(d)

There are two problems with the category, it’s not small and it’s not a category. Campositions
are gluing and are not strictly associative. There are various ways of getting around that.
There are no canonical ways of getting around it, although there are canonical ways up to
homotopy. Here’s one way. Cd has as objects pairs (a,M) where a is a real number and M is
a smooth closed d−1-dimensional submanifold of R∞. As a set it is a subset of R×P(R∞).

The morphisms mor((a0,M0), (a1,M1)) are cobordisms W d ⊂ [a0, a1]× R∞.

The condition, of course is that the boundary of W is {a0} × M0 ∪ {a1} × M1. To have a
well-defined composition I want W to be a “product near the boundary.”

If a0 ≥ a1 then you have the identity only if a0 = a1,M0 = M1, otherwise no morphisms.
Now composition is union of subsets, which is associative, so now it’s a category. I want to
consider it as a topological category, so objects and morphisms are topological spaces. Each
object determines a real number and a subspace of R∞. I can think of that as an embedding
of M in R∞ and mod out by Diff(M). Then I take as objects

R×q[M ]Emb(M, R∞)/Diff(M)

.

Topologize using the C∞ topology.

Let me discuss the relation to classical Pontrjagin Thom. I can include Ud,n⊥ into the direct
sum Ud,n⊥ ⊕ Ud,n = Grd(Rn)× Rn. Letting n →∞ I get

MTO(d) → Σ∞BO(d)+ → MTO(d− 1)

If you write that in a different way, you can think of it as a filtration of MO,

MTO(0) → ΣMTO(1) → · · · → ΣdMTO(d)

It is not hard to see that the direct limit is MO. The filtration quationts are these suspension
spectrums. The cofiber is ΣdBO(d)+. It gets higher and higher connected, so that πd−1 of
ΣdMTO(d) is isomorphic to πd−1(MO), and this is precisely π0Ω∞−1MTO(d).
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The BO(d) is a virtual bundle and MO(d) is the Thom spectrum of minus the bundle.

Let me also say about the notation, this notation was suggested by Hopkins. He explained it
by, the space O(d), it’s the structure group of tangent bundles. You could do the same thing,
if you had orientations on everything, you could take cobordism classes of oriented manifolds,
or you could take spin, or et cetera. The most general statement is for any fibration over
BO(d).

An example of what I mean by a version, you could have as a tangential structure a map to
a fixed space. Let Cd(X) be the category as before, but where every object is equipped with
a map to X, as are the morphisms. Then the theorem says

BCd(X) ∼= Ω∞−1(X+ ∧MTO(d))

The right hand side is local, that is, homotopy groups satisfy excision and thus are a homology
theory, where the left hand side does not look local.

So let me also relate this to, this category is essentially,

Cd(X) ∼ RBd(X)

In their theory it’s kind of, a lot of that is about making stuff local in X, as far as I understand,
so maybe it’s surprising that taking the classifying space gives you something local.

So it’s not very hard to prove this theorem so I’m spending a lot of time doing other stuff.
Let me give some motivation. The original motivation was from a theorem of Madsen and
Weiss in 2002,

Theorem 2
Z×BΓ+

∞
∼= Ω∞MTSO(2)

Here Γ is the mapping class group. So Γg,1 is the mapping class group, in other words, it’s
π0Diff+(Σgwith one boundary component, ∂). Here Γ∞ is the direct limit where you just
stick on a torus. B means classifying space, + means the Quillen plus construction, that
this group has the same group homology as the space on the right. This states it without
talking about the Quillen plus. This calculates the homotopy type of Γ∞, which implies the
Mumford conjecture, which can be stated

H∗(Γ∞, Q) = Q[H1,H2, . . .]

So an equivalent statement is a map

Z×BΓ∞ → Ω∞MTSO(2)

which induces an isomorphism on homology.

Before that Tillmann, in 1997, I think, proved that

Z×BΓ∞ → ΩBC or
2
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induces an isomorphism on homology.

If you combine those two statements. If I say this with the Quillen plus, I have three
homotopy equivalent spaces Z × BΓ+

∞, ΩBC or
2 , and Ω∞MTSO(2). This theorem is of the

direct homotopy equivalence of the second and third.

You use fewer things to prove this, the statement is true in any dimension, whereas it’s
not clear what the first space would be like in other dimensions. Both Madsen Weiss and
Tillmann uses Harer stability, which you don’t have in any other dimension.

The Harer stability theorem is just that Hk(Γg,1) is independent of g in a certain range, that
is for g > 2k + 1.

That’s all I could say without talking about the proof.

The proof uses an intermediate space

BCd
∼= Dd

∼= Ω∞−1MTO(d)

so it uses two steps.

Now Dd is the space of infinitely long cobordisms, a manifold equipped with a proper map
to the real numbers, a d-manifold inside R × R∞ so that the projection f to R is proper. I
don’t really want to, you want to move this W around in a way that a map into it Xk → Dd

corresponds to a family of these things. So such a map, a family would be a k+d-dimensional
submanifold of X×R×R∞ such that the projection to X is a submersion and the combined
map to X × R is proper. Maybe I’m going into a little bit too much detail.

It’s similar in Peter’s and Stephan’s talk, instead of defining a topology I define what a family
is. Then that’s what Dd is. Then you can make a picture of the first homotopy equivalence.

You have your proper map f to R, you can choose a regular value, the inverse image will give
you an object in Cd, (a, f−1(a)). You get a morphism for a different choice between the two.
The choice (a1, f

−1(a1)) has a morphism f−1([a0, a1]) from the first object to the second.
That’s what you need to prove that homotopy equivalence.

I have two minutes left. Let me just say the second part. This is also, there are various
ways to do it. First use classical Pontrjagin Thom theory to say what is a map into the
Ω∞−1MTO(d), and then use Phillips’ h-principle, and combining those two immediately
gives that those two are homotopy equivalent.

I’ll stop here.

2 Terilla

So I just would like to thank the organizers for the invitation and for bringing us to this
nice institute. Okay, so what I’m going to state and prove a theorem and maybe I’ll make
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one preliminary remark. If you have a differential graded, a differential BV algebra, I’m
going to define this in a few minutes, you can associate to it several derived constructions,
in particular two different differential graded Lie algebras, L and L~. The first of these is
smooth and formal which means from a homotopy point of view it is uninteresting. The
theorem I will state will give necessary and sufficient conditions for L~ to be formal. One
consequence will be the structure of a weak Frobenius manifold. The point is that L~ is not
always smooth formal. In the case that it is, you have an interaction with ~ which allows
you to, the first one is uninteresting as a differential graded Lie algebra. The second one, if
it is formal, then there is an interesting construction.

Definition 2 Let L = (V,Q, [ , ]) be an odd Lie algebra. L is smooth formal if and only if
there exists Γ ∈ V ⊗ SH∗ where H = H(V,Q) where

Γ =
∑

tixi + titjxij + . . .

with xi1,...,in ∈ V Where {[xi]} form a basis for H and QΓ + 1
2 [Γ,Γ] = 0.

This equation is broken up into pieces. This implies Q(xi) = 0, Q(xij) = − 1
2 [xi, xj ], so that

the brackets have to vanish in homology. The ti should be a dual basis of xi.

If L is smooth formal, then this is the same as saying the L∞ minimal model of L is zero for
its bracket and higher brackets. Previously this was called degenerate.

This can be seen by reinterpreting this. If I view Γ ∈ V ⊗ SH∗, this is a sequence of maps
SH → V . These are data Γi : SiH → V . You could say it [xi1 ] ∧ · · · ∧ [xir

] 7→ xi1,...,ir
. This

is Γ a map from (H, 0) → V with the L∞ structure determined by Q and the bracket. You
can write down the Γ2 part.

It occured to me this week that a space, if you take its cohomology, you have a unit, so
your product in cohomology is never zero, so this wouldn’t be as interesting. That’s why
I’m adding the word smooth. I can justify this word in one other way. In one of the plenary
talks they wanted a smooth functor, and you can create a functor of rings, which is smooth
if and only if this is a smooth functor.

What about a BV algebra. This is a definition. A BV algebra is a triple (V,∆, ·) where · is
an associative unital graded commutative algebra. ∆2 = 0,∆(1) = 0, and

dv(w) = ∆(vw)−∆(v)w − (−1)|v|v∆(w)

is a derivation of degree |v| + 1. The data is similar to a differential graded Lie algebra.
It’s not quite a derivation, but its deviation from being a derivation is a derivation. Then
[v, w] = dv(w) is a bracket and (V,∆, [ , ]) is an odd differential graded Lie algebra.

Theorem 3 It’s not very interesting because (V,∆, [ , ]) is smooth formal

You can start to prove it by construction. Choose xi. The second condition says I have to
find some primitive for [xi, xj ]. I can select xij = − 1

2 (xixj). Then ∆(xixj) is exactly the
bracket since xi and xj are closed.
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You can solve this term by term, noticing that all cohomological obstructions vanish. It’s
worth talking about this, Ralph Cohen was surprised by it. Let me give you a conceptually
nicer way of seeing that this theorem is true.

Lemma 1 ∆(x) + 1
2 [x, x] = 0 if and only if ∆(ex) = 0 for x ∈ V 0.

For a proof, note that

∆(xn) = nxn−1∆(x) +
(

n

2

)
xn−2[x, x]

Then

∆(ex) = ∆(
∑ xn

n!
) =

∑
∆(x)

xn−1

(n− 1)!
+

1
2
[x, x]

∑ xn−2

(n− 2)!
= (∆(x) +

1
2
[x, x])ex

To prove the theorem, note that Γ = log(1 + tixi) = tixi − 1
2 titjxixj + . . . Then

∆(eΓ) = ∆(elog(1+tixi)) = ∆(1 + tixi) = 0

One would like to separate the first and second order parts of the BV operator. That leads
you to

Definition 3 (V,Q,∆, ·) so that (V,Q, ·) is a commutative unital differential graded asso-
ciative algebra and that (V,∆, ·) is a BV algebra and (V,Q + ∆, ·) is a BV algebra.

From this information you can define the bracket as before. It doesn’t matter whether you
use ∆ or Q + ∆. You now have two differential graded Lie algebras, I’m going to define two.
You could consider (V,Q, [ , ]), the classical case, and the quantum, (V [[~]], Q + ~∆, [ , ]).

Definition 4 L~ is smooth formal if and only if there exists a Γ in V [[~]] ⊗ SH∗ where
H = H(V,Q) and Γ =

∑
tixi + titjxij + . . ., with the xi1,...,ir in V [[~]]. Assume {[x0

i ]}, the
classes of the terms in xi that are constant in ~. It’s (Q + ~∆)Γ + [Γ,Γ] = 0

Let me try to sketch a picture. I can look at ~ and t pieces. I can write Γ as living in the
lattice specified by these. In order for Γ to exist, the t = 0 condition means that Q + ~∆
applied to the part linear in t, is zero, so Q(x0

i ) = 0, but in the ~1 term, you get that
∆(x0

i ) = Q(x1
i ). The surprising thing which is the content of the main theorem. If you can

extend the linear in t part just in the ~ direction, then all the obstructions vanish.

Let me state this a little more coherently in a second. You have xi as before being x0
i +~x1

i +
. . .. You have Kxi = 0 for K = Q + ~∆ You have (V,Q) and (V [[~]],K) and you have a
chain map

(V,Q)
rr α

(V [[~]],K)
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α(y) = y0. If you have all of these conditions, you can extend something Q-closed to being
K-closed, then you can create a section β of α

(V,Q)
rr α

β
00 (V [[~]],K)

with αβ = idV

Theorem 4 L~ is smooth formal if and only if there exists β : (V,Q) → (V [[~]],K) such
that αβ = idV

Rather than proving this, let me make some closing remarks. The next page in my notes is to
compare and contrast this with the version of the d-d̄ lemma that applies here. Kontsevich-
[unintelligible]proved that if you have two differentials that commute and behave in a certain
way, then you get L~ to be smooth formal. The Q − ∆ lemma implies that there exists
this map β which can be taken as the identity. You can choose elements that are ∆-closed,
and you don’t even need to choose ~ terms. The second thing is that if you have any Γ
which is a solution, you can push the solutiononto just the homology of H and you get a
Frobenius structure (with no metric) on the homology, with ~s. If you follow the theorem,
if you use β, in the proof, going to the universal solution, you can push Γ to the homology
of the manifold with no ~s in the Frobenius manifold structure. This is what physicists call
special coordinates.

I’m saying the proof of this theorem reveals a corollary. There is a Frobenius manifold
structure on the homology of (V,Q) which can be constructed with Γ or with Γβ . The one
constructed with Γβ has no ~s in its homology. The construction of Manin in his book on
Frobenius manifolds says that if you have Q − ∆ you can do this but you don’t need that
information.

3 Zenalian

So let me start, I am going to do an algebraic construction on certain objects. Let me set
up which objects I am going to talk about. I need a smooth oriented compact manifold M
and over this I need o bundle of Z2-graded algebras, so I can take sections of this bundle
A = Γ(A), and over that I consider an odd operator Q which is a derivation, a differential,
first order differential operator, and elliptic.

That means that the associated complex of symbols is exact. I’ll tell you why I need this
property and you can take that as what you need for this definition. So on top of this I need
a trace map A → C with the two properties tr(ab) = tr(ba) and tr(Qa) = 0. I need a map
∗ which squares to ±Id, and I want 〈a, b〉 = tr(a, ∗b) is Hermitian.

The first part is an elliptic space, the trace makes it Calabi Yau, and then the last part makes
it Hermitian. I don’t know any examples where if you have the first two, you don’t have the
third one, but I don’t think it logically follows.
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For example, take A = ∧T ∗M and then A = ΩM and Q = d. Let tr(a) =
∫

M
a; let M be

Riemannian and then ∗ is the Hodge star.

Another example that may be more interesting is to start with a compact complex manifold
with a Hermitian metric, and using the Riemmanian metric that comes from that, it’s C-
linear. When you look at the top exterior algebra of the holomorphic cotangent, you have
a section of it, nowhere zero, also called a holomorphic volume element. This is Calabi-
Yau. Let the A to be the exterior algebra ∧, furthermore, let E be a holomorphic bundle
over M . Then I can take A = ∧T̄ ⊗ E with Q = ∂̄ with A = Ω(M,EndE) The trace is
tra =

∫
M

a ∧ vol. This a contains all the dz̄s. The volume forms have the dz part.

The star operator is the Riemannian star but then when you get the result, you divide out
the dz parts. I have these two examples. What can you do with this definition? One nice
thing is that you can look at Q†, and take H = [Q†, Q]. This is an elliptic second order
self-adjoint positive operator. These objects have kernels for their heat operator. So what
I really need, this is where the conditions come in. I want to give meaning to the operator
e−tH . Those are sufficient to give e−tHα(x) =

∫
M

X(x, y, t)α(y)dy.

Here K ∈ A ⊗A ⊗ C∞(R+).

So to get a little bit of feel for what this is, you have differential forms, this is the tensor
product of two copies of differential forms, so forms on M×M×R+. For fixed t the diagonal
is a class and this form is the dual to it. Two different choices would give you cohomologous
objects. So K(x, y, t1) −K(x, y, t2) = Qx + Qy(

∫ t2
t1

Q†
xK(x, y, t)dt I call L by Qt

xX(x, y, t).
I am using this first example; they are both forms on M × M × R. If I add Ldt , well
W = K + Ldt really lives, if you want it in the general case it lives in A ⊗A ⊗ ΩR+.

Now, why am I discussing this? This comes out of work of Kevin Costello, and what is to
follow is joint work with Kevin and Thomas Tradler.

What can you do with this? Given a Calabi-Yau elliptic space, you get a differential form in
the moduli space of Riemann surfaces. I’m going to use the moduli space of metric graphs.
You can take this ribbon graph [picture] and put some lengths

X
t1

t4

Y

t5
t2

}}
}}

}}
}}

Z
t3

Z ′

Then start for each edge with, say, W (x, y, t1),W (y, z′, t5), · · · and for each vertex take trx.
You need to bring them in the right order with the cyclic ordering. The well-definedness
comes from the commutative property of the trace.

α → X ′
W,t6

X
t1

t4

Y

t5
t2

~~
~~

~~
~~

W,t7
Y ′

β → Z ′′
W,t8

Z
t3

Z ′
W,t9

Y ′′
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The graph might have edges that are loose, and you can do something even better. You
can declare that some of these are inputs and others as outputs. You can put elements of
A into this. Then the variables at a vertex get absorbed with trace and the elements of
A . At the other end, the W has two variables, and you get an output, you get a map
A⊗2 → Ω(M ) ⊗ A⊗2. The semigroup property of a self-adjoint operator proves that these
things glue together correctly.

Let me be precise about what it means to put a form on the moduli space of graphs. I can get
a graph of a different combinatorial type by collapsing things. There is some nonsmoothness
that is happening. You have to be a little careful about what type of differential forms I’m
talking about. These are examples of stratified spaces. I am going to write, X is a stratified
space if it is a union of Xα, a disjoint union such that each Xα is a smooth manifold. There
are weaker notions, but this will be quite sufficient. You want the closure of Xα in X to be
a smooth manifold with corners. You want X̄α −Xα to be tXβ and you want X̄β ⊂ X̄α to
be a submanifold with corners.

What do you mean by a differential form on X? If ω is a k-form on X, then for every α you
have ωα ∈ Ω(X̄α). If X̄β ⊂ X̄α then ωα|X̄β

= ωβ .

So now I’ll define ΩkX =
⊕

Ωdim Xα−k
compact support

So a 1-cycle would be a 1-cycle on the 2-strata and a 0 form on a 1-strata.

Now ∂σ = dσ +
∑

σ|Xβ
where β ranges over those such that X̄β ⊂ X̄α with codimension

one.

Let me give you two examples of stratified spaces. One is the moduli space of metrized
ribbon graphs. Of this I want to take differential forms as well as de Rham chains. Another
example is ∆n, the usual simplex. I want to consider chains on that. I’m going to work with
these. As it turns out, and I’m going to talk about this, I’ll consider two types of graphs.
The types I considered before I call Γ(k, `) and the closed ones I’ll call G(k, `). In the G(k, `)
the inputs and outputs are obtained by thickening the graphs.

So I want to define what Hoch(A ) is now. Our definition is slightly different than the usual
one, but equivalent. It will be ⊕

A⊗ · · · ⊗A︸ ︷︷ ︸
n+1

⊗Ω.(∆n)

This tells you where to put the things on the circle. The relation on this will be

a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · an ⊗ c = a0 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ Ii∗c

Now the boundary operator is

∂ = ∂A ⊗ id + id⊗ ∂Ω.()

This equivalence should be cyclic too.
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Now I will consider
Ω.G(m,n)⊗Hoch(A )⊗m → Hoch(A )⊗n

The Γ were complicated graphs with m input edges and n output edges. The outputs in
G(m,n) are circles connected by graphs, and the other boundaries are inputs.

Let me draw a simple one, G(1, 2), one input and two outputs

© ©

I also have to mark the outputs and the inputs. Let me take an element over here. The
element I have on the left could maybe be a0 ⊗ · · · ⊗ an ⊗ c and let me take σ ∈ G(1, 2).
Then I will take Ω.G(1, 2) and tensor it with where c lives, in Ω.(∆n). So this can be thought
of as Ω.(G(1, 2) × ∆n). You have this G(1, 2) which has one input, and then if the length
here is five, I could stretch it to a sequence of numbers between zero and five, and I could
go around and put marks at specified lengths. The combinatorics will change as the ts vary.
I have a current on ∆n and I want to substratify to respect the combinatorics as the points
vary. Now G(1, 2)×∆n has the product stratification S × S but I will pass to a better one,
S′′, the combinatorics of this being fixed. Now the sum of chains on this strata, well, I can
work on one stratum. On one stratum I can start labeling my [picture]. Some of the labels
will land on the output circles. Later I will collect those. I get the beginning of an element
of Hochschild, but I need the appropriate chains here. On the core, I have, if I cut the circles
out, a form of those Γs with some lengths zero.

Then I apply Kevin’s machinery and get as output a bunch of As which I collect. In addition
I get a differential form on the moduli space of this piece. Now I know how to collect the
elements, ai1 , . . . , aik

and aj1 , . . . , aj`
. I haven’t used σ, but it’s a chain in the moduli space of

G-type graphs. This is a union of a circle and some graphs, and the moduli is the product of
the respective moduli spaces. You use the projection, I get ta map from the G to Γ×∆L×∆K .
I push this forward and get a Γ piece, a chain. Integrate that and get a number. Then you
get the chains you needed from ∆L and ∆K to make Hochschild elements. Let me tell you,
take three more minutes. Everyone knows in the simply connected case if you put differential
forms in Hochschild you get something interesting. Let me discuss something less familiar.
There is an abstract theorem in category theory that says, choosing a bundle appropriately,
the Hochschild complex calculates the deformations of the complex structure, the extended
deformation complex, [unintelligible]. Then this theorem gives you an action of the chains
on the moduli space on the deformation complex. Kevin, in a categorical way, has shown
that, these are called the B-models of all genera. The Frobenius part from Kontsevich only
reflects genus zero. If I can get my hand of the bundle E explicitly, this would be a way to
get at the B-model of all genera. So the categorical version of this is in Kevin. It would be
interesting to relate this to what Thomas talked about, chains on the moduli space of ribbon
graphs relative to directed ribbon graphs.
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