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1 Craig Westerland

Thank you. I’d like to thank the organizers. Before I forget to say it, most of this work is
joint with K. Gruher and a lot of it builds on work she did with Paolo. It’s about the string
topology of the classifying spaces of compact Lie groups. So G will be a compact Lie group
and X will be a G-space. I can form the translation groupoid [X/G]. This will be a category
and the objects will be X with morphisms G ×X. The source of (g, x) is x and the target
is g(x). You compose things by multiplying in the group. So (h, g(x)) ◦ (g, x) = (hg, x).

Take the classifying space of this category, and it will be B[X/G] = EG ×G X. I’ll call
these stacks, just to intimidate you. I’ll focus on two of these, [∗/G] and I([∗/G]) which is
[G/G] where the action is conjugation. When I take the classifying spaces of these guys I get
B[∗/G] = BG and B[G/G] = G×G EG ∼= LBG = Map(S1, BG).

This is where it starts becoming string topology. This will be about producing algebraic
structure on these gadgets. Here is the Ur-idea that these things are built on. “A Frobenius
object” in the category of correspondences of groupoids.

If I look in [G/G] I want a multiplication [G/G] × [G/G] → [G/G]. What I can do is cook
up a map the wrong way π : [G × G/G] → [G/G] × [G/G] where the action on the left is
diagonal. This is just factoring out by another G. There is also another map µ to [G/G]. If
I could invert either arrow, I’d get either an algebra or a coalgebra.

We are going to construct operations using umkehr maps. If I can turn µ around, then π ◦µ!

is a coproduct (FHT). If I turn π around then µ ◦ π! is like a Chas Sullivan product.

What happens if I apply B to this diagram? B of a product is the product of the Bs so I get

LBG× LBG (G×G)×G EG
π

oo
µ

// LBG

The middle term fibers over BG with fiber G×G.

Let’s try to make µ! This was µ : G×G → G. This is a principal G bundle. So I get a transfer
map τ : Sad ∧G+ → G×G. This is a topological version of the thing you get in homology,
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moving from the fiber to the base. Take the orbit of a cycle. The µ was G-equivariant and
so is τ , and that leads to

µ! : (Sad ∧G+)×G EG → (G×G)×G EG

Collectively I get a map LBGad → LBG×LBG. I get rid of the ad by desuspending by two
copies of ad. So I get LBG−ad → LBG−ad × LBG−ad.

Let me try to turn π around now. There are a number of different ways of doing that. There
are two ways to do this. We could do a transfer again. You’re quotienting out by an extra
copy of G. That produces something I don’t really understand. It looks like it’s zero most
of the time. Let’s do something that is more along the line of intersection theory. This is
Gruher-Salvatore. The LBG ×BG LBG can be thought of as a subspace of LBG. But BG
is a very large space. So the map into this is infinite codimension. So I have to replace the
map with finite dimensional approximations.

What’s the fact that this relies on? That we have finite dimensional approximations. Part
of being a compact Lie group is being linear, so there is a finite dimensional faithful repre-
sentation V of G. If I define EGn to be the set of injective linear maps V → Cn we get a
Stieffel manifold. What do we know about it? When it’s nonempty, it’s a finite dimensional
manifold with a free G action. The quotient EGn/G we will call BGn, and that’s a finite
dimensional manifold.

Now EGn sits inside EGn+1, because I can stick Cn inside Cn+1 and theses become increas-
ingly connected. So lim EGn = EG and lim BGn = BG. I want to do intersection here on
these guys and then assemble them together.

I define Ad(EGn) to be EGn ×G G.

Start forming a diagram.

G×G

��

G×G

��

µ
// G

��
Ad(EGn)×Ad(EGn)

��

Ad(EGn)×BGn Ad(EGn)
µ̃

//∆̃oo

��

Ad(EGn)

��
BGn ×BGn BGn

∆
oo BGn

Theorem 1 Gruher-Salvatore
µ̃ ◦ ∆̃! makes Ad(EGn)−TBGn into a ring spectrum

Part of the Pontrjagin-Thom collapses turns things a round. We can form a pro-ring spectrum
LBG−TBG.

How do you compute these rings? You can do this as Hochschild cohomology of the cochains
on the manifold. There are ring isomorphisms
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1.
Hpro
∗ (LBG−TBG) = lim

←
H∗(Ad(EGn)−TBGn) ∼= HH∗(C∗(BG), C∗(BG))

2.
H∗(LBGad) ∼= HH∗(C∗G, C∗G)

These are not terribly hard to prove. I’ll sketch the idea.

1. À la Cohen Jones, give a cosimplicial model for Ad(EGn)−TBGn with

H∗(Ad(EGn)−TBGn) ∼= HH∗(C∗(BG), C∗(BGn))

Assemble into the theorem using limits.

2. from Jones, HH∗(C∗G, C∗G) ∼= H∗(LBG). Then using dualization and Poincaré dual-
ity you get this switched over to Hochschild cohomology.

The ring spectrum and the pro-ring spectrum are intimately related

Theorem 2 Gruher
LBG−TBG is Spanier Whitehead dual to LBG−ad and the duality takes the product to the
coproduct

This duality should not be thought of between spectra and spectra but spectra and prospec-
tra. This is multiplicative. Since they’re dual, the homology of one should be the cohomology
of the other, so the two guys in the theorem should be isomorphic.

Now I want to interpret the same statement using Kozsul duality. The B in BG stands for
bar, and so the algebra C∗BG is Kozsul dual to C∗G. What does that mean?

C∗(BG) = B∗(C∗G) = Tot(k → Hom(C∗G⊗k, F )) with the duality B∗B∗ ∼= id. The
following statement is known, I don’t know how well,

Proposition 1 For some dga A there is a ring isomorphism

HH∗(A,A) ∼= HH∗(B∗A,B∗A)

It is because of this that B∗B∗ ∼= id. The moral is that

HH∗(A,M) = RHomA⊗Aop(A,M)

This is isomorphic for M = A to RHomB∗A⊗B∗Aop(B∗A,B∗A). You can work it out.

Now when we go back to the statement that I have the two spectra as dual, the homology of
one is the cohomology of the other. We just made a connection between them with Kozsul
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duality. Before I jumped into it, this was a ring isomorphism by functoriality. On one side
it was the Uneda composition. Composing and then applying B∗ I get a composition.

Anyway the upshot is that Kozsul duality carries the FHT type product on H∗(LBG−ad) ≡
HH∗(C∗G, C∗G) to the Gruher or Chas-Sullivan product H∗(LBG−TBG) ∼= HH∗(C∗BG,C∗BG).

There’s a little bit more to say, it’s not worth jumping into with only a few minutes left.
Thanks for listening.

[Question]

How do I construct LBG−ad? I have G−ad = G−TG which G acts on. So I can form
G−TG∧G EG = LBG−ad. This is a homotopy orbit spectrum. Desuspending by the tangent
bundle gives the Spanier Whitehead dual. So this gives (DG) ∧E EG.

To construct LBG−TBG is quite a bit of work. This thing is (G)nG = F (EG+,Σ∞G+)G. This
isn’t entirely true. It’s also not apparently a pro-object. How do I make it into one? I really
want to take F (EGn+,Σ∞G+)G. This collection is homotopy equivalent to LBG−TBG. One
is a homotopy orbit spectrum and the other a homotopy fixed point spectrum. The duality
of orbits and fixed points and G with DG jibes perfectly with the duality before.

[Question]

You want LBG−TBG = THH∗(DBG). Oh, that’s interesting, here’s a question. Is LBG−TBG ∼=
THH∗(G)? I don’t know, I hadn’t thought about that.

2 Scott Wilson
Homotopy Frobenius algebras and forms on a mani-
fold

First I want to say thank you for everyone who made it possible for me to be here. This is
joint work with Dennis Sullivan. Here is my outline:

1. I will recall the definition of an open Frobenius algebra

2. I will define/construct a free resolution of the open Frobenius algebra structure

3. I will give a construction realizing this on the forms of a smooth manifold.

Let me recall the definition of an open Frobenius algebra. You begin with a graded vector
space A with a differential d and a graded commutative associative algebra, a graded cocom-
mutative coassociative coalgebra, and the coalgebra map is a map of A-bimodules. d is a
differential for the multiplication and a codifferential for the comultiplication.

I’m going to describe this in terms of trees. We can describe the algebra by a tree with two
inputs, keeping track of which is which. The coalgebra I can keep track of with a tree with
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two outputs. I have the Frobenius relation, in tree form.

Two consequences, well, let me give an example, the homology of a manifold H.(M) where
you take the intersection pairing and the diagonal. Also, if a manifold is closed, has Poincaré
duality, it’s true on the cohomology of the closed manifold. These are examples. The point
of the talk is, if this is the structure on the homology, then what is the structure on a chain
or cochain complex that computes this homology. We know it’s not reasonable to expect the
exact same structure; there will be higher homotopies which are invariants of the space.

Remark.

1. The relations imply there exists a unique map A⊗k → A⊗` for any tree with k inputs
and ` outputs.

2. The dual of a finite dimensional open Frobenius algebra is an open Frobenius algebra.
When one dualizes, the algebra and coalgebra relations turn around. The relations
read left to right are the same as the relations read right to left.

Another question is whether a particular Frobenius algebra is isomorphic to its dual.
The structure conceptually is dual whether or not a particular one is isomorphic to its
dual.

It’s a theorem that an open Frobenius algebra with a unit and a counit is finite dimensional.
You can’t do that on the differential forms of a manifold.

Okay, that’s what I wanted to say for recalling the definition.

Now I want to construct a free resolution of this open Frobenius algebra.

For those that are familiar, let me start with an example. A∞ is a resolution of associative.
Let’s do the following. I’m going to construct a cubical cell complex, and every cube will
be labeled by a tree colored black and white. These will fit together to form a dioperad.
I’ll try not to use that word. These will contract to a point and be free on a certain set of
generators. The algebraic structure will be free on those generators.

For k, ` ≥ 1 I want to consider abstract trees with valence at least three, k labeled inputs
and ` labeled outputs, with internal edges having length between 0 and 1. If a tree has an
internal edge of length zero I identify this with a tree with that edge contracted. External
edges have length 1/2.

Every internal edge has some length between 0 and 1. This space, the space of all such trees
forms a cubical cell complex. Let me draw a picture that labels each cell of the cube. Then
we’ll see the identification. Let me draw a cube and label subcubes of it with certain trees.
An n-cube is labeled by what I’ll call a black and white tree. Every internal edge will be
either black or white. On the board, more chalk means white, so that’s white.

Let me say what that means. An n-cube will be labeled by a black and white tree with n
white edges. The white edges vary in length between 0 and 1. The black edges have fixed
length 1. That’s a realization of the space.
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For instance, take three to one, k to `. This is a cubical cell complex for k = 3, ` = 1 This
says that all the associators are homotopic, this space contracts to a point.

Let me just say that the differential can be easily understood in terms of black and white
trees. Take the sum over all white edges of crushing the edge to zero, contracting it to a
point, or painting it black.

Now let me talk about gluing trees. For gluing trees, I want to glue single edges. There’s
something going on in the middle, and I glue single edges. When I glue them I get a new
tree with inputs and outputs and an induced labeling, and the glued edge has length 1. This
respects the boundary operator, which takes a white edge, crushing it to a point or making
it a black edge. You can perform these operations on a white edge in one or the other factor,
that’s the derivation property.

I’m describing the operations of an algebraic structure abstractly. Let me list further prop-
erties. A pure white tree is a tree with no black internal edges.

1. Under composition, black and white trees are free under gluing on the pure white trees.
When you compose things you make a black edge. You regard that as a composition.
Cut along all black edges and you have a disjoint union of pure white trees whose
composition is the original tree.

2. For each k and ` the space of trees and associated cell complex is contractible. The
homology is thus concentrated in degree zero. We have finite length edges between zero
and one, and contract down to the corolla with no internal edges by homotoping all
the internal edges to zero.

3. d is triangular or minimal. This means that if you take d of a generator, a pure white
tree, you get a collection of terms all of which involve pure white trees earlier in the
partial ordering. There will be a nonlinear term and a linear term. The nonlinear term
will be a gluing of pure white trees with fewer white edges and the linear term will have
fewer white edges.

By my first remark, saying what the operations were in an open Frobenius algebra, I get a
free resolution of the open Frobenius algebra structure. I need a map from these things to the
operations of the Frobenius structure. That property helps make inductive constructions.

So this brings me to the third part. I want to realize this structure on the differential forms
of a closed oriented manifold. To every tree we will assign an operation on forms compatible
with the composition and d. That will be an action of this structure on forms. The first
part we know very well. The one output part we know from our first course of geometry
of manifolds. The differential forms on a manifold form a dga. I want to talk about the
coalgebra structure. So let me say the coalgebra. I am going to give a map Ω(M) → Ω(M2).
There’s a lot of interesting stuff here. Take the diagonal sitting inside M ×M . Then there
are two projection maps π1 and π2. One of the great properties of being a manifold is that in
any regular neighborhood of a cycle is a dual cocycle. If I choose a tubular neighborhood U
of the diagonal (which contracts to the diagonal), then I’ll put the dual cocycle, an n-form,
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and I’ll call it a Thom form on M ×M with support on a neighborhood of the diagonal. De
Rham made a nice construction of this, regarding the diagonal as a current and diffusing it
to make it a form. I have this form, and again, it’s not unique, but all of the choices are
cohomologous. This is a closed form, T is a cocycle.

The fact that you have a degree n form which is closed will give you a degree n chain map by
multiplication. If I have ω on M I could look at π∗1ω∧T or π∗2ω∧T . These two operations are
homotopic. The reason is from the properties I’ve listed here. If you restrict the projection
maps, well, U is contractible to the diagonal where the two maps are the same map.

I will use this sort of construction over and over again. You might say there are some choices
there. So up to homotopy I’ve taken care of the ambiguity. So maybe if I were more of a
homotopy theorist I would build up more homotopies. In this abstract algebraic thing I’m
trying to construct I’m going to get a cocommutative coproduct. I can make one of these
skew-symmetric things once and for all, symmetrize and proceed. Similarly, one can define
all of the one to many corollas by pulling back, taking a Thom form, and pull back a form
along all the factors and wedge with the higher Thom form with support near the diagonal.

So I just, I guess that’s my last board. Let’s consider coassociativity. Let me draw a picture
first. This has something to do with the original thing that involves compositions.

[Picture]

The idea is that if we compute in two different ways, in the interest of time I won’t identify
every number with a factor, one will be a first coproduct on the third factor and another
factor. Computing both of these will not literally agree, but agree near the diagonal and are
supported near the diagonal. I can integrate out the contracting homotopy to the diagonal.

I used the same arguments to form the homotopy. Everything is built up out of chain maps
that agree on the literal diagonal and is supported nearby. Inductively I can look at a pure
white tree, which labels a cell, which has some boundary. I have the operation defined on
the boundary, and each of these is made up of something, Each homomorphism agrees when
restricted to the diagonal. I can cross with the interval and build an operation with each t.
As t goes to one I’m contracting to the diagonal.

[Is the wedge product a special case?]

That sits inside of this.

[I want to make sure I understand. You are freeing up the coassociative part only.]

I am also resolving the Frobenius relation.

[Grading?]

The degree of a cell is the dimension of it, which goes down. I would flip the complex to get
something that respected degree.
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