
Low Dimensional Topology Notes

June 29, 2006

Gabriel C. Drummond-Cole

June 30, 2006

1 Khovanov

Good morning, announcements. The morning problem session will be on Khovanov’s lecture,
the afternoon one on Szabo’s. There will be a research program talk at the same time as the
first problem session.

Last time we assigned an algebra A to the unknot. Then we assigned Z to the empty knot.
This is an example of a two dimensional TQFT, which is a tensor functor from the category of
oriented cobordisms between 1-manifolds to a tensor additive category (e.g., Abelian groups,
k-vector spaces, R-modules (where R is a commutative ring)). In this category objects are
finite collections of oriented circles and morphisms are oriented surfaces with boundary. So
the functor F from this category Cob → k-vector spaces takes A to a vector space A, so
we say F (©) = A. Because the functor is “tensor” it takes a disjoint union of n circles
F (©© · · ·©︸ ︷︷ ︸

n

) = A⊗n. Then F (∅) = k. So a pair of pants should give a map m : A⊗2 → A

which is associative and commutative because you can decompose the composition of two
pairs of pants in either direction, e.g., for associativity.

There is also a map A → A⊗2 by a pair of pants in the other direction. There is also the cap,
which is a map k → A which takes 1 to some element of A. By looking at the effect of a cap on
a pair of pants, you can see that the image should be a unit in A. The last thing is the trace
A → k. So you need A to be an associative, commutative k algebra with a nondegenerate
trace (for all nonzero a there exists b with tr(ab) 6= 0.) which dualizes the multiplication to
a comultiplication. This is called a commutative Frobenius algebra. So if M is an oriented
manifold of dimension n then A = H∗(M,k) is a Frobenius algebra with tr : Hn(M,k) → k
integration over the top class. You can avoid supercommutativity problems by looking at
Heven(M,k) for n even.

k[G] is Frobenius but not commutative.

In our case the ground ring was Z and the algebra A was Z[X]/(X2) which is H∗(S2, Z). So
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part of the construction yesterday can be done for any Frobenius algebra. However, this will
only be invariant over Reidemeister-I if A has rank 2 over k.

To construct the comultiplication is to use the trace to identify A with A∗ = Homk(A, k). So
dualizing multiplication you get A⊗2 → A leads to A∗ → (A∗)⊗2 which leads by dualization
back to A → A⊗2.

I want to describe an extension of this theory to tangles. Tangles are links with boundary and
then you have tangle cobordisms. Links are assigned homology groups and link cobordisms
are assigned maps of homology groups.

To tangles are assigned functors. So my tangles will be between R2 on the top and bottom
of an interval. In our construction, for a collection of points on the plain we assign a cate-
gory, so the tangle will correspond to a functor and tangle cobordisms will lead to natural
transformations of functors.

So to n points on a line we assign An and to a braid we assigned a particular functor, but
now this will work for all tangles.

We’re going to restrict to the case where n is even. So now given n we mark 2n points on the
horizontal line and look at Bn the set of crossingless matchings. This is with n arcs lying in
the bottom half-plane which do not intersect. So when n is three there are five crossingless
matchings, these ones: [picture]

So |Bn| = 1
n+1

(
2n
n

)
. So given two crossingless matchings a and b we can reflect b about the

horizontal axis, getting “w(b)” and then we can attach it to a getting w(b)a. Then we can
apply F to it and get A⊗m where m is the number of circles. w is the reflection about the
axis.

I forgot to say that our TQFT was graded. The ring A was graded with 1 in degree −1 and
X in degree 1.

Exercise 1 Multiplication is degree one. In general, a cobordism S has F (S) a map of degree
−χ(S)

We’ll construct a fancy ring Hn to take the place of An. Take Hn =
⊕

a,b∈Bn

F (w(b)a){n}.

If you’re seeing this for the first time, ignore the grading, all of the shifts. So now Hn is a
graded Abelian group, but we claim that Hn is a unital associative ring.

So we need to equip Hn with a natural structure of multiplication. We want a multiplication
F (w(d)c)⊗ F (w(b)a) → Hn. This map will be zero if b 6= c.

In the case F (w(c)b)⊗F (w(b)a) we will go to F (W (c)a) ⊂ Hn. This will give, summing over
the a, c a map Hn ⊗Hn → Hn.

Let me give an example, if here we have w(b)a and here w(c)b. We have a one-manifold, and
on the left side we have the functor F applied to this one-manifold which is the disjoint union
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of the two one-manifolds w(b)a and w(c)b.

The map must go into F (w(c)a). The idea is to find a cobordism between w(b)atw(c)b and
aw(c). This is what we do, using the natural cobordism between the two opposite bs and
vertical lines, as in this picture.

So then we can shrink the vertical lines, which takes us honestly to aw(c). So this is a
cobordism S which induces a functor F (S) which gives us the multiplication map.

One example is n = 1. Then there is only one diagram a. Then the ring H1 is F (w(a)a){1}.
The composition is the circle. Then the multiplication will be the cobordism from two circles
to one circle. So F (S) is the multiplication map A⊗2 → A. So then H1 = A{1} so that 1 is
in degree 0 and X is in degree two and then the multiplication respects the grading.

Another special case has n = 0 so that a is empty and H0 = F (∅) = Z.

Then for n = 2 there are two crossingless matchings a and b. Then H2 is the direct sum
F (aw(a))⊕F (aw(b))⊕F (bw(a))⊕F (bw(b)). So as an Abelian group it is A⊗2⊕A⊕A⊕A⊗2.
Then the multiplication map between the second and third elements goes from A⊗2 → A →
A⊗2 via the cobordism. So this is part of the multiplication of H2. This will always be a
composition of multiplication and comultiplication.

I promised this was associative. If you have a third diagram w(d)c You merge b against the
reflection of b or d against the reflection of d first. In either case you get the same cobordism,
isotopic to the same picture aw(d). That gives you the same map.

We also need the unit element. The construction of the unit element is similar to the unit in
An, where it was

∑
(i). So here it will be a sum over idempotents. Look at F (w(a)a). This is

then isomorphic to A⊗n. This contains 1⊗n = 1a. So x ∈ F (w(b)a) multiplied by 1a will be
multiplication of each part of the diagram with a circle marked by 1. So after merging in the
cobordism we get x1a = x and 1bx = x. Of course 1a1a = 1a and 1a1b = 0 if a 6= b. Finally
if you define 1 =

∑
1a then this is the unit element.

There are lots of idempotents, summing over them gives 1. This is all built out of A = H∗(S2).
The same A appears in your notes as Hom(Pi, Pi), which were {(i), Xi} subject to the relation
X2

i = 0. Of course, Hn is much much bigger.

If you fix a and Pa =
⊕

b∈Bn F (w(b)a) then Hn =
⊕

a Pa, these are left projective Hn

modules. Then Hn ⊗ Pa → Pa goes by F (w(c)b)⊗ F (w(b)a) → F (w(c)a).

We can also do this on the right, Hn =
⊕

b bP where bP =
⊕

a F (w(b)a) which is a right-
projective Hn-module. For any flat tangle T you have 2m top boundary points and 2n bottom
end points. You can close off the top and the bottom in all possible ways using a, b ∈ Bn, Bm.

Then F (w(b)Ta) is a one-manifold. You define F (T ) =
⊕

a ∈ Bn

b ∈ Bm

F (w(b)Ta){n}, which is

an (Hm,Hn)-module.
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In this case the bottom is empty, and you only get an action Hn, and the result is a left
Hn-action since H0 ∼= Z. If you take the identity tangle which is just 2n vertical lines.

This can be closed off by any a and b, so you get exactly the ring Hn itself which has the
right and left actions by multiplication.

If you would look at An, we also had bimodules Ui, this is similar but degenerate. If you
composed Ui and Uj for |i−j| > 1 then the bimodule was zero. So this is a better, nondegen-
erate version of An. We want this all to be as nice as possible. There are at least two ways to
see how things relate. If you have two tangles T1, T2 then you can compose the two tangles
and get F (T2T1) and get a Hk,Hn bimodule. But you can also look at F (T1) ⊗Hm F (T2)
and these two are, by a lemma, isomorphic. When n = m = 0 then F (T ) = A⊗r.

[Bringing the lines around corresponds to taking Hochschild homology.]

The other way to see an equivalence is, suppose T1 and T2 have the same endpoints. Then
you can get a cobordism sitting in R × I × I. The boundary is T1, T2 and two trivial
parts. Given such an S we would like a map of bimodules F (T1) → F (T2). We want a
bimodule homomoprphism. We always have to close things up. So we can just look at all
possible closures, using some diagrams, and then extend by the identity along the cobordism,
w(b) × [0, 1] ◦ S ◦ a × [0, 1], which gives a cobordism from w(b)T1a to w(b)T2a, but then
these are just one-manifolds so we can just apply the functor F to get a homomorphism of
Abelian groups, and summing over all a and b we get a map of bimodules which is compatible.
If you have two of these, the composition corresponds to taking the composition after the
construction has been performed.

So far we only have three dimensions. We still need to go to four dimensions which we’ll do
tomorrow. We have a 2-functor from the 2-category of flat tangles with objects 0, 1, 2, . . . ,
morphisms n → m flat tangles with 2n bottom points and 2m top points, and 2-morphisms
flat tangle cobordisms. This goes to the two-category of bimodules. The objects are the
same. The one-morphisms are Hn − Hm bimodules and the two-morphisms are bimodule
homomorphisms.

This is not the end of the story, you have to add crossings and work with the complex of
bimodules.

[What did you say about connecting up top to bottom?]

This I will discuss in the last lecture, we will have a complex of bimodules, so what is the
meaning of the closure of such a thing? This will be a linear operator from the bimodule
to itself, so we’re taking a trace, but what’s the trace of a functor, a bimodule, that’s the
Hochschild homology of the bimodule.

[The next question went by too fast for me to understand.]

[You mentioned that you can use more exotic Frobenius algebras. Can you get around the
difficulty of not having Reidemeister 1 invariance?]

I think it’s hard to avoid Q[x]/(xm).
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2 Gordon

Can you hear me? So let me begin by saying, the great thing about more than one lecture
is you can fix the mistakes of the first lecture. Let me restate the theorem I stated

Theorem 1 If K is a knot in S3 then one of the following, exactly, holds:

1. K is the unknot (Mk has an essential D2).

2. K is o torus knot (Mk has an essential annulus but no essential torus, it’s a small
Seifert fibered space)

3. K is a satellite knot (Mk contains an essential T2)

4. K is hyperbolic (Mk is simple with hyperbolic cusp)

The torus knot Tp,q, its a curve K wrapping around q times in the longitudinal direction,
so there are q points of this kind. MK will be V ∪A V ′ where A is the complement of a
neigborhood of the knot on the torus T. The core is parallel to A so it’s (p, q) curves on δV
and (q, p)-curves on δV ′. So you can fiber V by (p, q)-curves and V ′ by (p, q)-curves, and you
have a Seifert fibered space of type D2(|p|, |q|).

There was one more thing I didn’t have time to say about the third part. This had to do
with

Theorem 2 Alexander 1924
Any torus in S3 bounds a solid torus.

If you have a satellite knot, the torus boundary of MK0 , suppose you contain a torus, why is
that a satellite knot? Well, it contains the knot, otherwise it wouldn’t be essential.

How did Alexander prove this without the disk theorem? He was smart. For extra credit
prove it without the disk theorem.

Luckily the notes for the lecture were ready before the lecture so I knew what I was supposed
to say. Thanks, Joan.

Now I want to talk about Dehn surgery. Look at the exterior of K ⊂ S3. Here’s K and MK ,
and we choose a curve we call a meridian which bounds a disk in the neighborhood of K and
then λ a meridian in δMK . You want them to intersect in a single point. µ is determined as
an unoriented curve. λ isn’t. But H1(MK) can be seen to be ∼= Z given by [µ]. You choose λ
so that [λ] = 0 in H1(MK). People think of positive things as being right-handed. You orient
so that µ · λ = 1 = −λ · µ. Then these form a basis for H1(δMK). But then for any α an
esssential simple closed curve in δMK , then [α] = ±(m[µ] + `[λ]) ∈ H1(δMK). Then α, beta
are isotopic if and only if [α] = [β]. The isotopy classes are in one to one correspondence with
slopes, and then you take the quotient and get Q ∪ {1/0}.
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So α = (m/`)-Dehn surgery on KK is MK ∪δ V, for V a solid torus, where α goes to the
boundary of a disk in V. This is called K(α) = K(m/`). The famous example is that if K
is the left-handed trefoil, then K(−1) is the Poincaré homology sphere Σ(2, 3, 5) You kill m
times the meridian, so that the homology H1(K(m/`)) ∼= Zm. So homology spheres were
called Poincaré spaces. You can get infinitely many by doing 1/` surgery on the trefoil, and
Dehn showed they were all different.

A little bit of notation. When we do the Dehn surgery, the knot is Kα, the core of V in
K(α). There’s one more little bit of basic stuff. If α and β are slopes on δMK , then we define
∆(α, β), which we call the distance, though it isn’t a metric, the minimum |α ∩ β|.

Exercise 2 ∆(m/`,m′/`′) = |m`′ −m′`|.

The trivial Dehn surgery K(1/0) is putting the torus back in how you found it and always
gives S3. So ∆(m/`, 1/0) = `. In particular if ` = 1 we say α is integral. In fact an integral
Dehn surgery is a surgery in the higher dimensional sense. The others aren’t surgeries because
if you attach a two-handle, the curve that bounds a disk in the new boundary is going to
have intersection number one with that meridian.

To attach the two-handle, you choose a homeomorphism of the solid torus to a neighborhood
of the knot. The two factors only intersect once. The integer’s worth of choices are called
framings, they’re always integral in this sense.

Dehn surgery on a knot is surgery on some link.

Okay, now so I guess let me take that theorem, and corresponding to that theorem, let me
say, satellite knots, here’s a particular kind of satellite knot which will come up, that’s where
you take K = Cp,q, a (p, q)-curve in the interior of the solid torus. Push it from the boundary
into the interior. It wraps q times around longitudinally, p times meridianly. Assume q is at
least two, p can be one or whatever. Then h : S1×D2 → N(K0). If you choose this so that h
of a longitude of the torus goes to a longitude, something nullhomologous in the complement,
then the knot K = h(J) = h(Cp,q) is called the (p, q)-cable of K0.

Let me go back to the theorem and say what happens with respect to the four classes of
knots under Dehn surgery.

1. So, if K is the unknot, if you do m/` surgery on the unknot, you get a Lens space Lm,`.
Some would say it’s `,m− `, but we won’t worry.

2. In the second case, when you attach a torus to a Seifert fibered space, you almost always
get a Seifert fibered space. Generically the core of the solid torus will be an exceptional
fiber again. The options are, well, in the first case, how many times does this meet the
Seifert fiber? Let’s go back to the picture. On the boundary of the exterior of the torus
knot, what do you have? You can figure this out, you can say it’s how many times this
curve, it’s the slope of this curve, since the fibers are the annuli. So what’s the slope
of α which is a boundary component of A? It clearly intersects a meridian. So ` must
be one, it’s an integer, it’s the number of times it intersects the longitude, so it’s the

6



linking number with the knot. So if we take the knot, here it is, sitting here, the slope
is m/1 where m is the linking number of K ′ with K. When you have an integer slope
that corresponds to a framing, which is the same as a froming induced by the knot
lying on the surface. So the framing of K induced from this torus T that it lies on δV.
So all you have to figure out is what the linking number is. So K ∼ pµ+qλ0. These
were meridian and longitude for V. The linking number of µ0 with K ′, how many times
does it link with this guy, it’s q. On the other hand, the linking number of the longitude
is 0, so the linking number of K with K ′ is pq since it’s p times the meridian. This is
the slope of the Seifert fiber on the bonudary. So now this depends on the intersection
number ∆(m/`, pq/1). If that number |m− `pq| is greater than one it will give a Seifert
fibered space with that value, d. If it’s one you get a lens space and if it’s zero you get
a connect sum of lens spaces. Summarizing,

Tp,q =

 S2(|p|, |q|, d) d > 1
L(m, `q2) d = 1
L(p, q)#L(q, p) d = 0

3. So what happens when you have a satellite knot? You have this essential torus, let
me reinterpret this picture. Now you have a cable, it’s the same picture but this is
happening inside, here’s our curve Cp,q, and we’re tying the solid torus in a knot K0,
but it’s a similar picture. Call this annulus, now, A, so if X is S1 ×D2 the interior of
N(Cp,q) and A ⊂ X, then define h : X → X to be a Dehn twist along the annulus, as
you move across A you twist, and let’s twist around ` times.

What does that do to the meridian? This, when you Dehn twist, for each one you add a
multiple, so it’s µ+`(pqµ+λ). So this has slope `pq+1

` . This filling will then give a solid
torus. So going back to the satellite situation, you have the essential torus, and then
in this case, T usually remains incompressible in K(α). The exceptions are completely
classified. The cables, for any Dehn surgery of this form (`pq +1)/` will compress. The
cables are the only ones for which it compresses for infinitely many surgeries. There are
some others where it compresses, but there’s only one surgery for which it compresses,
except for one particular magical example where there are two compressing surgeries.

4. If K is hyperbolic then K(α) is hyperbolic for all but finitely many α.

The goal will be to classify the pairs (K, α) where K is hyperbolic but K(α) is not a
hyperbolic manifold.

All right, so, um, this seems an unreasonable goal until you start looking at examples,
let me give a simple explicit example, the figure eight knot. The exterior is a punctured
torus bundle over the circle, so when you do zero-Dehn surgery, you’re capping this off
with a disk so this is a torus bundle over S1. This is the Solv-manifold that John Morgan
talked about, definitely not hyperbolic. So there are at least some examples. Another
thing here is if you look ath this surface F which K bounds, it’s a once-punctured Klein
bottle. You’re supposed to compute the slope of this boundary, it has slope four, and
I’ll give you a hint, this four is not the same as the number of crossings. Nonetheless
it’s four. So when you do four-surgery, you cap off the boundary and get a manifold
which contains a Klein bottle. So either it contains an essential torus or it’s a small
Seifert fibered space. In fact, it contains an essential torus.
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So these two examples are “toroidal,” containing essential tori. One thing that makes
things more reasonable is that the simplest examples are the worst. The more compli-
cated the knots, the less likely there will be an exceptional surgery.

After that example, let me describe a way of constructing examples of knots with nonhyper-
bolic surgeries.

1. Imagine K ⊂ F ⊂ S3. So S/X ∪F X ′. Here’s a schematic picture. If you call F0 the
surface F minus a neighborhood of K, then MK = X ∪F0 X ′. We saw this before with
X, X ′ solid tori and F0 an annulus. Call m the framing on K induced by F. Then we
can do m-surgery, and get, looking at the topology, you’re attaching a solid torus to this
guy, you have two curves that bound disk, If you decompose MK and then V by cutting
along the disk, this is the union of two manifolds glued together along their boundary,
X[K]δX ′[K]. So where X[K] = X with a two-handle attached along K and similarly
for X ′. So as I say, it’s an elementary argument, and in particular, here’s the beauty of
the blackboard, cables become torus knots in a twinkling of an eye, here’s a torus knot,
and remember the framing was p, q, and we see therefore that p, q-surgery on this guy
Tp,q(pq) = X[K]∪δ X ′[K]. This gives a lens space, and so you get L(q, p)#L(p, q), and
this shows the last part of part two of the theorem directly.

2. That’s like the first example of this construction if you like. The second example is that
there’s a similar thing for a cable. If we do pq-surgery on Cp,q inside the solid torus
you get Lq,p, connected along, on the outside you get a solid torus. It’s an exercise to
figure out the slope of the solid torus, in terms of the original slope, but the upshot of
this is that if K is a (p, q)-cable of K0 then K(pq) = L(q, p)#K0(p/q). For nontriviality
we assume q ≥ 2, so K0(p/q) is never S3 and this is always reducible. We’re starting
with a nonhyperbolic knot, doing a surgery and getting something reducible.
That’s rare, so here’s your next homework. The problem is to show that if K(α) is
reducible then K is a (p, q)-cable of some knot. This is not due for quite a while. This
is the cabling conjecture. If you want fame and fortune, solve that one. If you put any
other structure on the knot, it’s probably true. Note that α would be p, q.

3. Let me go back, I talked about torus knots and cables. Suppose F ⊂ S3 is a genus
two Heegaard surface, so X, X ′ are genus two handlebodies. So take the knot sitting
in here, and you have the knot sitting on it here, you have the induced framing m and
K(m) will again be X[K] ∪δ X ′[K], so if we choose K to be nonseparating, you get a
torus. So you get two manifolds glued together along a torus. Generically these knots
will be hyperbolic. This is a candidate for an interesting torus. Let’s try to make these
two solid tori. Then their union will be a lens space. Or one solid torus and the other
a Seifert fibered space, usually they’ll be over the disk with two singular fibers.
So if you do that you’ll be getting a Seifert fibered space with a solid torus glued in,
so it’s a lens space or a Seifert fibered space with three exceptional fibers, or if you’re
lucky it’s a connect sum and you have a counterexample to the cabling conjecture, but
you won’t.
You could try to make both of them Seifert fibered spaces, so you get a Seifert fibered
space or maybe a graph manifold. It turns out that conjecturally, roughly speaking,
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most of the nonhyperbolic surgeries come from this structure. That gives hope that
one might be able to prove that these are the only nonhyperbolic surgeries. I’ll give a
way to construct many, many examples using tangle surgery next time.

3 Szabo

[Hello, I’m Bob Edwards from UCLA, I brought this camera here to try it out and I really
think I’ve started something. You can read the board, hear the audio, they’re really good,
but how can we distribute them? The question is, can they be distributed in a good way?
Presumably I can convert this to a format, but I’m a novice and can’t really proceed without
more and better experience and computer equipment. This is a good chance for me to try
my other new toy, too, and take some pictures of you.]

Last time we were sketching the construction of the various ĤF (Y ). All of them were counting
holomorphic disks. In some of these other constructions we had

HF−(Y ) mm // HF∞(Y ) // HF+(Y )

widehatHF (Y ) nn // HF+(Y ) // HF+(Y )

And we had related these, although there are four different versions they are closely re-
lated. When the first homology of Y is torsion the same construction goes through, but
you have to choose only special Heegaard diagrams for H1(Y ) not torsion. But the chain
complex decomposes into different components, but we also have a decomposition ĤF (Y ) =⊕

widehatHF (Y, s) where s ∈ Spinc(Y ). Here Spinc(Y ) is roughly H2(Y, Z).

The same constructions go through in all the terms of the long exact sequence. And why is
this not necessary when H1 is zero? Then I have a unique Spinc structure, so I don’t need
to bother.

So what is the role of H1(Y )?

Suppose we have two intersection points x and y. There is an obstruction for there being
a holomorphic disk connecting them, and that is first there should be a homotopic disk
connecting them. So is π2(x, y) empty or nonempty? Well, what is that obstruction? Here
are tα and tβ . I can connect the same points to get another path connecting them and in
that way I will get a closed loop γ1− γ2 in Symg(Σg). I should be able to choose this to be a
nulhomotopic loop. So [γ1−γ2] ∈ H1(Symg(Σg)), but this is well defined if we mod out by the
indeterminacy H1(Tα) and H1(Tβ). This uses the exercise. It is really in H1(Σα)/([αi], [βi])
which by Mayer-Vietoris is just H1(Y ). If that, ε, is nonzero there will be no homotopy class
connecting these things. So in Tα ∩ Tβ we have x ∼ y if ε(x, y) = 0.

So our chain complex decomposes into lots of different pieces. You may remember the family
of examples Yn from the first day. If you want a nice homework, you have to get your hands
dirty, but choose the Heegaard diagram for Y12 and find equivalence classes.
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Some of these equivalence classes contain many fewer elements. So sometimes it’s easier to
compute certain parts of the Floer homology.

Well, we haven’t yet decomposed according to Spinc structures. So in order to do that I
have to define them.

Definition 1 There is a similar definition in every dimension. Spin(n) is the connected
(double) cover of SO(n), and Spinc(n) will be almost Spin(n) × S1, but we will divide by
the Z2 action on both sides. This is a Lie group, and if I forget about the last factor, it is
a map to SO(n), and the Spinc-structure is a lift, I can think of the tangent space giving a
SO(n)-bundle, and there may or may not be some number of lifts to a Spinc-bundle.

This is one definition. For oriented closed manifold with trivial tangent bundle, there are
lifts, but maybe a good exercise if you haven’t done it before is, in dimension three, show
that these are in correspondence with H2.

Definition 2 This is an alternative definition in dimension three due to Turaev. Take
nowhere vanishing vector fields on Y modulo the relation V1 ∼ V2 if they are isotopic in
a complement of a ball.

A different definition would be for them to be isotopic; this is not what we want. The
Euler characteristic is zero so there are always nowhere vanishing vector fields. There are
some really nice things you can do with this definition. If I fix a trivialization, I get a map
V1 : Y → S2. I can look at the direction of this vector field and it gives us a map. So I
could take the cohomology class e ∈ H2(S2), and using the trivialization I can pull back
and get V1(e) ∈ H2(Y, Z). So it looks like we can identify the Spinc structures with second
cohomology classes.

Exercise 3 If I have two Spinc-structures I can define these cohomology classes. The dif-
ference of them is independent of the trivialization, so S1 − S2 ∈ H2(Y ).

So the second cohomology of Y acts on Spinc structures, and it’s not hard to show that this
gives you an identification.

What is less clear with this definition is how it fits into the Heegaard Floer homology. We
have these two subspaces Tα and Tβ , and we have the point x ∈ Tα ∩ Tβ and the basepoint
z ∈ Σg −αi−βj . We need Sz(x) ∈ Spinc(Y ). This is the additional knowledge that we need.
How will we do this? Being isotopic on the complement of one ball and on the complement of
several balls is the same thing. Here int may not hurt to come back to the picture of Morse
functions. Recall that the Heegaard diagram can be reconstructed with a self-indexing Morse
function. So x has several components, and it’s in the intersection of some α and β, so it’s
up here, and it’s going to flow down with −~∇f and up to this point with ~∇f . This is the
gradient vector field, if it’s nowhere vanishing you’d be done but it’s not, it vanishes precisely
at the critical points. You also have the basepoint, z, which will not be taken by the gradient
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to the minimum and maximum. You simply delete a neighborhood of all these things, these
trajectories, and you have a nowhere vanishing vector field. Around every critical point
there’s an index depending only on the parity. Because we’re connecting points of different
parity, it follows that this vector field can be extended to these balls lots of different ways,
which doesn’t matter because of the definition of Spinc structures. You cauld look at the
obstruction between them in H1(Y ) ∼= H2(Y, Z).

Exercise 4 Sz(x)− Sz(y) = PD(ε(x, y)).

So ĤF (Y, s) is the homology of the chain complex ĈF (Y, s) where you only use the indicated
Spinc structure.

So all of these are αi I can also define, I can choose another curve in the handlebody which
meets this exactly once and misses all the other disks. That’s in the first homology of Y, it’s
α∗i ∈ H1(Y ). So if I take Sz1(x)− Sz2(x) = PD(α∗i ).

Why do we care about this at all? Let’s go back to the family Yn. Now Y3 is a very hard
computation. Take n to be rather large, say n > 12, although we don’t need that big. This
creates a more complicated Heegaard diagram, and after each twist you introduce three more
generators, so eventually you get only one equivalence class which is just three generators.

Exercise 5 Compute ĤF (Yn) and HF+(Yn) for each Spinc structure. You can always use
the same generator, and vary the basepoint. Look at the three generators, you always get
the same holomorphic disks, and it’s just a question of which ones you’re counting at any
particular case.

This was the first nontrivial calculation we made and it sort of applies in this setting.

When g > 2 everything is easy to do, π2(x, y) is empty if ε(x, y) is nonzero, and π2(x, y) is
H2(Y, Z) ⊕ Z). In the g = 2 cases you could have different homotopy classes corresponding
to the same domain. You could stabilize to increase genus. You could also look at slightly
different equivalence classes. The reason for this last isomorphism is, well, look at D(φ).
These are periodic domains, that is, two-chains. The boundaries will be loops which lie in α
or β. You want nz = 0, which uniquely specifies it.

Typically this will be like S1×S2. A typical domain in this picture would be D2−D3, and of
course you can take any multiple of this. This is a definition, but if you have such a domain,
and when you study π2(x, x) then any two-chain like that will give you homotopy classes, so
that there is a reason why we have lots of homotopy classes. A really easy homework is

Exercise 6 P is the space of periodic domains (the part of the boundary of a periodic domain
on α is a multiple of the circle). Show it is naturally isomorphic to H2(Y, Z)

How about this Z? The domain of π is D(φ) =
∑

biDi, then I can write H(φ) =
∑

(bi +1)Di.
If I add one to each coefficient, the boundary will still be the same, so that picks out this
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other part. If you write the definition of the boundary map, you are making a summation.
You want only finitely many terms, so you have to look at special Heegaard diagrams.

Definition 3 A Heegaard diagram is admissible if for each p ∈ P which is nonzero we have
that p has both positive and negative coefficients. This is one definition. Or you can put
areas to each of the domains Di. Then you could equivalently fix them so that the area of any
period domain is zero.

You will see that the nontrivial elements have both negative and positive elements in this
diagram, which means that they are all admissible. In this diagram, then you have kD1

which just has negative ones and so is not okay. Similarly, if I put the basepoint here it won’t
work, nothing will be admissible.

Unfortunately in general we have to deal with this issue.

[The places where the basepoint can no longer go, that can’t cut the surface into two pieces,
can it?]

You have to say, first, there is an admissible Heegaard diagram. Second you have to show
that two admissible Heegaard diagrams have the same invariants, so you can move them and
the Floer homology don’t change.

So far this is more like symplectic geometry. It’s not clear at all that this is a three-manifold
invariant. It’s sort of obvious what we have to check.

First you have to check Heegaard moves, which change the diagram but not the manifold.

1. isotopy. So you might want to create an intersection between α and β where one did
not exist before.

2. handle-slide, which could be between α and β. I did not allow the two α to intersect,
and then you can turn α1 and α2 into one picture which is like the sum of them, α′1.
For a symmetric picture, look at a pair of pants, and it is turning (α1, α2) to (α′1, α2).
So these are some operations which do not change a three manifold. They are maybe
more obvious in this picture. You could also try to make a change to that circle. So
the handlebody itself does not give these uniquely, so you have to deal with it.

3. stabilization This is when you have a Heegaard diagram and change it by adding a
genus, and then αi+1, βi+1.

So these are moves that don’t change a three-manifold.

How do we get these Heegard diagrams? They are from self-indexing Morse functions. You
also fix a metric, which you can vary if you like. You also have to fix the basepoint. Great,
so

Exercise 7 Suppose I have two self-indexing Morse functions f1 and f2. I want you to show
that you can move through finitely many Heegaard moves to the other diagram.
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It’s obvious how to start. You want to connect the two functions in a one-parameter family
of functions. They are not necessarily Morse functions. So isotopy does nothing, really,
handle slides correspond to Morse functions that aren’t really self-indexing, and stabilization
corresponds to acquiring singularities.

There is a stronger result that says that you can connect them with pointed (away from the
basepoint) moves.

In the remaining five minutes, we are only using Legrangian Floer homology. When I change
complex structures, there is that notion, and there’s a very similar version where [unintelli-
gible]corresponds to isotopy. Let me talk about handleslides. I can do this where the genus
is two, or in higher genus as well. This is the genus two surface right here, and here is a
Heegaard diagram of something, and it’s easy to see it’s S1 × S2#S1 × S2. Here you can
compute the Floer homology and write down a new diagram, here I’ve changed, made a han-
dleslide between these two circles. Both of those pictures are admissible Heegaard diagrams,
and they are connected by handleslide and isotopy.

Exercise 8 This should give the same Floer homology as the previous picture. This is not a
hard exercise.

When you want to prove in general that the handleslide doesn’t change the Floer homology,
try the follawing trick. You have α, β, and γ which is what I get after handlesliding some of
the β. So I want to show ĤF (α, β) ∼= ĤF (α, γ). So the way out is to think of holomorphic tri-
angles mapping to Tα, Tβ , and Tγ . This really gives a map ĤF (α, β)⊗ĤF (β, γ) → ĤF (α, γ).
So to do this you really have to work out the one example. It’s hard to prove that these give
the same thing, but this is the basic idea.

Stabilization is very easy if the basepoint is here and we are working in ĤF . The generators
have to have intersection points one here. The generators are the same. If the basepoint
is here, we don’t allow anything to go through the basepoint, so then the disks that don’t
intersect it are the same.

it’s harder if we’re in HF+, HF−, or HF∞. So remember this picture. This point might
be in the middle of a disk like that, and I have to be able to deal with this other kind. I
have to fix the complex structure, and thath means that I could really try to better relate
the complex structure on the circle, and what you would like to see is what happens in the
limit. The statement is that when you make this neck really long, you get an isomorphism.

In a really long and ugly paper we check all these details. Next time I’d like to show you
how to use this to onswer some problems, and there’s an easier version involving knots.
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4 Wu

So today I will talk about the relation between Legendrian links and spanning tree mod-
els. The first part will be about the spanning tree models for Khovanov homology due to
Champanerkov-Kofman-Viro and Wehrli. The second part is an upper bound, due to Lenny
Ng.

The spanning tree model was discovered by Thistlewaite. Humans compute the Jones poly-
nomial by means of the Kauffmann bracket. I am using Khovanov’s convention. So here is
the right-handed trefoil knot. In the process we keep track of which splice we use, which
resolution. So we use the defining relation to compute the Jones polynomial for the bottom
things. But only stupid computers do this. In general people just look to see that they have
reached the unknot and then plug in for that.

This depends on the order in which I splice these three crossings. Then the ending unknots
I come up with look different. Then the question is whether there’s a good and rigorous way
to give this smarter algorithm. This was figured out by Thistlewaite. We need to, that’s the
spanning tree expansion of the Jones polynomial. In order to introduce this I first need to
introduce the Tait graph. The regions outside the diagram in the plane can be bicolored.
Any two regions of the same color do not share a common boundary curve. We put a vertex
in each of the black regions, and at each crossing we put an edge that connects the vertices
in the two regions connected by the crossing. We need to know which strand is on top and
which one is on the bottom. So the sign convention looks like this. This edge is positive and
this edge is negative.

From this graph we can uniquely reconstruct the knot diagram. But we have two choices of
colorings. So we can get different diagrams. This is a very different Tait graph. They are
dual to each other. Two embedded planar graphs, we can take duals, it doesn’t really matter
which graph we use.

In order for the graph to have spanning trees we need the graph to be connected. We can
always make a link diagram connected with Reidemeister II moves. We denote the Tait graph
by G. Let T be a spanning tree of G.

Let e ∈ T. Then cut(T, e) are the edges of G that connect the two components of T\e.

Say f /∈ T. Then cyc(T, f) are the edges of G in the unique simple closed curve containing
T ∪ f. It’s easy to see that if f ∈ cut(T, e) then e ∈ cyc(f).

Fix an ordering of the crossings. e is of the type L if e is a positive edge and e ∈ T and e
has the lowest ordering in the set cut(T, e). This is for positive edges. We say that it is the
type L̄ if it’s negative and has the other properties.

We call it type D, D̄ if it is positive, negative, and not type L, L̄. We have the same definitions
for things not in the spanning tree.

We say f is type ` if f is positive, not in T, and has the lowest ordering in cyc(T, f), and ¯̀
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if negative with the other hypotheses. We also have the corresponding definitions for d. f is
type d if positive and not `, and f is d̄ if negative and not ¯̀.

L means live and D means dead. The capitals mean they’re in the spanning tree. A bar
means the edge is negative. Now we use the following procedure to get our unknot. We want
to kill all the dead crossings. There are four types of dead crossings. We use particularly
signed crossing resolutions for the four kinds, the same for d as for D̄ and the same for D as
for d̄.

After you’re done with that you get the unknot corresponding to the spanning tree T. Termnal
unknots are in one to one correspondence with spanning trees T.

Let’s do an example. Start with the highest ordered crossing to splice. Note that this graph
has only two vertices and three edges. I chose this to be my spanning tree. So e1 is ēll and
e2 and e3 are d̄. You can try to use the other Tait graph and you will get exactly the same
three unknots. If you change which crossing you start with, you can draw the corresponding
ordered Tait graph, and you will see that the edges correspond to these three unknots.

I hope this example convinced you that there is a one to one correspondence between the
spanning trees and the ending unknots.

All of these unknots are twisted unknots, so they don’t need type two and three moves, so
it’s easy to write down the spanning tree expansion for the Jones polynomial, it’s just, so the
Kauffman bracket is the sum over the spanning trees

〈K〉 =
∑
T

〈K|U(T )〉〈U(T )〉

where
〈K|U(T )〉 = (−q−1)#d+#D̄

and
〈U(T )〉 = (q + q−1)(−1)#L+#¯̀

q#`+#L̄−2#L−2#¯̀

For T let u(T ) = #L−#`−#L̄ + #¯̀ and v(T ) = #L + #D + #ēll + #d̄

Let CT = 〈ξ′T (u(T ), v(T )), ξL
T (u(T ) + 2, v(T ) + 2) and let CX =

⊕
T CT .

Theorem 3 Champanerkov-Kofman-Viro, Wehrli
There is a boundary of degree (−1,−2) on CK that makes the resulting complex a deformation
retract of the Khovanov chain complex. Here u = j − i = wr(K) + 1 and v = j − 2i =
w(K)+#crossings

2 + 1.

The proof is kind of straightforward. These are all unknots so their homologies are all A. The
chain complexes are just A⊕B where B is a contractible chain complex. We know that the
Khovanov chain complex for this diagram is basically a mapping cone of these two Khovanov
chain complexes. This decomposition is preserved through the mapping cone construction.
So this is the mapping cone of A and A summed with B1 and B2, contractible complexes.
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These two indices are very interesting, for example v is constant when K is alternating,
doesn’t depend on T. So the j− 2i in the Khovanov homology can only come from these two
generators. This reproves the result of Lee.

Theorem 4 (Ng)
Let K be a Legendrian link in R3, ξst. Then tb(K) ≤ min{k|

⊕
j−i=k

H i,j(K) 6= 0}.

It’s clear that if we can find a good lower bound on u we can reprove this theorem.

Theorem 5 For any spanning tree T of G we have tb(FT ) ≤ −1 − (#d + #D̄). This is
equivalent to u(T ) ≥ 1− c(F ).

Here F is a front projection of the Legendrian link K. At each crossing we can resolve the
crossing. In a front projection the strand with lower slope is always on top. We change
the B-splicing because we allow cusps but not vertical tangents. Then F (T ) is the front
projection of T. Then c(F ) is half the number of cusps.

First let me explain how these two inequalities are equivalent. Note #d+#D̄ is equal to the
number of B-splicings used, which is c(FT )− c(F ).

We also know u(T ) = −w(FT ) = −tb(FT )−c(FT ). Looking at these two equations it’s easy to
see that these two inequalities are true. Let’s explain why the second inequality implies this
upper bound. We know j− i = u + w(F )− 1 ≥ w(F ) + 1− c(F )− 1 = w(F )− c(F ) = tb(F ).
So this implies the Khovanov upper bound given by Ng.

I don’t have time to go into the proof. So you need to find a good ordering of the crossings
in the front projection. First you perturb this so that all of the crossings are at different
x-coordinates and use that ordering. You need to deal with a bunch of things. This divides
the proof into several situations. There are several easy situations and dual harder situations.
It’s long but easy to read.

So first we see that if the Khovanov bound should be sharp, you need a spanning tree where
this inequality in the theorem is sharp, called a good spanning tree.

Say K is an unsplit alternating link. Then the claim is that the minimal spanning tree is
a good sponning tree. The correct front projection is constructed by Lenny. The minimal
spanning tree means the sum of all the x coordinates is the minimum among all spanning
trees. There is nothing mapping into this by the boundary map so it won’t be killed when
computing the homology.

So this shows that this is sharp for alternating links. I hope that we would be able to find
a sufficient condition. There is a nice analogous result for the Kauffman polynomial by Dan
Rutherford. This will be harder. In Lenny’s original paper, his proof uses exact triangles
and I want to redo this using spanning trees.

[The Alexander polynomial has a similar spanning tree expansion, that lifts for Oszvath
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Szabo homology. Is there something similar you can do in that case?]

There should be but it’s not in this setting.

[Do you have a reformulation of your theorem in the setting of twisted unknots. [unintelligi-
ble]uses the same spanning trees, but he uses different invariants. He uses a smaller number
of notations.]

I can’t answer that. Other questions? I probably won’t be able to answer.

[Let’s thank the speaker again.]
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