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1 Khovanov

[Good morning. Before Mikhail begins, an announcement. There will be a problem session
this morning on Cameron Gordon’s lecture. Joan will be running it. Hopefully by the end
of the lecture there will be lecture notes and problems.]

I should give credit to the work of others. The braid group action is due to my work with
Seidel. something is due to R. Thomas and myself. Braid cobordism refereneces include
Carter-Saito and Kanada.

Today I'm going to talk about categorification of the Jones polynomial. This is a map from
oriented links in R? to Z[g, ¢~!]. It is determined by the skein relation
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and the condition that .J of the unknot is g + ¢~ 1.

Kauffman found an easy way to show that this is well-defined. For a plane diagram D of a
link L without orientation, we are going to define a Laurent polynomial (D). This involves
the zero and one-resolutions:

and the bracket of a link with a disjoint unlinked unknot is (g +¢~!) times the brackt of the
link without that unknot.



Exercise 1 If Dy and D are related by Reidemister moves, then (D1) = £q°)Dy{(.

If you count negative (x) and positive (y) crossings (now you orient the link) you can show
that K(D) = (—1)*(P) 2= (P)=v(P)(D) s q lisk invariant. Show that this is the Jones poly-
nomial.

We want a categorification, so that L will lead to H(L) = ®@H"%/(L) with J(L) the Euler
characteristic, namely J(L) = Z(fl)iqukHi’j(L)

g
So we want D to lead to C'(D). We will use [1] and {1} to indicate shifting of the homology
grading ¢ — ¢ — 1 and the other grading j — j + 1 respectively in the complex
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So when D is the standard unknot, well, I should say that Kauffman’s relations make things
more symmetric. I want to avoid ¢'/2 because ¢ corresponds to a shift in grading and I don’t
want to shift grading by one half. So (D) is ¢ + ¢!, so why not just take two Z in i degree
zero and j degree 1. The graded rank of this group is ¢ + ¢!, as desired. Denote by A the
direct sum, Z -1 ® ZX. This is the homology of the unknot. It works perfectly, we get the
right number.

What are other links? You can take the unlink with K components. That value on the bracket
is (¢ + ¢~1)*. The homology should probably just be A®*¥. Then the graded dimension will
be what we want.

Let’s start with crossings by looking at the diagram with one crossing. We look at the two
resolutions of the once-twisted unknot into two unknots and one. So we get A®? and A.
Since g corresponds to {1}, the ¢~! should indicate that A should be A{—1}. The negative
sign means that they are in different parity homological dimension.

So we want 0 — A%? — A{—~1} — 0. How can we find the map, which we will call m? A® A
has X ® X in degree 2, X ® 1 and 1 ® X in degree zero, and 1®1 in degree —2. Then A{—1}
has X in degree zero and 1 in degree —2. So there is a natural choice, which takes 1 ® X and
X®1to X and 1 ®1 to 1. This makes A an associative commutative ring with unit 1 and
X%2=0.

Then when we take homology, we get Z in degrees 0 and 2. This is only a small problem,
this shift from —1 and 1. We’ll deal with it later.

There’s one other case when you have a single crossing, the mirror image. Then we need a
map A : A — A®2{—1}. Ahas X and 1 in degrees 1 and —1. Then A%?{—2} has X®X, 19X
and X ® 1, and 1 ® 1 in degrees 1, —1, —3. So for this to have the right homology we want
neither map to be zero. We take X to X® X and then for symmetry choose 1 — X®1+1®X.
The homology is two Z in degrees —1 and —3.



So this gives an algebra and coalgebra structure on A with a trace which takes X to 1 and
1 to zero allowing us to pass from multiplication to comultiplication.

So what if we have a knot diagram with crossings? Here’s the trefoil. You are going to get an
n-dimensional cube where n is the number of crossings. At each vertex there’s a resolution,
so at (0,1,0) we get the O-resolution at the first and third crossing and the 1-resolution in
the second place.

Can we take homology? We can:
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Then we shift these to look at the diagonals to get things in the right order, and we also need
to add an odd number of negative signs on each square to make things anticommute instead
of commuting, and we get

0 A®3 AP 1} @ A9 {1} @ A% {1} > A{-2} @ A{—2} @ A{-2} — = A®2{_3} — >

So this is a complex of graded Abelian groups. Then we can shift it to the left by (D) and
in the vertical degree by 2z(D) — y(D). So once we apply the shift [x(D)]{2z(D) —y(D)} we
call this complex C(D). Then H(D) = H(C(D)).

Theorem 1 H(D) is a bigraded Abelian group H(D) = @ H%(D). It’s immediate from
i,jEL
the construction that x(H(D)) = x(C(D)) = K(D) = J(L).

The content of the theorem is that if D1, Ds are related by a Reidemeister move then C(Dy) ~
C(D3) so that H(D1) = H(D3) with the isomorphism preserving the bigrading. So the groups
are invariants of links and can be called H(L).

Let me write again J(L) = >_(—1)’¢/rkH%I(L).

Next time I will sketch a proof that this is functorial. You want homology to be a functor.
The regular homology is a functor Top — gr Ab which takes X — H,(X) and f: X — Y
to fi: Ho(X) — H.(Y).

We have cobordisms between links, and cobordisms will be taken to homomorphisms of
bigraded Abelian groups.



Let’s look at some examples. Here’s the homology of the knot 10121 (in Rolfsen notation).
Bar-Natan wrote a program to compute these. For alternating knots you see that the homol-
ogy is concentrated on two diagonals. You only have homology groups in odd degrees, and
this is immediate from the construction. You will always only have odd degrees for a knot.
For two component links they are always in even degrees.

Another amazing thing is that the width is 10. If you look at the construction, the number
of terms in the complex is n + 1 where n is the number of crossings in the diagram. There
is also an overall shift. The width is at most n. For alternating knots this bound is strict.

I should say what these numbers are. These are not supposed to be numbers but Abelian
groups. 1 means Z, 4 means Z*.4, 1, means Z* @ Z,. There is only 2-torsion in this example.
If you ignore torsion you can match the coeflicients diagonally. Most of these patterns were
explained by E. S. Lee, on the arxiv.

Let’s look at another alternating knot 10123. Again there’s only 2-torsion and everything is
on two diagonals. This is symmetric because this knot is amphichiral.

Exercise 2 If D' is the mirror diagram, then (C(D))* = C(D") where the dual is Hom(C (D), Z).
Then rationally H» (L', Q) = H=>~7(L,Q).

Here’s 11%; . Here’s the (—3, 4, 5)-pretzel knot. The width is smaller than the crossing number.
So that bound is not sharp. In these two there are smaller ranks than we were seeing with
the alternating knots.

A few months ago, it was found that the (5, 6) torus knot has 5-torsion and 3-torsion, which
was a big surprise. So somehow the torus knots are perpendicular to alternating knots, the
nonvanishing groups lie on many diagonals, and the width is only about half of the crossing
number.

These computations are mainly due to Shumakovitch.

Let me give you another exercise.

Exercise 3 Show that C(D U D") = C(D) ® C(D’). This implies the Kunneth formula for
homology, so that H(LU L', Q)= H(L,Q) ® H(L',Q).

Exercise 4 Compute the homologies of the Hopf link and the trefoil.

I think that’s plenty for one day, I'm going to stop now.

2 Szabo

Okay, so last time we were studying homotopic maps w2 (x, y). We also want the Maslov index,
which is something like the expected dimension of the moduli space holomorphic maps.



You can change your family of complex structures and so the solution space can be smaller,
which would make sense of a negative Maslov index.

There is a master solution due to Robert Lipschitz for Heegaard Floer homology. Let me
remind you that we assigned D(¢) = > n.,(D)D;.

Here on the blackboard you have seven different examples. All of them have zero and one
coefficients. In general this isn’t true. I shaded the regions where it’s one. Here’s one we've
seen before. They are mostly in the second symmetric product, this one is in the third. This
is a more complicated example. I am looking at this disk, and then I try to stabilize an
additional genus. If you think about the conditions D(¢) has to satisfy, it is satisfied. At this
point when you take the whole region then the boundary is zero, it goes from ¢ to c. This is
an even more complicated example. You look at it and take the boundary, that goes from x
toyon «, ytoxon B, x toy on o and then y to x on 3. Is that okay?

Now we want to compute the Maslov index. Here’s a combinatorial formula due to Lipschitz
for the index.

Definition 1 You have all these domains and we would like to define some functions on the
domains. Let e(D;) for a 2-gon is 1/2, for the square is 0, for the 6-gon minus one half, and
for the n-gon 1 —n/2.

You want this to be additive so if it’s a more complicated region, it’s okay to cut it into more
parts if you like. For something that looks like this, I can cut it into two parts, this is a
2n-gon and this is too. Take your region, cut it into parts, and use additivity.

This is one definition. It’s not quite an Euler characteristic, you also use how many boundary
components you have.

So using this, one can write down e(p) = n,, (¢p)e(D;).

We need some other things. So for instance we nneed a point measure p,(¢). Suppose you
have p an intersection of a; and B;. There are four regions around this meeting; they may be
different or the same. If you have basepoints in the four regions then u,(¢) is the average of

the . : (3 n.,(9)).

So for ¢ € mo(z,y) withx =x1,...,T4;Y = Y1,...,Yg, we have pz(P) = > tiz, (4).

Now the formula for the Maslov index is Mas(¢) = e(¢) + pz (@) + 1y (#). So that’s a great
help for us. Here I know the answer should be one. I have coefficients 1,0,0,0 and 1,0,0,0
with e = 1/2 so here I get Maslov index one. Here I also get one, because e is zero. This is
more complicated in the third symmetric product. Here e is —1/2 and pick up 1/4 in each
of the six points so again get 1. In this one you get some problems studying holomorphic
disks. You have to fix the structure, and you have three too many points for the holomorphic
structure. You might think it depends on the complex structure but it’s not true.

The Maslov index is one here. And here, again. Here it should be two. This one can be
decomposed into the sum of these two homotopy classes. Do we get that from the formula?



Here e = 0. Here it’s 1. Here we get some 1/2 and get index two. Here it’s also one.
Sometimes it’s easy to compute and sometimes it’s a challenge.

Okay, so this is a beautiful formula but it’s really a theorem, not a definition. Nevertheless,
if you look at this formula, some characteristics are not obvious. It’s always an integer.

Exercise 5 The right hand side is always an integer.

Another useful property is that the Maslov index is additive. If I have one from x to y and
another from y to w then M (¢1#d2) = M(¢1) + M(p2).

I finished the part of the lecture that was supposed to last ten minutes so I'll speed up.

What do we require from holomorphic disks? For some homotopy classes the Maslov index
is negative. In this case what do we want? We want the moduli space to be empty. It’s
negative dimensional. This is not necessarily true. Now what happens when the Maslov
index is zero? It could be that z = y and ¢ is the constant homotopy class. Then there’s no
way to reparameterize the constant map. Then M(¢) is a point. The other case is that it’s
supposed to be zero dimensional with a free R action on it so we expect it to be empty.

These are the easy cases where we don’t have to deal with homotopy classes. There’s the case
where Mas(¢) = 1, so M(¢)/R is zero dimensional. Then you also want it to be compact.
That is, if you manage to get the two conditions right, then the last part about compactifi-
cation, and it’s really important that we are using Lagrangian submanifolds. There’s a nice
theorem of Gromov about studying degenerations of surfaces and then disks (very soon) and
that shows that there’s nothing to converge to. You want to cut the number of points so you
want a finite number of points.

When the Maslov index is two, when we divide by the R action it should be one-dimensional,
but we can no longer ensure compactness. I am going to erase everything except the index
two example.

Okay, so we have this example. Maybe I can write the whole thing slightly larger. The class
we're looking at goes from x to y. So we would like to understand the moduli space. It’s
very easy to see one solution in that space. Look at this heart-shaped region. It’s simply
connected, and then I have R worth of maps once I stabilize two points, and once I mod out
by R I get one map. But are there other solutions? There should be one dimension worth of
solutions. I could overshoot and come back. I can make this arbitrarily long, so if I fix the
length I get a unique solution. I can do it in the other direction. If I cut in both directions
the cuts overlap inappropriately and I can’t use the Riemann mapping theorem any more. So
you can get (—1,1) with varying length cuts on the two edges. It has a compactification as
an interval and also in terms of holomorphic disks. What happens when I try to cut almost
completely to here? I get two holomorphic disks. This corresponds to a decomposition of
the original homotopy class into two homotopy classes.

These correspond to going from z to p by Do and D3 and then p to y by D;. You can also
go the other way by going from x to ¢ with D1 and D3 and ¢ to y by Ds.



The trick will be that when you take limits, you can no longer use the R actions. Instead you
fix the structure before taking the limit. This is called a broken flow line. This is an example
of a Maslov index two homotopy class having an interesting compactification. Unfortunately
you need extra conditions or not everything will be defined.

Here is a more interesting, ugly example here. Luckily it won’t happen in our case. Here
two of the a will be homologous, where for us they will be linearly independent. This is in
the second symmetric product. I want to look of = (a,b) to z = (a,b). Then D(¢ will be
Dy + D5 where the region is an annulus with two cuts. You can use the formula to see the
Euler measure is zero here and here, so e is zero, and p, is 1/2+ 1/2, and the same for y, so
it’s two.

So we want something like
F——%

|

D? — Sym?(X)

There is a dictionary between maps from D? to the symmetric product and F into ¥ and
D2,

Some of these annuli will not come from branched covers. It’s a one-dimensional manifold
after the R-action.

Exercise 6 In the compactification, I use longer and longer cuts on one end, this broken
flow line type. But were I make smaller and smaller cuts, that’s very different. That’s like
cusping a new disk off of the disk from x to x. If you look at this region, with no cut at all,
there is a map in the second symmetric product with boundary completely in p.

In this case it’s a one-dimensional manifold. These are the things where we want to say, like
Maslov index negative means empty, Maslov index zero means compact, in two you have a
compactification.

[unintelligible][unintelligible][unintelligible]So fixing a complex structure, varying your com-
plex structure, so everything shifts up or down. If you do it this way the moduli space will
vary by the R-action still.

[A question about branched covers]

The correspondence is that when you take the map, that also gives you a two-chain, and the
multiplicity of that map over each region is n.. In this example here d(¢) is one. In this case
it has to be an annulus. In general you have to consider the topological type of the surface.

Why do we care about this? We wanted to define the boundary map. Definitely having a
compact manifold lets us count the number of points. For 62 = 0 we need to look at Maslov
index two. It’s enough to show this on a generator. I count with multiplicity (in dz), it
maybe uses p, and maybe § of that gives me y. So there was a homotopy class here with



Maslov index one from z to p and again from p to y. So then the Maslov index of the class
from x to y is 2. Suppose I would like to show §2xz = 0. Then I just have to show that the
coefficient of 62z at any given point y. Take 7 € 7m2(x,y). Here the Maslov index is two. Take
this moduli space with the R-action. This is a one-manifold with a compactification. There
is the broken flow line kind and then the other uglier kind. If I can show that these flow line
degenerations are the only ones, then the number of ends would be even, and they would be
the number of ways to go from x to p times the number of ways to go p — y. This is exactly

what happens here,
x
p q
Y

Anyway, the point is that the proof of §2 = 0 is easy if we have only the good kind of
degeneration, because in the one kind of degeneration all of the boundary will lie on the «.

I wanted to say why we have a chain complex. We don’t have time, so say H1(Y) = 0 and
g > 2. In this case mo(z,y) is Z for every two points. Then you can look at n, : mo(z,y) — Z.
In CF we only looked where n, = 0. So there’s a unique choice for any z,y. So we have a
grading gr(x,y) = Mas(¢). What you still have to think about is that the degenerations are
counted in d?. We only counted those that did not intersect z. Maybe in both cases here n.
was zero, and so the homotopy class of the sum is zero. But you could also have £k as n,.
But n, is the intersection number of something holomorphic with something holomorphic
and it won’t be negative. If the moduli space is nonempty, then n,(¢) > 0. This allows us
to show that CF is a chain complex and the corresponding thing is HF. There is a more
general thing called CF>°. The generators are [z, ] where ¢ is an integer. The boundary map
is the sum over the homotopy classes with Maslov index one of the number of solutions once
T've gotten rid of the R-action times yi — n.(¢) :

> Y # M n)

Y ¢ S 7T2(x,y)
Mas(¢) =1

So we can look at the subcomplex CF~ where i < 0. Then CF+* = CF>/CF~. There is a
long exact sequence
HF (Y)—HF>®(Y)—=HF (V)

~— N



