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1 Khovanov

[I have a few announcements to make. Now we have a biorganizer arrangement. Here is the
alternative organizer. There will be problem sessions today, after this talk and at 1:00, in
the tent. There will be research talks by Nathan Dunfeld and later by Matt Heden.]

[I’m Peter Oszvath, I’m also an organizer. I thought I’d alleviate the problem of space here
by showing up a day late. Well, hi.]

In the second lecture today we’ll talk about An, braids, and braid cobordisms. In three and
four we’ll do a categorification of the Jones polynomial and an extension to tangles and tangle
cobordisms. I’ll say that’s through 4.5. In the remainder we’ll do more advanced topics, like
the HOMFLY polynomial, Hochschild homology, and matrix factorizations.

Let’s quickly review what we talked about yesterday.

We have rings An, projective left and right modules Pi = An(i), iP = (i)An.
Ui = Pi ⊗i P.

Ri is the bimodule complex 0 → Ui → An →0 where the map is βi; R′
i is the complex

0 → An → Ui → 0 with map γi. Then C(An) is the homotopy category of complexes of
An-modules. The theorem last time was:

Theorem 1 Ri ⊗R′
i
∼= An

∼= R′
i ⊗Ri;

Ri ⊗Rj
∼= Rj ⊗Ri for |i− j| > 1;

Ri ⊗Ri+1 ⊗Ri
∼= Ri+1 ⊗Ri ⊗Ri+1. So the braid group Bn+1 acts on C(An).

For M ∈ obC(An) we have the functors Fi(M) = Ri ⊗ M and F ′
i (M) = R′

i ⊗ M. Then
FiF

′
i
∼= Id ∼= F ′

iFi. We are distinguishing between the bimodules and the functors of tensoring
with them.
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Briefly, I’ll discuss how to prove one of these. What is Ri ⊗ R′
i? You tensor pairwise. You

get
Ui ⊗An

//

��

Ui ⊗ Ui

��
An ⊗An

// An ⊗ Ui

So we can simplify this right away to:

Ui
//

��

Ui ⊗ Ui

��
An

// Ui

So summing along the diagonals we get 0 → Ui → An ⊕ Ui ⊕ Ui → Ui → 0. Computing the
differential we can split this as

0 // Ui
1 // Ui

// 0

0 // An
// 0

0 // Ui
1 // Ui

// 0

Since we’re in the homotopy category of complexes, this is isomorphic to just the middle
factor An.

Last time I also claimed that the action was faithful. In C(An) we have Pi. So we can apply
braids to the Pi. I can have notations, let Fσ be the action of σ as a product of Fi and F ′

i .

So what is Fσ(Pi)? So what is F2(P1)? You take 0 → U2 → An → 0) ⊗ P1, which is
0 → P2 → P1 → 0. Here the map is the composition with the path (2|1). So that Fm

2 (P1) =
0 → P2 → · · · → P2 → P1.

The general answer is the following. First recall that the braid group Bn + 1 is the mapping
class group of the disk with n+1 marked points. This acts on isotopy classes of simple curves
on D2 with marked points. So we start with basic curves ci and we can apply a braid to
these ci and get some curve in the disk.

Let’s do an example: [Picture]. I can drop perpendiculars `i to the ci which partition the
disk into regions each of which carry one marked point. I take σci and express it minimially
with respect to intersection with `j . I want to get a complex from this. I partition the curve
along the intersection points, forget the end pieces, and orient each curve to go clockwise
around the marked point. Then I mark each point with the index of the corresponding `j

and am left with something like:

1 // 2 // 2 2oo 3oo 4oo 5oo
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Now I take this diagram and bend it so that the arrows point to the right:

1 // 2

��>
>>

>>
>>

2

5 // 4 // 3 // 2

@@�������

Now replace these with projectives:

P1

(1|2) // P2

X2

  A
AA

AA
AA

A

⊕ ⊕ P2

P5
(5|4)

// P4
(4|3)

// P3
(3|2)

// P2

X2

>>}}}}}}}}

It is a theorem that in general this is what you will get from Fσ(Pi).

So to show that this is faithful we want to say Fσ 6= F1. Then it is enough to find Pi with
Fσ(Pi) 6= Pi. To do that it’s enough to find Pj so that Hom(Fσ(Pi), Pj) 6= Hom(Pi, Pj). To do
that it’s enough to show they have different dimensions. We’ll do a combinatorial description.
For σci you get some complicated curve. Put this in minimal intersecting position with cj .
Let me use HOM(M,N) = ⊕Hom(M,N [i]), Then HOM(Fσ(Pi), Pj) has dimension twice
the number of internal intersections of σci and cj plus the number of common boundary
points of σ(ci) and cj . Any nontrivial braid will have a nontrivial intersection with some cj .
Then you can calculate that the action is sufficiently complicated that this is faithful. I am
suppressing all the details.

Any questions? Then let me go on to braid cobordisms.

Why do we care about acting on a category, we already have many things from just acting on
vector spaces. There is possibly more information, because functors have natural transfor-
mations. So to a braid we assign a functor. What is the meaning of natural transformations?
These are assigned to braid cobordisms. We’ll have a category of braids with objects braids
and morphisms braid cobordisms, which look like, well, what is a braid?

It’s an embedding of n + 1 intervals into R2 × I so that the projection onto I has no critical
points. Then a cobordism will be a surface in a four dimensional space with boundary two
braids and then two sets of flat intervals (fixing the boundary points of the braid). We want
the projection onto [0, 1]2 to be sufficiently nice. In particular we want it to be a branched
covering with simple (double) branch points only. We can compose these by gluing. We add
branch points to get changes in topology. As you pass through branch points you change a
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non-crossing to a single crossing. So we go to or from τ1τ2 to or from τ1σ
±1
i τ2. At the branch

point the arcs kiss.

The reference for this is Carter and Saito. So what is this thing? In one sense it’s in
four dimensional topology. But in another sense we have some things we can do in smaller
dimensions. We can move them around but not get rid of them. So there’s also the idea
of positive and negative, a branch point is positive if it adds a positive crossing or kills a
negative crossing. It’s negative if it adds a negative or kills a positive crossing.

Okay, but we want to assign to a cobordism a natural transformation. To go from the functors
corresponding to the modules 0 → An → 0 to 0 → Ui → An → 0.

We’ll use the map 1 :
0

��

// An

1

��

// 0

��
0 // Ui

// An
// 0

Similarly
0 // An

//

1

��

Ui
//

��

0

0 // An
// 0

The negative ones are not as nice, after many tries we get

0 // Ui

��

// An

Xi−1−Xi+1

��

// 0

0 // An
// 0

This is nilpotent, this map (Xi−1 −Xi+1)2 = 0. It’s an exercise to

Exercise 1 Do the one remaining case

So now we have a natural transformation from any cobordism by composing these.

Okay, so some are positive and some are negative. If you have only positive branch points
it comes from a holomorphic something in C2. Take Y ⊂ C2 mapping to C. You have a disk
which you pull back to get D × C and then intersect with Y and get a braid cobordism,
positive. It’s a theorem of Rudolph that any positive cobordism has this form. The two
types have different invarionts, that’s an interesting thing. Iy S is positive, then there is
FS : Fσ → Fτ , and this is never zero. For most negative S the natural transformation is zero
because the Xi are nilpotent.

If you have two negative branch points next to one another the corresponding map is already
homotopic to zero. This is supposedly similar to gauge theory where things act in very
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different ways on the holomorphic and antiholomorphic things. This is possibly a very naive
shadow of those very fancy things.

I’ll stop here.

2 Cameron Gordon

[We’re almost ready to begin. Two announcements. There are lecture notes and problem
sets beginning to appear on the back table. There will be a problem session for Szabo in the
big tent at 1:00 PM. Okay? Okay. Cameron Gordon from, where are you from?]

I have an announcement to make too. A distinguished English sailor is going to be giving a
special presentation. He’s related somehow to Colin Adams.

Thanks for inviting me to participate. But they should have coordinated better with FIFA.

I’m going to talk about Dehn surgery basically, but let me start off by, there’s going to be
some overlap between what I say today and what John said in his lecture.

Let me say something about 3-manifolds in general. I’ll always assume 2 and 3-manifolds are
compact, orientable, connected, unless they’re obviously not.

Let me talk about incompressible surfaces. If F is a surface in M3 either in δM or more
usually “properly embedded” meaning F ∩ δM = δF. Then we have the basic notion due to
Haken of a compressible surface. We say F is compressible if there exists a disk D in M with
D ∩ F = δD and δD is essential in F, i.e., doesn’t bound a disk.

Writing on these blackboards is a little bit like writing on a boat. Here’s a picture of
compressibility.

If you have a compressible disk you can cut along it, what’s called performing surgery along
it, and get a simpler surface.

Theorem 2 Disk theorem (Papakyriakopoulos, 1957)
F ⊂ M is incompressible if and only if π1(F ) ↪→ π1(M).

One direction is easy. If you’re compressible, then the boundary of the disk is nontrivial and
then gets killed in M. The other direction is harder.

I’ll be talking about essential surfaces. A properly embedded surface F in M is essential if
either

1. it’s a two-sphere that doesn’t bound a three-ball,

2. F is a disk and δF is essential in δM
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3. it’s neither a disk nor a sphere, it’s incompressible and not boundary parallel (meaning
there exists an embedding F ′×I into M with F ′×{0} ⊂ δM, and F = F ′×{1}∪δF ′×I.)

If M does not contain an essential S2 then we call M irreducible. Your first exercise is

Exercise 2 M is prime if and only if M is either irreducible or S1 × S2.

This irreducibility is a key thing. One thing is,

Theorem 3 the three-dimensional Schönflies theorem (Alexander 1924)
S3 is irreducible.

I should have said, either this is piecewise linear or smooth. Alexander proved, Schönflies
proved that every S1 bounds a disk in S2. Alexander announced this in three dimensions for
S2 in S3, and then found a counterexample, the horned sphere. This is true, though, if the
S2 is smooth.

I’m going to deal with surfaces of nonnegative Euler characteristic, that is, S2, D2, A2, and
T 2. Every three-manifold can be cut along such surfaces into canonical pieces. Let me repeat
what John said. For S2 we have

Theorem 4 Prime Decomposition theorom, (Kneser 1929, Milnor 1962) M (oriented) is a
direct sum of prime manifolds, with pieces unique up to orientation preserving homeomor-
phism.

The spheres aren’t unique but the pieces you get are unique. Let me say something about
disks. There’s a theory of doing that. At every, you might as well assume that you’ve cut the
manifold up into irreducible pieces. Then there’s W 3 ⊂ M unique up to isotopy such that
δM ⊂ W and M −W is irreducible, but now δ-irreducible, meaning it contains no essential
disk. Let me draw a picture.

For example, if M is a handlebody as defined in Zoltan’s talk, you can completely compress
the boundary, and W is all of M. Well, that’s not right. I should say W is useful.

If I defined a compression body, I could have said it was that.

What about when you cut up along tori and annuli? This is important in the context of the
geometrization conjecture, but let me say it differently.

Definition 1 M is a Seifert fibered space if and only if M is a disjoint union of circles
(referred to as fibers) such that each fiber has a neighborhood which is a fibered solid torus V,
Identify the two ends of D× I by a rotation of 2πp/q for p, q relatively prime. The fibers for
x 6= (0, 0) are images of x× I, ρ(x)× I, . . . , ρ(x)q−1 × I. The central fiber is (0, 0)× I. So a
Seifert fibered space is a union of such solid tori such that the boundaries line up correctly.
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If q ≥ 2 then the central fiber is a so-called exceptional fiber of multiplicity q. Here’s a picture.

On the boundary the fibers are p, q curves. We have to orient things properly, this is one of
the pains of this subject.

So that’s a Seifert fibered space. It’s like a singular circle bundle. If you take each fiber and
identify it to a point, you get a projection M → F to a surface called the base surface. You
have a finite number of marked points where the singular fibers map.

At this point let’s say that M is simple if it does not contain an essential sphere, disk,
annulus, or torus.

Then the theorem about cutting manifolds up along annuli and tori is

Theorem 5 (Jaco-Shalen, Johannson, 1976)
Assume M is irreducible and δ-irreducible. Then M contains a disjoint union F , unique up
to isotopy, of essential tori and annuli such that each component of M cut along F is either
simple or a Seifert fibered surface, or an I-bundle over a surface.

What does simple mean? It means you don’t have annuli and tori. You have to prove that the
cutting can’t go on forever, which is a classical theorem of Haken and goes back to Knezer.

Haken introduced incompressible surfaces, and then used the normal surface idea to show
that there can be only finitely many disjoint incomprossible surfaces.

Suppose your manifold is a surface cross S1. If you cut along simple curves and arcs, you can
cut the manifold into being a solid torus. But that’s not unique. The clever idea is not to
bother to decompose the I-bundles and the Seifert fibered surfaces.

Let me continue with the Seifert fibred spaces.

Let me go back and say something about, this will come up when I finally talk about Dehn
surgery.

Let me remind you that there is a base surface F and n exceptional fibers in a Seifert fibered
surface.

Definition 2 A Seifert fibered space is small if and only if

• F = S2, n ≤ 3

• F = D2, n ≤ 2

• F = A2, n ≤ 1

• F = P 2, n ≤ 1

• F is the Mobius band, n = 0.
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M is not small implies M contains an essential T 2.

Exercise 3 Lemma 1 M is an irreducible 3-manifold with δM a collection of tori. If M
conains an essential annulus, then either M contains an essential T 2 or M is a small Seifert
fibered space.

Generically Seifert fibered structures are unique, but there are some small counterexamples.

We now are left with the pieces which are simple, don’t contain any compressible such
surfaces.

Theorem 6 Geometrization conjecture (Thurston if δ 6= 0, 1980; Perelman 2003) M is
simple if and only if either

1. M0 = M minus the torus components of the boundary has a complete hyperbolic struc-
ture with the remaining boundary totally geodesic. I will call this M being hyperbolic.

2. M is a closed small Seifert fibered space, or

3. M ∼= B3. But the theory of this manifold is well understood.

I should have said, well, the round manifolds that John was talking about, the Seifert fibered
spaces of the form S2, n = 2. So this is a manifold of Heegaard genus at most one, S3, S1×S2,
and lens spaces. All round 3-manifolds, in fact, are of the form, in fact, let me, it would be
useful to say, the n exceptional fibers have multiplicities q1, . . . , qn so I can list multiplicities.
All other round three-manifolds are of the form S2(q1, q2, q3) where these are a plotonic triple,∑

1
qi

> 1 : (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).

[Some background] but these small ones were the motivating example. The (2, 3, 5) is the
first homology sphere.

In the last ten minutes let me start talking about knots and how they fit into this general
pattern.

Here we have K ⊂ S3 and I’ll tend to use MK to be S3 minus the interior of a tubular
neighborhood of K. By the Schönflies theorem, every 2-ball bounds a three-ball. This leads
directly to MK being reducible. Another of your homework problems is

Exercise 4 MK is δ-reducible if and only if MK
∼= S1 ×D2 if and only if K is the unknot,

if and only if π1(MK) ∼= Z.

Definition 3 The (p, q)-torus knot Tp,q is the (p, q)–curve in the boundary of a Heegaard
torus in S3.

It’s not so difficult to prove that
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Exercise 5 the exterior is a Seifert fibered space of type D2(|p|, |q|).

.

The whole thing will be the two glued together along the complement of the knot. You have
two solid tori with p, q and q, p fiberings, and you glue them together and one will have p
fibers in the core while the other will have two.

Let me talk about satellite knots. You want J ⊂ a solid torus V but not sitting in a ball in
V and not isotopic to S1 × (0, 0). Pick a nontrivial knot K0 in S3. Pick a neighborhood and
map V to it via a homeomorphism. Then you let K be the image of J. That’s a joke to an
older generation of topologists, but it’s not a joke here, clearly.

You tie the solid torus in a knot, essentially. You call it a satellite of K0.

Exercise 6 If you look at the boundary of N(K0), prove this is essential in MK , incompress-
ible and boundary parallel.

Bear with me just another minute.

Theorem 7 For K a knot in S3 exactly one of the following holds:

1. K is the unknot (contains an essential D2)

2. K is a torus knot (contains an essential annulus but not an essential torus).

3. K is a satellite knot (contains an essential torus)

4. the generic case, MK is simple, so has a complete hyperbolic structure, so we call K
hyperbolic.

What I’m going to talk about next is Dehn surgery. We’ll mostly focus on hyperbolic knots.
We’ll start with the others and then start doing Dehn surgery on hyperbolic knots and go
on to construct examples from those.

3 Szabo

Last time we were discussing Heegaard diagrams (Σg, α, β, z). The basepoint is not necessary,
it’s a technical requirement. We are going to make a chain complex. The generators of ĈF
were ∪σ∈Sg

∏g
i=1(αi ∩ βσ(i)).

There’s a much better way to look at the generators. They can be given by this other
construction. First take the g-fold symmetric product of Σg. This is Σg×· · ·×Σg/Sg. Inside
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are two tori that you can associate to the two handlebodies Tα = α1 × · · · ×αg ⊂ Symg(Σg)
and similarly Tβ . The generators are Tα ∩ Tβ .

An easy observation shows that Symd(C) ∼= Cd. I can identify Cd with polynomials with
form a0 +a1z + . . .+adz

d−1 + zd. Then taking the roots you get d points in C and that gives
the correspondence.

Similarly we get a complex structure on Symg(Σg) from the structure on the product.

There are a few exercises related to this.

Exercise 7 1. H1(Symd(Σg)) = H1(Σg). It’s easy to get a map from the right to the left.
It’s harder to show it’s injective and surjective.

2. Sym2(Σ2) ∼= T 4#C̄P2
.

3. For g > 2, π2(Symg(Σg)) = Z).

We’ll move on to holomorphic geometry soon but for now you can think about easier invari-
ants. Let’s look at the algebraic intersection number between Tα, Tβ .

Exercise 8 Show that this intersection number is 0 if b1 > 0. If b1 = 0 then it is |H1(Y )|.
This is a torsion group so it has finitely many elements. Really you need the identification
from the first exercise.

This is not really an interesting invariant. So ĈF needs the boundary map. We have

δx =
∑

y∈Tα∩Tβ

C(x, y) · y,

where C(x, y) is ”the number of holomorphic disks from x to y.”

So what do I mean by holomorphic disks? Great, so, we’re going to look at the unit disk in
C. We want maps from here to the symmetric product so that, it’s going to be holomorphic.
D of it will be a holomorphic map of the tangent spaces. I also want something about the
boundary. Inside, Tα and Tβ will be sitting, as in this picture, and I want U(e1) to lie in
Tα and U(e2) to lie in Tβ and I want U(−i) = x,U(i) = y. For lots of technical reasons we
want, so that the moduli space will be smooth, sometimes you want a one-parameter family
of complex structures on the symmetric product.

An alternate definition would be to look at holomorphic strips. I would say the same thing,
the two sides will map to Tα and Tβ .

[Milnor: what happens when x = y?]

Excellent question. I have to, well, so, that would be much easier to answer in a different
talk.
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The constant map is really special, but any other nonconstant holomorphic map, on this
infinite strip, there are reparameterizations, and I could precompose and get another map.
If it’s constant precomposing gives the constant map again, unlike in the other cases. I
would like to divide by the reparameterization. What happens is that components of this
moduli space will have an expected dimension. I’ll talk more about that and write down some
formulas, but the bottom line is that between x and y there might be lots of components. I
want to count a finite number of solutions. I want a zero dimensional moduli space so I can
count the number of solutions.

To make this precise, I can talk about π2(x, y). This would be topological maps satisfying
these boundary conditions, and homotopy classes of these maps. After I fix a homotopy class
like that, φ ∈ π2(x, y), I can look at the space of all holomorphic maps representing φ. The
Maslov index Mas(φ) ∈ Z gives the expected dimension of the moduli space. When I say
count the holomorphic disks, I’m going to look at homotopy classes φ ∈ π2(x, y), and then
I will only look when Mas(φ) = 1. Then after modding out by the reparameterization I can
sum with numeric coefficients #(M (φ)/R). There are sign issues and then there are things
about when the Maslov index is one and so there’s still work to do. When b1(Y ) is zero this
is almost exactly what we’re going to do. This definition, when it’s bigger than 0 we are
worried about whether this sum is finite. So we only look at special Heegaard diagrams. For
S1 × S2 we have these two Heegaard diagrams. This one will be a good Heegard diagram
[picture] and this will be a bad one.

I almost have a definition, but if you remember, I have a basepoint. That’s important. It’s
not interesting right now. The first homology is always zero. You have to use the basepoint
as well. So how to do that?

This is a point in the complement of all the α and β loops. So if I write down z×Symg−1(Σg),
this will be disjoint from Tα and Tβ . So φ ∈ π2(x, y), for any point not in the α, β circles, I
can define nz(φ) to be the algebraic intersection number between φ and z×Symg−1(Σg). So
the actual definition, I want to say nz(φ) = 0.

[Does this number change with z?]

Yes. If z is here in this picture, there is clearly a holomorphic disk here, if z is here the nz

will be zero, and here it will be one.

Let’s look at S3. Let g = 1. Here are α and β and then ĈF is generating by one element, so
it’s Z. The boundary map is zero. So if you believe that it doesn’t matter which Heegaard
diagram we choose, then ĤF (S3) = Z, and that’s right.

So okay, what about the torus. Here we have three intersection points, a, b, and c. We have
a few holomorphic disks. There is this one and then this one which goes between b and a. If
I put my basepoint here, then I would have the chain complex

b

��>
>>

>>
>>

>

����
��

��
��

a c
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So b maps to a and c. If I put the basepoint here I could have

b

����
��

��
��

a c

or I could have
b

��>
>>

>>
>>

>

a c

I should say lots of things. This is an example of a very general construction. With a
symplectic manifold, inside that manifold we have two odd-dimensional submanifolds that
are Lagrangian. That setup, and then you intersect them smoothly, and the chain complex
is generated by the intersection points, and it goes through as before. Sometimes it’s not
really a chain complex. You need some knowledge about the symplectic manifold, and the
Lagrangians. You can run this argument in Lagrangian Floer homology provided you can
find an appropriate (symplectic?) form on the g-fold symmetric product.

We have to resort to tricks to show that the boundary maps are well-defined, that the moduli
spaces are compact. You use the symplectic form upstairs to get energy bounds on the moduli
space.

Before I go on to other results, I’d like to go over some simple definitions. There’s a notion of
looking at the holomorphic disk in the g-fold symmetric product, and there’s also the notion
of working in the surface itself. It’s complicated to do the example from last time by hand.
We need some methods, some tools for topological and holomorphic disks.

Let’s start with topological disks first. We can take Σg − α1 − . . . − βg. Let D1, . . . , Dn

denote the connected components (not necessarily disks). In each component I will choose
a reference point zi. I can associate to a homotopy class φ ∈ π2(x, y) the two chain D(φ) =∑n

i=1 nzi(φ)Di. We call this the domain of φ, maybe this is a bad name.

I want to write down the two-chains that correspond to homology classes and try to work
out the Maslov index from this kind of formula.

So here we have Tα and Tβ and φ between them. So this is x and this is y, and x has
components xi ∈ αi and likewise for y. We have a map which is an arc here on Tα. It’s an
arc in α1 × . . .× αg. So the components in this arc will connect xi to yi on αi. You will get
g arcs on the β circles connecting them as well.

So what we get, eventually, is the following:

Exercise 9 δD(φ)|αi
is a one-chain on αi. The boundary of this one-chain is yi−xi. On βi

it will be xj − yk, where the indices depend on which x and y meet in βi.

So in this picture, here x = (x1, x2) is one of our generators. y = (y1, y2) is our other
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generator. Then D7 is a two-chain that satisfies the properties I wrote down. I get, if I
restrict to αi or βi, an arc connecting x and y.

When I think about homotopy classes, I can go back and write down the domain. Most of
the time I can recover the homotopy class from the domain. Note that the square has the
involution of 180◦ rotation. The quotient gives me a map to the unit disk. This is a two-fold
branched cover. Here I have a map to Σ which is basically like the identity. Then I want to
use these to define a map to the second symmetric product.

A.

�
f //

Π

��

Σ

© U // Sym2(Σ)

B. There are lots of interesting examples, such as this one, just in the plane. α and β
intersect each other in four points. There’s a homotopy class connecting x to y so that
D(φ) is D1 + D2 + D3 and you just take the homotopy class of this disk.

C. Let’s see some other examples still in the second symmetric product. Here are α1 and
β1 and here are α2 and β2. I have a, b, and c in the picture. I pick x = a × c and
y = b× c.

Choosing a× b will not give us one because we don’t use α2 or β2. Then D(φ) = D1.

D. Here we have α1, β1 and here are. x1, x2 and y1, y2.

Exercise 10 The exercise is to study the moduli space of these homotopy classes M(φ) for
these four examples and see if you can understand it.

Maybe one more thing. The Maslov index of φ could be negative. It’s a very useful notion
and works nicely to connect homotopy classes. What about homotopy classes φ1, φ2, like
this, connecting x te y and y to w. I can connect these to get one disk from x to w, and we
have M(φ1#φ2) = M(φ1) + M(φ2).

You can look at the spaces of Lagrangians going through the origin and [unintelligible]is Z,
and so this is a Lagrangian subspace and another intersecting transversally. Use the disk to
fix a trivialization of the tangent bundle. Think about working in R2n. Then you have two
paths of Lagrangians connecting them to one another. I can make this path to be constant,
so then I have no control of the other path, and so it comes back and I get a loop in the
space of Lagrangians. So I just recall how many times I get a postive generator and that’s
the Maslov index. So in this picture I get something like this, and then the tangent space to
this line is always the same and the tangent space changes. In C everything is Lagrangian
so I get an S1 worth of Lagrangians and I go around and see that the Maslov index is one.
This is almost the same picture. So here I use this and get an antiholomorphic disk. So then
I get the constant homotopy class so that one should have index −1. So study these spaces
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and compute the Maslov index. Next time we’ll learn a nice formula from Robert Lipschitz
which will allow us to check this combinatorially.

Thank you very much.

4 Milnor

Okay, well, my ambition was to talk about topology of manifolds in the fifties and sixties,
but I realized if I can get through the fifties I’ll be lucky, so let me get started.

Well, nowadays we know that there are clear separations between low dimensions (< 4,),
high dimensions (> 4) and 4 (the jungle). Back then we assumed that one-manifolds were
easy, two manifolds were pretty easy, three manifolds were hard, we just assumed it would
get harder as we went up, so it was a shock when we discovered that higher dimensions were
often easier to understand. My lecture will be divided into two parts, low dimension and
high dimension. Dimension four is too hard, but as far as I know nothing was discovered
about four dimensions in the fifties so I’m off the hook.

Okay, so first I want to talk about three-manifolds, here a lot was done but I think there
was one really important contribution, by Papakyriakopoulos. As I said, he was working
completely by himself, he didn’t have a regular academic position, he worked on old hard
problems, not talking to anyone, I was in Princeton at the time and I didn’t really talk to
him, we were probably both too shy. I had no idea he was doing anything so important.
Finally he came out. Let me try to explain what he accomplished.

Max Dehn in 1910 proved that if you have a piecewise linear map from a 2-simplex ∆ onto
R3 which is one to one near δ∆ then there exists a piecewise linear embedding of ∆ which
agrees with the original map near δ∆.

As an easy corollary he proved that if the fundamental group of a knot complement is free
cyclic, you can get a spanning disk, so that the curve was unknotted. This was a happy state
of affairs for twenty years or so until in 1929 Kneser was publishing a paper and wanted to
apply this proof and found that the proof was just wrong. So the situation remained open
for another thirty years or so when Papakyriakopoulos, working by himself using classical
methods, finite simplicial complexes, and gave a complete proof. I’d like to show you a picture
of him, but the only picture I could find was this snapshot of him reclining on a couch by
Ralph Fox, who was my advisor and brought him to Princeton.

The same methods proved, say you have an essential map from S2 → M3. Then he proved
there exists an essential embedding which can’t be shrunk to a point, which means M3 is
reducible, it has an embedded sphere which can’t be shrunk to a point, bounds a ball. If
M is irreducible, it follows that π2(M3) = 0. You may have heard of the disk theorem, the
loop theorem, essentially restatements of the same thing, making a map of a simplex with
singularities, playing around to make it without singularities.

I want to contrast this with progress in higher dimension. There were many different fields
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and ideas that converged, so most of these tools had been established earlier or were just
coming into being. Cohomology theory had been established by Whitney among others.
Cohomology operations had been studied by Steenrod among others. Fiber bundles were
developed by Whitney, Steenrod, so on, characteristic classes by Whitney, Stiefel, Pontrjagin,
Chern, homotopy groups had been studied but were very poorly understood. Morse theory
had been developed but its many applications had not been realized.

Serre’s thesis in 1953, he wasn’t interested in geometry. He developed spectral sequences and
applied it to fibrations in homotopy theory. He proved that the homotopy classes of maps of
spheres into each other is finite, it’s known to be Abelian except for the fundamental group.
It’s finite except for special cases. It played a very big part in what follows.

In 1954 Rene Thom came out with cobordism theory. If you can join two compact manifolds
with a compact smooth manifold with boundary, they’re cobordant. You can also do it with
orientation. He showed that cobordism classes formed a group, which isn’t so special, but
then he proved a lot of things about it using the algebraic techniques pioneered by Serre,
Steenrod, among others.

Theorem 8 Cobordism classes form a finitely generated Abelian group, and you can use
the topological product to make this an algebra over Z. He couldn’t deal with torsion so he
tensored with Q and got a polynomial ring on the complex projective spaces of even complex
dimension.

He also gave an effective test to show if a manifold is zero in this group. If you take a product
of Pontrjagin classes of the correct total dimension you can apply it to the fundamental class
and get an integer. Thom showed that the manifold is cobordant to zero, is a boundary modulo
torsion if and only if all of these integers are zero.

Let me show you a picture of Thom. This is later, in the seventies. Here’s another picture,
not as good, but I have nostalgic interest in the picture. Here is a group of mathematicians
working hard, here’s Thom, Kurt Weyl, Grothiendieck, and then [unintelligible], myself, and
[unintelligible].

Let me say a little more about what Thom did. He defined a signature of a 4n-dimensional
manifold. Let me say it in terms of homology. Two middle dimensional homology classes
represented by manifolds, they intersect transversally in a finite number of points, an integer
intersection number. For what I want to do next it’s better to take rational coefficients. Pick
a basis for the vector space so that the quadratic form is diagonalized, then the sum of the
signs of the diagonal elements, that’s called the signature. He proved by a geometric argument
that if the manifold is a boundary then the signature is zero, so it could be expressed as a
linear combination of Pontrjagin numbers with rational coefficients.

Hirzebruch had worked out what this formula would look like, we had a formula in every
dimension divisible by four. The case we’re interested in is the eight-dimensional case. There
are two Pontrjagin numbers, p2 and p2

1. The coefficients are 7/45 and −1/45. You can work
these out easily. You know that all of these, rationally, are sums of complex projective four-
space and products of complex projective two-spaces. You can work out what the unique
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possible formula. You can restate this as p2 being given in terms of p1 and the signature
with rational coefficients (denominator 7). I want to apply this last formula, if we consider a
manifold with boundary of dimension 8. Assume the boundary is a homology seven-sphere.
The signature still makes sense in a manifold with boundary. It’s not hard to show that the
first Pontrjagin number is a well-defined class in H4. You can get a second Pontrjagin class
working modulo boundary.

Now suppose this is actually a sphere, this boundary. Then we can paste on an 8-ball and
get a closed manifold for which this formula will have to be true. If we have a standard
sphere then this expression must be an integer, so 45 sgn + p2

1 must be 0 mod 7. So if
we can find any example where this fails, then we know we’ve found a homology sphere
which cannot be diffeomorphic to the standard sphere. I came upon such an example in the
mid-fifties and was very puzzled. I didn’t know what to make of it. I thought I’d found
a counterexample to the generalized Poincaré conjecture in dimension seven. But looking
carefully I saw that the manifold really was homeomorphic to the seven-dimensional sphere,
so there was a differentiable structure on S7 not diffeomorphic to the standard one. The
same argument shows that there are at least seven differentiable structures on that sphere;
in fact there are twenty-eight.

I seem to have gone through the fifties rather rapidly. I do want to mention one other
contribution, that of Raoul Bott, who exploited Morse theory in a way that no one had
thought possible to study homotopy groups of classical groups. Again, this seems to have
nothing to do with manifold topology but turned out to be very important for developing the
topic. The easiest case is with U(1) ⊂ U(2) ⊂ · · · ⊂ U. He proved that the homotopy groups
of U are Z in odd dimensions and 0 in even dimensions. This is a fantastic achievement;
at this point there were practically no homotopy groups that were completely known, and
having such a large family with such a simple answer was simply mindboggling.

I do have some slides here that I managed to skip over. One big surprise that developed
in the fifties is that higher dimensions are often easier than lower. This is a bit hard to
understand and explain, but one simple reason that can be stated is that in all dimensions
it’s important to study maps of S1 into the manifold. Even if you know a map can be shrunk
to a point, you can’t make geometric use of that. But in dimension four or more, it’s quite
easy to see if you have a map into the manifold you can first approximate it by an embedded
circle, and then if it can be shrunk to a point it bounds a singular disk. In high dimensions
it’s easy, you put it in general position and then by an argument that goes back to Whitney
it bounds an embedded disk.

In dimension three this obviously doesn’t work. Suppose our three-manifold is the three
dimensional Euclidean space with this black circle removed. It’s true that you can’t embed
a disk so that its boundary is the red circle and it doesn’t intersect the black circle. You can
immerse a disk, and you can find a disk that it bounds if you forget the black circle.

M4 doesn’t look so bad at first, but you may find your immersed disk has self-intersection,
transversal self-intersection at a point. So that’s a brief idea of why the high dimensional
methods don’t work in low dimensions, and the low dimensional ideas don’t work, because,
well, they don’t work.
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So that’s the end of the slides, I can move to the blackboard. That more or less carried us
to the end of the fifties. Things really came alive in the sixties. It started with Steve Smale,
who proved the generalized Poincaré conjecture in dimension greater than four, if Mn ∼ Sn

then Mn is diffeomorphic to Sn.

[Don’t you mean homeomorphic? I think there’s a counterexample due to Milnor.]

Right. It’s late in the day or something.

You can take a level set in a Morse function. and look at the flow lines running to it and
that’s homeomorphic to a disk. This shows that you can obtain the manifold by taking two
disks, and then taking a diffeomorphism from the boundary sphere to itself. It’s a manifold
Mn which depends on this diffeomorphism. I call this a twisted sphere. Smale showed that
having the homotopy type of a sphere implies that you have a twisted sphere.

We can form a group called Γn equal to the set of twisted n-spheres modulo orientation
preserving diffeomorphisms. Then we get an easy exact sequence like

π0Diff+(Dn) → π0Diff+(Sn−1) → Γn

A few years later he proved the h-cobordism theorem, which said that two twisted homotopy
spheres of dimension greater than four are diffeomorphic if and only if they are h-cobordant.
So the cobordance was shown to be diffeomorphic to a product, so that the two manifolds at
the end were actually diffeomorphic to one another.

What else, Munkres and Hirsch had constructed an obstruction theory for passing from com-
binatorial to smooth manifolds. These lay in Hk+1(Mn,Γk) for existence and Hk(Mn,Γk)
for uniqueness. The first few are easy. Γ1 = Γ2 = Γ3 = 0. Cerf showed that Γ4 = 0. Simi-
lar methods showed they were finite. So some of us studied Θn, homotopy spheres modulo
h-cobordism. Putting all of the work together, we had finite obstruction groups in all dimen-
sions. Γk = 0 for n < 7 (assuming Perelman) and Γ7, which we saw had to be at least 7, was
actually 28.

For dimension four we don’t know that every manifold with homotopy type of the sphere is
actually a differentiable sphere. If an exotic four-sphere exists, you could puncture it and get a
standard four space or an exotic one. In spiteof the tantalizing fact that Γn

∼= Θn, dimension
four is worse. There’s no h-cobordism and you also don’t know that every homotopy sphere
is a twisted sphere.

I’ve talked about obstruction theory for combinatorial to smooth manifolds. Near the end of
the sixties there was an obstruction theory by Kirby and Siebenmann to go from topological
manifolds to PL-manifolds. There’s only one obstruction, assuming dimension at least five,
with existence obstruction in H4(Mn, Z/2) and a uniqueness one in H3(Mn,mathbbZ/2).

[Are there any themes from the fifties and sixties that have been forgotten and shouldn’t
have been?]

It’s hard, I think, to find any branch of mathematics that has been completely neglected.
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[One thing you’re famous for is your list of problems from the fifties. Do you have any
problems that you want to see solved now?]

I mentioned exotic structures on the 4-sphere. I don’t have any idea what one could do with
that.

[I heard you were once challenged to write a limerick involving Papakyriakopoulos?]

I’ve heard many versions of it, I can’t remember it exactly.

The perfidious lemma of Dehn drove many a good man insane but Christos Pap akyriakop
oulos proved it without any strain.

Very satisfying. No more questions? No more mistakes to point out?

[Is Perelman related to Γ4 = 0?]

Cerf proved that the group of diffeomorphism of the 3-sphere, orientation preserving, is
connected. Hatcher showed that the group has the same homotopy as the rotation group
SO(4), much sharper. I should mention also that Eliashberg used symplectic methods to
prove this result. Yasha, are you here? Can you say anything about that?

[[unintelligible]]

[Can you give us an update on the list of questions you asked in the fifties?]

I was listing the hardest and most difficult and important problems in topology. Someone in
Moscow got a hold of this list and immediately gave answers to many of the problems.

5 Matt Hedden

Okay, so, is this good? So, I don’t really know how to follow the last talk.

[Just talk about your results from the fifties.]

I’ll just talk about my results from the last two years. So “Knot Floer homology and some-
thing about Satellite knots” is my title.

I’ll give some background and motivation, but not definitions, which Zoltan will do. I’ll give
some flavor of how the knot invariants are organized within the Floer homology package.

I feel like there’s a twilight zone episode that made an impression on me. They offered this
guy $100,000 but someone he didn’t know would die. So he spends it, but then the guy
comes, takes the little ball, and now we’ll take this ball to someone who you don’t know. I
sort of feel like I’m that guy. I’m the guy who sort of had to give the talk, so I should get
to suggest to give the next talk. I have a list of people, I’m going to give to Jake. You know
who you are.
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Let’s get going. You have 3-manifolds and Abelian groups. So you start with Y and get
ĤF (Y ). Let’s say, now, knot Floer homology, what is that, for integer homology three-
spheres these are Q-graded Abelian groups. Is a very general thing that covers all knots.
It takes K ↪→ Y = ZHS3, an integer homology three-sphere, to a bigraded collection of
Abelian groups. You have K ↪→ Y leads to ⊕i,jĤFKi(Y, K, j). These groups have a lot of
important applications. One thing they excel at is problems of genus. For the case of closed
three-manifolds you can define the genus of a homology class. Let a ∈ H2(Y ) then g(a) is the
minimum over all smoothly embedded surfaces F ↪→ Y of the genus of F where the homology
class inside the manifold is a. What’s the minimal genus? It’s an exercise that you can find
a smooth representantive of every second homology class.

In the case of knots you have g(K) is the minimum over all surfaces with boundary (this is
for knots in S3) on the knot, that is (F, δF ) ↪→ (S3,K). This is the Seifert genus.

We also have the four-ball genus (smooth), which is g4(K) the minimum over all surfaces
(F, δF ) embedded in (D4, S3), with boundary the knot.

So you can always push a surface down into the four-ball, so g4(K) ≤ g(K). One thing that’s
not obvious is if you relax the smooth embedding condition, say instead it’s a topological
embedding, then the answer to the four-dimensional genus is very different. A lot of people
have worked on that topological definition. Michael Friedman was one of the people who
founded this area, but until recently the smooth genus was one of the best things we had.

More precisely it’s the filtered chain homotopy type of a filtered chain complex.

Let’s motivate a little more. There’s talk about cutting three-manifolds along two-manifolds
and gluing along boundaries like this. You can construct all three manifolds by Dehn surgery
on links. You can chop up along tori as well, as John Morgan said, and get geometric
structure.

I’d like to understand how knot Floer invariants behave when you glue along tori boundary
components. It’s not necessarily obvious that such a relation should exist, but that there
should be such a relationship is roughly a topological quantum field theory. That seems
natural to us thinking we’re in a path space, three dimensional,. . . configuration. . . topological
Chern-Simons. . . geometric Langlands.

I’m going to say some examples where I actually know what happens.

On to the algebraic structure of ĤFK. Really the invariant is a filtered chain complex,
precisely its chain homotopy type. We have an increasing sequence of subcomplexes, 0 ⊂
F (K, j) ⊂ F (K, j +1) ⊂ · · · ⊂ F (K, j +n), where things stabilize and the rest are identity.
The last one is ĈF (S3). So we have this increasing sequence of subcomplexes, and eventually
we just get the homology of the sphere. The last one has as homology H∗(ĈF (S3)) ∼= Z in
degree zero.

But we have lots of complexes. We can look at the intermediate homologies and the homolo-
gies of the quotient complexes.
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So ĤFKi(K, j) ∼= Hi(
F(K,j)

F(K,j−1) ). These were introduced by Oszvath-Szabo and indepen-
dently Jake Rasmussen. I’m sorry for using their initials, but I have a history of misspelling
them and I prefer not to offend them again. I can spell their names, just not always on the
spot.

So the Euler characteristic, in the right interpretation, is familiar, so
∑

i(−1)irk ĤFKi(K, j)T j =
∆K(T ), the Alexander polynomial.

Two important parts of knot Floer homology involve these geni notions.

Theorem 9 (Oszvath-Szabo)
Let K ↪→ S3 then g(k) = maxj∈Z{ĤFK(K, j) 6= 0}

There’s another invariant that gives nice new information for g4.

Definition 4

τ(k) = min
j∈Z

{j|(inc)∗ : H∗(F (K, j)) → H∗(ĈF (S3)) is surjective}

Theorem 10 (Oszvath-Szabo, Rasmussen)
|τ(K)| ≤ g4(K).

So now I’d like to present a formula for the knot Floer homology for certain satellite con-
structions. This will use the subcomplexes and not just the quotient complexes.

Let’s set up some notation. Say I have a knot P in a solid torus V 3. You can identify
a neighborhood of another knot, which I’ll call K with the solid torus by a diffeomorphism
that sends the longitude to the longitude. On the right this depends on the framing, so I have
an integer’s worth way of doing this. I’m really looking at framed constructions. If I just take
an oriented projection, I determine a framing by taking a parallel copy and then computing
the linking number of one of these knots with the other. In this case I probably drew the
left-handed trefoil, so the framing, well, in general it’s just the writhe of the projection. You
can increase or decrease this by adding twists. Now a way to come up with a projection af
the satellite knot, it wall have three parameters: P the satellite knot, n the framing, and K
the knot that it is a satellite of. This is written Pn(K). So I come up with a knot that looks
like this.

For this very specific satellite knot P, Pn(K) is what people have called the n-twisted White-
head double of K. Usually they say the n-twisted positive class. The negative class reverses
the crossings of P.

I should mention that [unintelligible]studied this problem before me, for the untwisted double.
There’s a good motivation to study this knot. It has trivial Alexander polynomial, always.

Let me say, ∆Pn(K)(T ) = ∆Pn(V )(T )∆K(Twind P↪→V ). If it represents c times a generator we
replace T with T c.
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But P is nullhomologous in the solid torus So now we raise T to the power zero, which is
one. So ∆(1) = 1 always.

I should have said Pn(V ) is the satellite of the n-framed unknot. The Alexander polynomial
is not telling us anything, really. But we should have some information. The precise way we
get information is as follows.

Theorem 11 Let WDn(K) be the n-twisted Whitehead double of K. I mean the positive
class. Then for n ≥ 2τ(K), (we already, then, need more than knot Floer homology groups),
we have

ĤFK∗(WDn(K), i) ∼=



Zn−2g(K)−2
(1)

g(K)⊕
j=−g(K)

[H∗(F (K, j)){1}]2 (i = 1)

Z2n−4g(K)−3
(0)

g(K)⊕
j=−g(K)

[H∗(F (K, j))]4 (i = 0)

Zn−2g(K)−2
(−1)

g(K)⊕
j=−g(K)

[H∗(F (K, j)){−1}]2 (i = −1)

So for n < 2τ(K) we have

ĤFK∗(WDn(K), i) ∼=



Z2τ(K)−2g(K)−2
(1) ⊕ Zτ(K)−n

(0)

g(K)⊕
j=−g(K)

[H∗(F (K, j)){1}]2 (i = 1)

Z4τ(K)−4g(K)−3
(0) ⊕ Z2τ(K)−2n+1

(−1)

g(K)⊕
j=−g(K)

[H∗(F (K, j))]4 (i = 0)

Z2τ(K)−2g(K)−2
(−1) ⊕ Zτ(K)−n

(−2)

g(K)⊕
j=−g(K)

[H∗(F (K, j)){−1}]2 (i = −1)

The theorem is stronger than what I’ve stated. It sounds pretty bad, but it actually, I’ve
been stressing that the knot Floer homology groups are much weaker than the whole filtered
chain complexes. I know the filtered chain homotopy types of the knots themselves. The knot
Floer homology groups have a differential that strictly lowers the filtration and lowers the
homological dimension i by one. If you let that differential act on the knot Floer homology
groups you again get the homology of S3. That differential actually equips the knot Floer
homology groups themselves with the structure of a filtered chain complex. The full content
of the theorem is that I know the filtered chain homotopy type. It’s getting technical, I want
to encourage everyone to leave, it’s about to get technical.

When I add a group of negative rank, it means quotient out by such a group of the corre-
sponding positive rank in the indicated grading. We don’t have any negative rank groups,
thankfully.

[Can we deduce this for the untwisted whitehead double?]
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Yes, but not with what I’ve stated. I think it would be best to compute this for a knot.
[unintelligible]I’ve done such a poor job explaining it. . . shambles

Corollary 1

τ(WDn(K)) =
{

0 if n ≥ 2τ(K)
1 if n < 2τ(K)

This is [unintelligible]-Livingston for all but finitely many values of the framing parameter.

Corollary 2 If τ(K) > 0 then WD0(WD0(WD0 · · ·WD0(K) · · · )) is not smoothly slice (is
g4(Z) = 1).

But all of them, having trivial Alexander polynomial, are topologically slice. It’s an open
question whether the Whitehead double is smoothly slice if and only if the original knot is
smoothly slice. Other work on this was done with smooth knot concordance. If you just do
this process once, then the zero twisted Whitehead double with τ bigger than zero is not
smoothly slice.

What made this really interesting was

Theorem 12 (Ording,—) τ(K) 6= 1
2s(K) where s(K) is the combinatorial smooth concor-

dance invariant defined by Rasmussen using Khovanov homology.

It would be nice if you could compute this gauge-theoretic invariant combinatorially, that
would be incredible, but maybe this isn’t really depressing. So perhaps Khovanov homology
is a really new thing, some new thing for four-manifolds. All the things we’ve come across
since gauge theory came about. Most of the invariants have some conjecture saying that they
contain the same information.

I could keep talking, but I think people don’t want to walk out in the middle of the talk,. . . ,
some preconceived notion, it’s not really the middle of the talk, more like, well,. . .

[Which of τ and 1/2s(K) is bigger?]

I don’t think there is a strict one one way or another.

[How much can you do for other satellites?]

A lot of it, actually. There’s some stuff that I have proved that I haven’t written down. I
can do things when the winding number is zero and some part when the winding number is
not zero.

I can say that it’s in an interval for arbitrary satellites. Certainly the interval is,. . . .

[Announcement: Jason Behrstock is giving a previously unscheduled talk at 1:00 PM tomor-
row. The title is “The quasiisometric classification of three-manifold groups”]
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For those of us who aren’t TEXsuperheroes, the knot Floer homology of the Whitehead double
is determined by the filtered chain homotopy type of the original knot.

I believe that given P, there is a formula for the knot Floer homology of Pn(K) based only
on n and K. It will involve the knot Floer homology of P ⊂ S3 and the knot Floer homology
of doing zero-surgery on the meridian, P ⊂ S1 × S2. Those will be involved if you fix K and
vary P. it may also involve maps on homology between them. It’s sketchy how that works
when the winding number is nonzero at this point.
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