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ogy

[Ed.: Uh oh, a projector talk.]

[All right, I’d like to make a few announcements. The problem sessions will be for Gordon
in the morning and Etnyre in the afternoon. The research organizers should get together at
12:45, anyone who is a research organizer or wants to be involved in deciding what’s going
on next week, you should come. If you are in a related area, we’d like to encourage you to
help with the problem sessions. It’s a pleasure to introduce David Gabai from Princeton.]

Well, thank you Peter, it’s a great opportunity to be able to give these lectures. So, the goal
of these lectures is to give you a pretty good understanding of the proof of the tame ends
conjecture for hyperbolic three-manifolds, due to Ian Agol and Danny Caligari and myself.
A hyperbolic manifold with finitely generated fundamental group is topologically tame. It’s
a fantastic interplay between classical three-manifold topology and hyperbolic geometry.

I want to start with some classical topology. The question of tameness goes back to White-
head, in 1935. He found an open contractible three-manifold that was not R3. He was trying
to prove the Poincaré conjecture, deleting a point from a homotopy sphere. So it’s con-
tractible, has trivial fundamental group, but it’s not R3. You build it up as an increasing
union of solid tori, embedded in one another as Whitehead links. So notice that this manifold
is certainly contractible. Any compact set lives in one of the solid tori, and you can homotope
that in the next solid torus. On the other hand, why isn’t this R3?

Proposition 1 If C is a smooth compact codimension zero submanifold of R3 then π1(R3−
C) is finitely generated.

Let B ⊂ R3 be a three-ball containing C. Then B−◦C is a compact manifold with boundary,
with finitely generated fundamental group. Then R3 −C deformation retracts to this space.

1



However, if you remove the original solid torus from the Whitehead space, the resulting space
has infinitely generated fundamental group. That’s an okay exercise.

Definition 1 Let M be a three-manifold, possibly with boundary. Then M is tame if there
exits a compact manifold X and a proper embedding i : M ↪→ X with X = i(M). So
M ∼= X − Y where Y ⊂ δX and Y is compact. If δM = ∅ then M ∼= M1 ∪ S × [0,∞),
a nice collar near the boundary.

Theorem 1 Tucker, 1974
If M3 is orientable, irreducible, then M is tame if and only if for every nice smoothly embed-
ded compact submanifold (nice meaning that near the boundary, the submanifold looks like a
product, then π1(M − Y ) is finitely generated.

A smooth submanifold lives in a compact submanifold which the original manifold deforma-
tion retracts to, and the complement has finitely generated fundamental group.

The difficulty is showing that having finitely generated fundamental group for the complement
of nice compact sets is sufficient.

Let’s look at the Fox-Artin manifold. Here FA = R3 − ◦N(K) where K is this properly
embedded ray in R3. Then δFA ∼= R2, and ◦FA = R3. So is (FA, δFA) tame? Is it the same
as the standard half space?

Exercise 1 Is this manifold tame? The hint is to use the Tucker criterion.

Here’s another example of another non-tame manifold. What this manifold is, it’s an open
manifold, which is the increasing union of solid handlebodies of genus two. It’s homotopy
equivalent to a standard handlebody.

Its construction is similar to that of the Whitehead manifold, as V1 ⊂ V2 ⊂ · · · The inclusions
are all homotopy equivalences. To get the handlebodies you glue these disks to one another.
This manifold has fundamental group Z ∗ Z.

Here’s some facts.

1. M̃ = R3. That’s a nice exercise.

2. The preimage of the curve γ drawn here in M̃ is the infinite unlink, but deleting the
curve gives

3. π1(M − γ) is infinitely generated.

Mike Freedman in the early nineties had an approach to the tame ends conjecture. He
expected the preimage to be knotted in the universal cover. We found this example in fall
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1996. This was my introduction to the tame ends conjecture, and the argument we had was
sort of a long evolution from this.

What I like about three-manifold topology is that it’s something that you can really put
your hands on. You can really construct these things, and it doesn’t matter if this picture is
upside down, you get these really concrete things.

There are uncountably many noncompact three-manifolds and they can be very complicated.
How do you get a grip on these things?

Theorem 2 Scott Core theorem
If M is an irreducible 3-manifold, connected, with finitely generated π1, then there exists a
compact submanifold C ↪→ M whose inclusion is a homotopy equivalence. This is an algebraic
fact, that finitely generated fundamental groups are finitely presented.

So the ends of M are in one to on correspondence with the boundary components of the core.
That’s a nice fact coming from this. So this, if you want a grip on the end of the manifold,
you can look at the Scott core and see what’s to one particular side.

Now I need to start talking about hyperbolic three manifolds.

Suppose you have N a complete hyperbolic three-manifold, if π1(N) = 1 then N ∼= H3.
We know that the universal cover is Euclidean, from Cartan-Hadamard. If π1(N) = Z then
N = H3/〈s〉, namely ◦D2×S1. We know the isometries of hyperbolic space, and just compute
the quotient. If you look at the next simplest group, the free group on two generators, that
was kind of unresolved until the end.

Theorem 3 Marden conjecture–Agol, Calegari-Gabai
If N is a complete hyperbolic 3-manifold and π1(N) is finitely generated then N is topologically
tame.

Marden showed this for N geometrically finite. Thurston proved it for the algebraic limit of
Fuchsian groups. Bonahan proved it for π1 freely indecomposable, Souto proved it for another
class of things. This uses some of the basic understanding of three-manifold topology, this
builds on the work of Canary, Minsky, Kleineidam, Evans, Oshika, Brock, Bromberg, Long,
and various others.

The work of Thurston includes an introduction of pleated surfaces. Bonahan has this long
and hard paper, I don’t understand French very well but there’s a lot of good things near the
beginning that I was able to understand. Souto uses a bunch of complicated machinery but
includes a nice criterion for tameness, working hard in other parts of the mathematical world
were these other people on three-manifolds, Brin, Thickston, Myers, a closed irreducible
manifold with infinite fundamental group (now thanks to Perelman) its cover is R3.

Let me mention clearly, if N is a complete hyperbolic three-manifold with finitely generated
fundamental group then it’s determined up to isometry by the topological type, the conformal
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boundary of its geometrically finite ends and the ending laminations of its infinite ends. This
is kind of fantastic. This is one application.

Here are some references, Agol, “Tameness of hyperbolic three-manifolds,” on the ArXiv,
and Calegari-Gabai, “Shrinkwrapping and the taming of hyperbolic three-manifolds,” on the
ArXiv or JAMS, Freedman-Gabai, “Covering a nontaming knot by the unlink” (how not to
prove tameness), Soma “Existence of polygonal wrappings in hyperbolic 3-manifolds,” Choi,
“The PL methods for hyperbolic 3-manifolds to prove tameness” (ArXiv), Bowdich, “Notes
on tameness” (Bowditch homepage).

So now I want to go over the outline of the proof. We’re going to need a characterization
of tameness. There’s the Tucker criterion, but I don’t know how to apply it. Here’s the
tameness criterion we’ll use. To get to the heart of the matter and simplify notation, I’m
going to assume the manifold has a single end. It’s H3 moduli a group of isometries. I’m
going also to assume that it doesn’t have any parabolic elements. These cusps might force
you to think of things as a relative manifold. With some patience you can sort it out, but
the basic ideas are in the parabolic free part.

Here’s the Scott core, and here’s the end. It’s tame if I can find a sequence of surfaces
S1, S2, . . . , mapped into the end, exiting the manifold, with certain properties:

1. Their genus is at most the genus of the boundary component of the Scott core.

2. they are Cat(−1), they have curvature at most −1,

3. Si homologically separates the core from the end, so that they generate H2 of the end.
A ray exiting the manifold from the core will hit each of these (algebraically) once.

Juan Souto proved the harder theorem that a hyperbolic manifold is tame if it satisfies only
the first and third of these. It uses Bonahan, Canary, Gabai, and a lot of hard machinery.
But if you include the second condition there’s a much easier proof.

Ultimately, if you have these surfaces, the end is topologically tame. Ultimately, these surfaces
could be embedded homologically separating surfaces, possibly isotopic to the boundary, a
postiori. The conclusion is that this manifold compacifies to a compact manifold, and in
particular there’s a product structure near the end, it’s homeomorphic to the surface cross
[0,∞). It turns out by algebraic topology that to homologically separate, the genus will be
the same as that of the boundary component.

So what is Cat(−1)? There are basically three types in a hyperbolic 3-manifold:

1. A minimal surface in a hyperbolic three-manifold has mean curvature 0 but its intrinsic
curvature is less than or equal to the curvature of the three-manifold.

2. A pleated surface, which is geodesically embedded, but bent along some geodesics.

3. simplicial hyperbolic surfaces, triangulated surfaces S mapping f : S → N so that each
2-simplex is totall geodesic, and has cone angle at least 2π at each vertex.
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I need to tell you something about hyperbolic geometry. First I want to talk about the
thick-thin decomposition. There’s a Margulis number, and you look at the places where you
can put an embedded ε-ball around a point. That’s the thick part N[ε,∞). Then you look
below the injectivity radius and get thin parts N(0,ε], which are solid geodesic tubes about
short geodesic (Margulis tubes). Spots where the injectivity radius goes to zero are in these
Margulis tubes.

It’s important to keep places where the injectivity radius is small separate because of the
complexity.

Lemma 1 Bounded diameter lemma
Let S be a Cat(−1) surface in N such that essential curves of length ≤ δ in S are essential
in N. Then there exists a C depending on ξ(S) and δ such that the diameter in N of S is at
most C (modulo Margulis tubes). So if x, y ∈ S −N(0,ε] then there exists a path of bounded
length from x to y, bounded by this C.

The fact is, if you have a Margulis tube, you might have a tiny geodesic, you have a long thin
annulus, but at some point it enters the Margulis tube, which contains most of the length.

The proof of the bounded diameter lemma is very nice. Assume S is a closed simplicial
hyperbolic surface and δ ≤ ε. If the injectivity radius in S of x is less than δ/2, then the
injectivity radius is small, so x is in the thin part.

Since S is intrinsically less than −1 curved, if D is a δ/2 disk in S, then the area of that disk
is greater than π(δ/2)2. Then Gauss-Bonnet implies that the area f the surface is at most
2π(ξ(S)). So

Exercise 2 Put these together to see that S − N(2,ε] can be covered by a finite number of
δ/2-balls.

I need to tell you more about hyperbolic manifolds. I need to tell you about the ends. Here,
this is a geometrically finite end. These are extremely nice. It’s topologically a product and
the cross-sectional area of the sections grows exponentially with the distance of the core. If
you think of T a hyperbolic surface, and take H3 modulo the same group of isometries and
you get something that looks like T × R topologically. But geometrically finite ends don’t
satisfy the tameness criterion. You can’t have these separating surfaces because they’d get
too big, they’re in the thick part.

Geometrically infinite ends are everything else. Look at a manifold that fibers over the circle
with fiber S then N̂ is the infinite cyclic covering space, which is topologically S × R, and
the end, the cross sections will have bounded area, not exponentially increasing area.

Here’s a characterization of these by Francis Bonahon. An end is geometrically infinite if
there exists a sequence of closed geodesics exiting the end. They can be assumed to be simple.

These are called finite and infinite because you can understand the geometry through the
finite part, or can’t.
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I’m just throwing stuff out, but we’re going to be focussing on bits of technology in the future
lectures. To give a hint of proving the tame ends conjecture, let me show you a hint of a
proof of

Theorem 4 Dick Canary
If E is an end of N and E is topologically tame, then either E is geometrically finite or E
satisfies the taming criterion (it’s geometrically tame is how it was originally stated)

This involves the full technology of Francis Bonahon. But let’s look at a special case, N =
S×R. We have these simple curves exiting the manifold. We can put these surfaces between
the geodesics. We want to show that this satisfies the taming criterion, we want to be able to
find the surfaces exiting the manifold, Cat(−1) and separating. They satisfy conditions one
and three but not condition two. To make them satisfy condition two you shrinkwrap, pull
them tight with respect to the geodesics it’s supposed to lie between. The shrinkwrapping
gives you a surface which has curvature ≤ −1, and bounded diameter, so that like S10,000

starts by lying between two geodesics, if you draw a path from one to the next it has algebraic
intersection number one, and then bounded diameter lemma says we’ll be only a bounded
distance from the shrinkwrapped surface.

We all know about shrinkwrapping from the grocery store, we have this bag that is like a
two-sphere, shrunk down to get as close as possible but not cross the turkey. The curvature,
it’s intrinsically −1 (0 in Euclidean space with positive curvature at the elbows) but the
things we’re shrinkwrapping to are geodesics, they don’t have positive curvature, so most of
it is minimal and the rest is bent along geodesics, so they have intrinsic curvature ≤ −1. My
goal tomorrow is to go back and understand the taming criterion, and then on Friday the
PL-shrinkwrapping, which is what Taruka-Soma did.

Thank you very much.

2 Gordon

Before I start, I have an annoucement to make. John has said he’ll give a replay of his talk
at 5:30 in deference to the World Cup.

So the idea is to use rational tangle filling to construct interesting non-hyperbolic Dehn
fillings on simple manifolds. So like I say, there’s a nice machine here, it’s easier to mess
around with tangles than to mess around with Dehn filling.

So for T a marked tangle and S a boundary component then we can attach a rational
tangle with the same marking to that tangle. Let me remind you that denotes a double
branched covering, and if p : T̃ → T is a double branched cover, then p−1(S) is branched
over four points, so is a torus component of δT̃ . Then you can attach a rational tangle to
get T ∪S R(p/q) = T (p/q). Then T̃ (p/q) = T̃ (p/q). This is saying the double branched
cover of a rational tangle filling is the same as the Dehn filling of the double branched cover.
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Let me remind you of the special case, sometimes, suppose there’s only one boundary compo-
nent, filling it in gives a knot or link. Then the filled tangle T (p/q), that gives the unknot if

and only if the double branched cover T̃ (p/q) is S3, which implies T̃ is the exterior of a knot
in S3. Maybe this is a point at which to say, this method to make Dehn fillings by double
branched fillings doesn’t give you anything. These always have a Z2 action, they’re what is
called strongly invertible. This won’t give all of the interesting things. By construction you’ll
only get things with symmetries.

Filling in with a rational tangle giving you a two-bridge knot means that the Dehn filling
will be a lens space.

Here’s an example due to Eudave-Muñoz. Let α, β, γ be rational tangles with various restric-
tions. Imagine, what’s the definition of this tangle?

α

@@
@@

@@
@

© γ

β

��������

What if I do 1/0 filling on this, I get, generically, B(1/0) = M (−1/α,−1/β) ∪δ M (1/2, γ).
Let M = B̃. Remember the double branched cover of one of the Montesino guys, look on the
left hand half, you branch over two guys you get an annulus. Provided these aren’t integers
you get a Seifert fibered space, so M(1/0) = D2(q1, q2)∪δ D2(2, q3) as long as 1/α, 1/β, γ are
not integers. So this already has one interesting Dehn filling.

So we could also do B(0). I get α + 1, β + 1, and γ arranged in the form like the closure of
the Montesinos knot:

© © ©

So you have to do some inversion and you get B(0) = K[ −1
α+1 , −1

β+1 , −1
γ ]. So then ˜K[ −1

α+1 , −1
β+1 , −1

γ ]
for the parameters not integers gives S2(p1/q1, p2/q2, p3/q3).

Okay, let’s do one more, what about B(1)?

Then I get a Montesinos knots or links, again, made up of three rational tangles, and again
you get K[ −1

α−1 , −1
β−1 , −1

γ+1 ], away from particular values. In terms of Dehn filling on M, we
can say M(0) and M(1) are both Seifert fibered spaces with base S2 and at most three
exceptional fibers. These are then also interesting Dehn fillings.
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Now, let’s try B(1/2). Now you start to see the cleverness of this process. You can swing
this part around the back and make it loop around, and so you get, can you do this with
powerpoint? There you can sort of swing γ around. You have γ with two symmetric half-
twists, and this is rather interesting. We want this to be the unknot, but generically it
won’t be because on this side, you’re going to have a Seifert fibered space over the disk, and
over here too. Sometimes, though, it really will be S3. You can determine for exactly which
values of α, β, and γ you get the sphere. So one of theme has to be a solid torus. It’s just
a matter of arithmetic to find out which values make this the unknot. There are infinitely
many nontrivial solutions.

Using this description, this was Eudave-Muñoz, you see,

Theorem 5 There exists an infinite family E of triples (α, β, γ) such that B(α, β, γ)(1/2)
is the unknot if and only if (α, β, γ) ∈ E .

There are actually two infinite families parameterized by three integers.

If I were a tough instructor I’d put this on the homework.

Let me rephrase this now. I’ll give an example in a minute. If you are in one of these
triples, you see, then B̃(α, β, γ) has a filling that gives you S3 so this is the exterior of a knot
E(α, β, γ) in S3. I’ll call this a Eudave-Muñoz knot. Let me say that these are hyperbolic
for all but a few small values of α, β, γ. Generically that’s the situation.

At this point, so notice that here we’re parameterizing slopes using the marking on the
tangle. With respect to the B-marking, that’s the guy who gives you S3, so that gives
you the meridian 1/0. Then the guy 1/0, who gives you the toroidal filling, notice that
∆(1/0, 1/2) = 2, so that this will correspond to m/2 for some m.

Corollary 1 E(α, β, γ) has a half-integral toroidal Dehn surgery

Theorem 6 Gordon-Luecke 2004
If K is hyperbolic in S3 and K(m/`) is toroidal, ` ≥ 2 then ` = 2 and K = E(α, β, γ).

This is an important feature of the subject. It gives you hope that you might be able to
classify all of the examples. It turns out with some luck that what you find that can work
really is the only show in town.

Okay, let me give you an example A = B(−2, 3,−2/3). Putting one half in should give the
unknot. So I can untwist these the −2 and the three mainly cancel. It’s just a matter of
playing around with the blackboard, if I do it too quickly I’ll get the trefoil and feel very
silly. Maybe I should quit while I’m ahead. Okay, so now I have the unknot.

So K = E(−2, 4,−2/3) which is in S3. There’s the trivial filling and then a half-integral
filling with K(m/2) toroidal. If I stick to the framings given from the tangle, well, far K(0)
and K(1), one of each of the parameters becomes an integer. So you get lens spaces L(18, 5)
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and −L(19, 7). In some sense this is the smallest known triple that works. This guy has
three more interesting fillings. This is on your homework, which is just being typed out.
A (1/3) = K[1/3,−1/2,−2/5]. I should be calling these M(1/0),M(1),M(0),M(1/2). This
is MK . It has another filling M(1/3) which is a Seifert fibered space S2(2, 3, 5) whcih has
finite fundamental group. Then A (2/3) and A (2/5) are of the form D2(2, 2)∪δD2(2, 3). This
is a very interesting knot. It has seven nonhyperbolic Dehn fillings. It has the half-integral
one, the two lens space ones, and the three others which are a Seifert fibered space and a
union of Seifert fibered spaces. In fact, this knot E(−2, 3,−2/3) is −(−2, 3, 7)-pretzel knot.
You have to show this is hyperbolic but that’s not a big deal. You can do this using fairly
elementary facts about Dehn fillings.

Let me just say something about, well, you can construct the knots directly, with a sequence
of surgeries, but they get complicated very quickly. But it’s nice that these tangles are easy
to work with, and without worrying about what the manifold is, you know that you have an
interesting example.

What can happen in terms of, recall that the figure eight knot, clearly the simplest hyperbolic
knot no matter how you define simple. It has ten exceptional surgeries. There was the
meridian which gives S3, the 0 surgery which gives a torus bundle, and then ±1,±2,±3
which are Seifert fibered spaces over the sphere with three exceptional fibers. The quotient
by the involution will be a tangle, and you see these exceptional filling slopes. In ±4 you see
a Klein bottle. If you take the so-called twist knots, then all of these guys, they all come
from the Whitehead link. All of these fillings 0, 1, 2, 3, 4, these push back to the Whitehead
link. These surgeries on one of the components give you something nonhyperbolic. The
figure eight, in this family, is the only one that is amphichiral. So it gets all the negative
ones. Then the (−2, 3, 7)-pretzel has seven exceptional slopes. Again, in the B-marking they
are 1/2, 0, 1, 1/0, 1/3, 2/3, 2/5. I just mentioned here, these are the only, there exist infinitely
many hyperbolic knots with six exceptional slopes and I might mention again, the 0 and ±4
surgeries on the figure eight, and the 1/0, 2/3 and 2/5 surgeries on the (−2, 3, 7)-pretzel are
toroidal.

Then let me make the observation, the figure eight and the (−2, 3, 7)-pretzel are the only
ones known with more than six exceptional surgeries, and also the only ones known with
three toroidal surgeries.

It would be nice to prove that they really are the only two with toroidal surfaces, stuff like
that. I’ll describe with a little more generality what I’m heading toward. Then I’ll head back
and use the B to construct other manifolds, not knot exteriors. That’s next time.

3 Etnyre

It looks like I competed a little better than I thought with the soccer game, maybe I shouldn’t
have said I’d talk twice.

If you recall, yesterday we talked about contact structures, foliations, and Darboux’s theorem
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tells you that those are all the same locally. Any deformation of a contact structures, we
saw, comes from a family of diffeomorphisms. I also told you to look at the level sets of a
function. This is a foliation on the solid torus eventually, but if I try to draw it right off the
bat you won’t understand it, so I’ll do it in steps.

The exercise was to find the level sets of f(x, y, z) = α(x2 + y2)ez.

Let’s start in R2 with a line at x = 1 and then a set of asymptotic lines, or curves, translated
up and down. Then spin this around the z-axis. The line becomes a cylinder, the curves
inside the asymptote give you cups, and outside give you annuli. If I mod out by z → z + 1
I get a foliation on R2 × S1. There, well, on the disk a leaf is the boundary torus, and then
the leaves are these R2 that spiral out toward the boundary. This is called the Reeb foliation
of S1 × D2. A meridianal disk gets a singular foliation, but you have singularities, like a
dartboard. You can say, in two dimensions, a singular foliation is the flow lines of the vector
field.

So now I want to give an interesting contact structure on the solid torus. Start in R3 and
we’ll look at cos rdz + r sin rdθ. What does this do? It looks similar to what we saw the
other day. When r = 0 this is just dz. When you get to π/2 you will get rotated half way,
and when you get out to π you’re flat again. This is what happens, this infinite twisting, on
any line perpendicular to the plane.

So now let’s look at z 7→ z + 1 and restrict to {(x, y, z)|
√

(x2 + y2) ≤ π}. This gives me a
contact structure on the solid torus. On D2 cross a point I get a singular foliation. I’ll get
singularities at every point on the boundary and at the origin. Typically you don’t expect to
see that many singularities. If you bump D2 a little bit, you get a singularity in the central
and a spiral out of it, but the boundary is no longer singular, it’s a closed leaf of the foliation.

[What is this perturbation?]

I push it up slightly. Put your finger at the origin and push it up a little bit.

[Some discussion of how this works.]

This picture is called an overtwisted disk, and (D2×S1, ξ) is called a Lutz tube. Surprisingly
enough if you have an overtwisted disk you have a Lutz tube.

A remark. It’s very easy to construct foliations with Reeb components and contact structures
with Lutz tubes on any closed manifold. If we have time at the end, we’ll go back and do
this as an exercise.

A contact structure without overtwisted disks (or Lutz tubes) is called tight. If it has
overtwisted disks it’s called overtwisted. Without Reeb components it’s called Reebless.

[Should we think of examples one and two as related?]

We will see as we move along that they are very related. Foliations without Reeb components
and contact structures without Lutz tubes are close to one another.
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[How do you tell that things are tight?]

That sounds hard, doesn’t it? In general it could take you a long time to check every
embedded disk. I’ll give you a criterion.

So another thing about overtwisted contact structures. Eliashberg classified them, and every
manifold has infinitely many. In fact, what Eliashberg did was he showed that overtwisted
contact structures (up to isotopy) are in one to one correspondence with homotopy classes
of plane fields.

Exercise 3 Show that any closed three-manifold has infinitely many homotopy classes of
plane fields. A hint is, think Pontjagin-Thom construction, and if you don’t know what that
is, derive it.

If you saw Yasha’s talk, overtwisted contact structures are flexible, and tight contact struc-
tures are rigid. If you think you can do something with them, then you probably can’t. Well,
it depends who you are, but that’s been my experience.

In some sense overtwisted contact structures are well-understood, and for our purposes we
won’t be very interested in them.

So let’s give some facts about tight contact structures. The first fact is that not all manifolds
have tight contact structures. The Poincaré homology sphere with reversed orientation, for
instance, has no tight contact structure. This is due to Etnyre-Honda. There were a few
other examples, there’s an infinite family, I think all have finite fundamental group. They’re
all Seifert fibered spaces.

Exercise 4 Give a hyperbolic manifold with no contact structure. Alternately, prove that no
such thing exists

Other facts that kind of show you the connection between tight contact structures and foli-
ations with no Reeb components. Recall an oriented 2-plane field ξ has an Euler class, the
obstruction to having a cross section e(ξ) ∈ H2(M, Z).

Theorem 7 1. (Thurston)
If ξ is a Reebless foliation and Σ a surface in M then |e(ξ)([Σ])| ≤ −ξ(Σ) if Σ 6= S2

and is zero if Σ = S2. This is a lower bound on the genus of a surface representing a
homology class.

2. (Eliashberg)
If ξ is a tight contact structure then the same bound is true

So we’re seeing a connection between tight contact structures and Reebless foliations. Taut
foliations don’t have Reeb components, and we’ll see theorems that give a lot of those in the
future.
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Exercise 5 Show the theorem implies that only finitely many elements in H2(M, Z) can be
the Euler class of a tight contact structure for a Reebless foliation.

[Is there a manifold with neither a positive nor negative contact structure?]

Yes, it behaves well with respect to connected sum. So the manifold I described before
connect sum with itself with the opposite orientation has no such structure. That’s a cheat.
It’s not known whether there is an irreducible one.

Do we have any tight contact structures at all? This was proved because he wanted to show
that the standard contact structure is tight. For that I need to describe or recall what a
symplectic manifold is.

So a symplectic 4-manifold is a four-manifold X and a two-form ω with dω = 0 and ω ∧ ω
nonvanishing. That’s a symplectic four-manifold.

Now a three-manifold boundary M of X and ξ a contact structure on M, then ω dominates
ξ if ω|ξ > 0. This is an oriented plane field, you can plug the plane field with the preferred
order, into ξ.

If (M, ξ) is one component of a contact manifold (M ′, ξ′), (X, ω) dominates ξ′, and X is
compact, then we say (X, ω) is a weak semi-filling of (M, ξ). If M ′ is connected, then you
call it a weak filling.

We’re going to see later a thing called the strong filling. I’ll try to put weak or strong in
front every time. What’s the point of all of this?

Theorem 8 Gromov, Eliashberg
If (M, ξ) is weakly semi-fillable, then ξ is tight.

There is no definition for tight or overtwisted above dimension three. No one knows what it
should be.

Example 1 Let (S3, ξ) have ξ be ker α if α = r2
1dθ1 + r2

2dθ2. Let ω = dα = 2r1dr1 ∧ dθ1 +
2r2dr2 ∧ dθ2, then ω is a symplectic form on B4.

We want to show that this is a tight contact structure. Well, ω|ξ = dα|ξ, which is pretty
obviously positive, since α ∧ dα is positive. So (B4, ω) weakly fills (S3, ξ).

This theorem will help us a lot in the future. You might ask, is every tight contact structure
weakly semi-fillable? The answer is no, there are tight contact structures that are not semi-
fillable. So the tightness is really a three-dimensional phenomenon. The semifillable things,
you would not be studying all of them.

This is the end of the basic terminology I wanted to discuss. We know something about
contact structures and foliations, tight and overtwisted and so on. So now we’re ready to
move on to

12



3.1 Part II: Foliations into contact structures

Consider the really interesting foliation which is just going to be, on S1 × S2, and on every
point S(θ,p) = Tp({θ} × S2). You might think this is boring.

Theorem 9 Eliashberg-Thurston
Any C2 foliation ξ on an oriented closed 3-manifold other than (S1×S2,S ), can be approx-
imated by a positive and negative contact structure ξ±.

Let me say some things about this. This S is unique because it can’t be approximated.

There will be two stages in the proof where you can’t go through in a C1 or C2 way. We
may be able to do more but this is what we have, it’s enough for now.

So let me comment on a few of the terms in here. We say ξ can be Ck-deformed into a contact
structure if there is a Ck family ξt of plane fields such that ξ0 = ξ and ξt is contact for t 6= 0.
This is a one-parameter family of contact structures that collapse onto the foliation. They’re
all contact except at ξ = 0.

You’re thinking of the Grassman bundle of planes in the tangent plane, and this is a Ck-
section of that.

Okay, and then I just defined something that was supposed to clarify the statement of the
theorem but then I didn’t say anything with the words in the theorem. So ξ can be Ck-
approximated by a contact structure if in any Ck-neighborhood of ξ there is a contact struc-
ture.

Notice I’m not saying you can deform to the contact structure, you might have to jump. You
can’t move the ξ smoothly or continuously into a contact structure but you know there is
one nearby.

Let’s look at the following example. Consider T 3, and the coordinates x, y, z. Then for
n > 0, αt

n = dz + t cos(2πnz)dx + sin(2πn)dy, so that’s a form, and it’s easy to prove that
αt

n is a contact form for t 6= 0. When t = 0 it’s a foliation.

The kernels of these one-forms is the T 2s, the vertical one, and you deform these into contact
structures. I have this n here so it looks like there’s more than one, and in fact there are.

It’s a theorem of Kanda and Giroux independently that ξn = ker αt
n are distinct and all

tight contact structures are equivalent to one of these.

I have one foliation, and I get a bunch of different contact structures near it. The nearby
contact structures might be the same, the theorem doesn’t tell you that.

[Is there an example of a foliation that can be approximated but not deformed?]

You might be able to say that a C2-foliation can be C2-deformed to a contact structure.

I think that’s a good place to stop, and we’ll come back to this theorem tomorrow.
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4 Auckly, Gromov-Witten “=” Reshetikhin-Turaev

Most of this is going to be expository so I can get you up to speed on the second part.

We have a preprint that’s not up on the arXiv, because we need to get the history right. If
you want this version, sign up on the pad going around.

Let’s start with X a six dimensional symplectic manifold then β ∈ H2(X) and g ∈ Z≥0, and
we’ll consider a gadget M̄g(X, β). This is the stack of genus g J-holomorphic stable curves
in class β.

This M̄g(X, β) should be thought of as maps u : Σ → X with g(Σ) = g, u∗[Σ] = β, and
δ̄u = 0, modding out by the equivalence that (Σ, u) ∼ (Σ′, u′) if there is a holomorphic
ϕ : Σ → Σ′ so that the diagram commutes:

Σ

ϕ

��

u // X

Σ′
u′

>>}}}}}}}}

Theorem 10 There exists [M̄ , (X, β)]V ir = Htop(M̄g(X, β). top = 0 if c1(TX) = 0 and this
should be over Q.

So for g = 0 if we have Σ = CP1 and X = CP1, where β = 2[CP1]. Then the map u could be
z goes to z2. Then we can take ϕ to be z 7→ −z.

We can parameterize the set of all degree two maps. A degree two map has two critical
values. A pair of points in CP1 [unintelligible]

So the moduli space M̄0(CP1; 2[CP1) ∼= CP2 = Sym2(CP1). You go back and forth from
coefficients of polynomials to roots.

You have to add in nodal curves with double roots. This is really an orbifold and the correct
thing over here, the example is that [M̄0(CP1, 2)]V ir = 1/2[CP2].

Definition 2 The full Gromov-Witten free energy

F̄GW
X (t, Y ) =

∞∑
g=0

∑
β ∈ H2Y

2g−2e−〈t, β〉
∫

[M̄V ir

1,

here t is the second cohomology class of the symplectic form.

. In the special case that the dimension is six, the spaces are all zero dimensional.

You whirl things around a bit and get a formula

F̂GW
XS3

(t, y) =
t

24
− 1

12
ln t + ζ(3)y−2 + 3t2y−2/4 + t3y−2/12− t2y−2ln t−
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∑
h=4,6,...

2
h(h− 1)(h− 2)

(2π)2−hζ(h− 2)(it)hy−2

+
∑

h=2,4,...

1
6n

(2π)−hζ(h)(it)h+

∞∑
g=2

B2g

g(2g − 2)

∑
h=0,2,...

(
2g + h− 3

h

)
(2π)2g−2−hζ(2g + h− 2)(it)hy2g−2

+
∞∑

g=2

B2g

g(2g − 2)
(it)2−2gy2g−2 −

∞∑
g=2

B2g

g(2g − 2)
ζ(2g − 2)y2g−2.

Here ζ is the Riemann zeta function and B are the Bernouli numbers.

So let’s look at Uq(slN (C)|q=eiπ/(k+N) , which is a particular Hopf alebra. You look at a
representation of these guys. f : V → W looks like an f in a box with an arrow coming in
labelled by V and an arrow at looking like W.

You also have the XV,W : V ⊗W → W⊗V which you represent schematically by the crossing.

This has properties you want to it satisfy, like the quantum Yang Baxter equation:

(1W ⊗XU,V ) ◦ (XU,W ⊗ 1V ) ◦ (1U ⊗XV,W ) = (XV,W ⊗ 1U ) ◦ (1V ⊗XU,W ) ◦ (XU,V , 1W ).

This also has ∩V : V ∗ ⊗ V → C which satisfies axioms like a vertical line being equal
to a cap and cup. Out of this gadgt you get an invariant, the colored Jones polynomial
JV1,...,Vc

(L) where L is a c-component link. This is the trace of the knot diagram. If you do
the fundamental representation with N = 2 you get the Jones polynomial, and for N = N you
get the N -specialization of the HOMFLY, p(qN , q). You also need to take linear combinations
aV to be invariant under the Kirby move.

Now

Definition 3 The Reshetikhin-Turaev invariant is τ
SLN (C
K (M), which is defined to be∑

V1,...,Vc simple

aV1,...,VcJV1,...,Vc(L).

The Reshitikhin-Turaev free energy is FCS
M (N,X) = ln τ

SLN (C)
K (M). Here X = 2π/(k + N).

You whirl things around a little bit and get

F̂CS
S3 (N,x) =

N(N − 1)
2

ln x+
1−N

2
ln (k+N)+

N2

2
ln N−1

2
ln N−3N2

4
− 1

12
ln N−ζ1(0)N+ζi(−1)

−
∑

h=4,6,...

2
h(h− 1)(h− 2)

(2π)2−hζ(h−2)Nhxh−2+
∑

h=2,4,...

1
6h

(2π)−hζ(h)Nhxh−
∞∑

g=2

B2g

2g(2g − 2)
N2−2g+
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∞∑
g=2

∑
h=2,4,...

(
2g + h− 3

h

)
B2g

g(2g − 2)
(2π)2−2g−hζ(2g − 2 + h)Nhx2g−2−h

Theorem 11 Auckly, Koshkin

Re(F̂GW
XS3

(iNX, X)− FCS
S3 (N,X)) =

5
12

ln x− ζ(3)x−2 − 1
2
ln(2π)− ζ ′(−1).

Some of the terms might not be exactly right. The final version that appears on the arXiv
will be correct.

So τ
SLN (C)
K (S3) = N−1/2(K + N)(1−N)/2

∏N−1
j=1 [2 sin πj

K+N )]N−j .

So start with 0 → Zk Q→ Z3+k this gives a map from Rk → R3+k which gives a map
T k × C3+k → T 3+k × C3+k → C3+k by point multiplication.

[I missed a bunch. There are a lot of matrices. He isdoing an example for L(p,−1) and
L(3,−1). The matrices for the specific case are 6× 3 and 3× 6. He’s defining the fiber dual.]

Q =


0 0 1
1 2 1
−2 −3 −3
1 0 0
0 1 0
0 0 1

 ;P =

 1 0 0 0 0 −1
0 0 1 2 3 3
1 1 1 1 1 1

 ;

R =


1 0 0
1 −1 1
0 1 0
0 0 0
0 0 0
0 0 0

 ;T =
[

1 3 9
]T ; µ̂ = QT

 |z1|2
...

|z3+k|2



I can define a map T 3 × XQ,t ta T 3+X × XQ,t by R, and then by point multiplication to
XQ,t. The action is well defined and preserves the condition that these things goto zero,
and the simplectic form. The normalized momemnt map of R of an equivalence class of

Z, N̂R([Z]) = RT

 |z1|2
...

|z3+k|2

 .

The moment polytope is N̂R(XQ,t). Maybe I’m drawing this a little too sharp. You cut off the
top here, and then cut off the top here, you get something that looks like this picture. You’re
taking the set of all z that satisfy Q. A little linear algebra shows this is {y +RT γ|PT y +γ ∈
R3+k
≥0 }. and here PT γ = t.
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These satisfy the condition c1 = 0. If you look at the θ = dz1 ∧ dz2 ∧ dz3, then this thing
extends to XQ,t. It’s a section of the third exterior power of the tangent bundle. So ∧3TX
is trivial so c1(TX) is zero, which defines a special torus TX = {λ ∈ T 3|(Lλ)∗(θ) = θ}

The 3-web of X is projection to (Lie TX)∗ of the one-skeleton of the moment polytope.

[Argument via pictures excised because I couldn’t keep up.]

I’ll finish by saying that this is work in progress with Karp, Koshkin, to compute and compare
F̂GW

XQp
and FCS

L(p,−1), to compute the normalization factors and that might help you discover
more.

[So the grand plan is to associate to any three-manifold a six-manifold. Is it Kähler?]

The physicists say it should be Calabi-Yau. Maybe I should listen to the physicists and
throw it in the garbage, but I’m going to look at it for a little bit. Calabi-Yaus have zero
dimensional moduli space, but in general we can do insertions for larger dimensional moduli
space.

You have a natural log of a sum of something with representations in translates of an affine
Weyl alcove.

Based on the conjecture that these things were equal, they came up with a combinatorial
way to calculate the Gromov-Witten invariants for toroidal Calabi-Yau threefolds.

[More questions? Let’s thank the speaker again.]

I’ll make three more announcements. We would like to advertise our REU at research uni-
versities, please take a poster. There’s one paper copy, or email for the electronic copy.
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