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1 Morgan

[My talk this afternoon was cancelled. I felt like I couldn’t finish this morning. I felt like I
couldn’t finish, so I postponed my final talk to 4:30.]

What I showed you last time, pushed a little further, will allow you to prove the following.

Theorem 1 For every T < ∞, there exist r > 0, κ > 0, r0 > 0 such that the following holds:
for any normalized initial conditions (M, g(0)) (meaning the volume of a radius one ball is
bounded below by half the Euclidean volume, and |Rm| ≤ 1. and any Ricci flow (M, g(t)) for
0 ≤ t ≤ T ≤ T0,

1. The flow is κ-non-collapsed on scales ≤ r0.

2. Any point (k, t) with R(x, t) > r−2 has a canonical neighborhood

The κ condition was a bound on the volume of a ball. Then scales of r0 means that you only
have the bounds for r < r0.

So consider (M, g(t)), and assume the flow doesn’t extend to T.

So let’s look at (M, g(t)) for t close to T. What is happening as the singularity develops?
The curvature has to be blowing up, from Hamilton, so we look at the regions of large
curvature, all of which have canonical neighborhoods. if “large” means the hypothesis of
the theorem, then we have canonical neighborhoods all over Mlarge. We have a list of four
canonical neighborhoods

1. Compact round

2. S3 or RP3 of bounded geometry
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3. necks, metricly S2 × (−ε−1, ε−1)

4. a cap B3 or RP3.

We know the metric in either of the first two cases is standard throughout the component.
So we know that the neighborhoods are all necks or cores of caps.

Look at a component of Mlarge. Every point looks like it’s in an ε-neck or in the core of a
cap.

Lemma 1 Every component of this Mlarge is contained either in a tube or a tube with one
or two caps on the ends.

A tube is just a longer version of a neck. It’s not metricly standard because as you move
down the tube you might have the radius changing slightly. Nevertheless, as you move down
the ε-tube, passing between ε-necks, things almost line up and you get a topological product.
If you cap off both ends, you get S3, RP3, or RP3, all of which we understand. If you cap off
only one end you get either a disk or a punctured RP3.

Now let’s go to the singular time and see what’s going on.

Define an open subset Ω ⊂ M where x ∈ Ω if lim sup
t→T−

R(x, t) < ∞. Then using canonical

neighborhoods we can see

• Ω is an open subset of M.

• g(t)|Ω
C∞→ g(T ) on ΩT .

• R : Ω → R is bounded below and proper.

• For any connected component Ω0 of Ω, every end is a horn S2× [0, 1), a union of necks
with curvature going to ∞.

For example, you might get a single simple two-sphere and get two horns, one on each side,
as a tube crushes down at one slice. It could be a lot more complicated than this.

I’m going to divide the components of Ω into two types. Choose some ρ < r. Then Ωρ =
{x ∈ Ω|Ω(x) ≤ ρ−2}. So there are components of Ω containing a point of Ωρ, and then there
are those which do not.

There are finitely many components Ω0 of Ω containing points of Ωρ. Then Ω0. The other
components look like double horns, capped horn, or one of the closed components we’ve
already talked about. We have a finite number of components with not -very-large curvature,
and each one of those has a finite number of ε-horns. That’s what these neighborhoods look
like.

Now what are we doing with this picture of the singular metric? In other words, how do we
perform surgery to turn this back into a compact manifold?
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1. Throw away all components of Ω that do not meet Ωρ.

2. For a component Ω0 of Ω meeting Ωρ, in each horn, we find a δ-neck for some δ we
have to determine, and cut off the horn at the central S2 of the neck.

The main invariant of a neck is the scale, which goes to zero as the curvature goes to ∞. But
the further you go down the tube, the better control you get about how close the metric is to
standard. So you find a δ-neck, doing surgery with δ which depends on time, and is not for
the fixed ε. So we cut the horn off and throw away the noncompact pieces. A neighborhood
of these boundaries loks like S2× [0, δ−1] rescaled to look very small. So I got a finite number
of these components that I cut the horns off of and all the other components that I threw
away.

On the subset I constructed there’s a smooth metric g(T ). Now I have to figure out how to
complete these ends to get back to a closed manifold to start up a Ricci flow again. Now we
have to choose what to glue in. The easiest thing, maybe, is to define a metric on R3, define
g to be SO(3)-invariant, and metricly the end of R3 will look lie S2 × [0,∞) and then the
core will be a 3-ball with positive curvature.

This is called the standard initial condition, and then you form the Ricci flow on this, R3, g(t)).
You have to prove things about this Ricci flow.

1. It exists uniquely, which we don’t have in general. Imagine you have a flat metric on
R3, then you could flow with a constant flow. But you can put that in S3 with some
positive curvature and then the flow on the sphere will give positive curvature. Then
you can restrict.

I focus on this for a psychological reason, this is the only place we know Perelman made
a mistake. He wrote down an ODE to show uniqueness, and his ODE had a singular
point at the origin. But he know how to fix it right away.

2. The curvature is positive for t > 0

3. The flow exists on the interval [0, 1). At time 1 the metric completely degenerates in
the sense that the distance between any two points goes to zero as t goes to 1. The
positive curvature is like a Pacman, it eats the whole cylinder, which at the whole time
is shrinking down trying to get to be a line, but Pacman is faster than convergence to
a line, so he eats it all before it becomes a line.

4. For any [0, 1− θ], up to but not including one, there exists compact X on R3 such that
the flow (R3 −X, g(t)|R3−X) on the complement is close to a [unintelligible]cylinder.

I can rescale this cap until the curvature agrees and I have to interpolate between the metrics
using a partition of unity.

Topologically. we’ve thrown away the compact components, and the tubes, in general, I
have two horns I’ve concentrated on, and I’ve cut this and capped it off. That’s an ordinary
surgery on the core two-sphere of the annular region. So in the capped case, I have thrown
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away the cap and recapped with a ball. So I’ve done nothing or cut off an RP3 summand.
So the topological effect of surgery is three-fold.

1. In the necks, you do ordinary 2-sphere surgery.

2. In the necks you remove B3 or RP3 and replace with B3.

3. We remove standard components, either compact positively curved, or S2 bundles over
S1.

What we want to do is to take the new compact Riemannian manifold and use it as the
starting point for the new Ricci flow. It’s important not to view this as a sequence of
disconnected steps. We’re going to glue this together to create the topology, but since there’s
a change in topology it will not be a smooth manifold.

Let me draw a model for four-dimensional space-time.

Now let me draw a more accurate picture of what would happen on one of these necks. At the
surgery time I replace the cylinder with two caps. You have these tubes which are removed
and replaced with caps. So the flow will go up but not down at these times. So you have
manifold with boundary points and then singular points at the end of the boundary. So this
is M which comes with t : M → R and then t−1(t), the slices, are compact three-manifolds
Mt.

Exercise 1 If the postoperative patient satisfies the Geometrization conjecture, then so does
the pre-op.

The main result out of Ricci surgery is that we need to show that this operation, this surgery,
can be done repeatedly to construct a Ricci flow with surgery defined for all time. The
surgeries might happen infinitely often in finite time. So you show that in any compact time
interval there are only finitely many surgeries. As far as we know you can go all the way to
∞ and get infinitely many surgeries.

This afternoon I’ll try to indicate to you the problems in repeating this process. I have to
have some length function for κ-non-collapsed, and then to get canonical neighborhoods you
do a blow up operation.

For the length functions, you can’t always push backward, and blow up won’t give you an
ancient solution. But you can iteratively prove both of these, and I’ll do that in the first half
of the afternoon, and then I’ll finish off to tell you how to get these two conjectures.

2 Fintushel-Stern

I think it’s been a great effort on your part to attend all of these. Even though you may not
understand but two or three percent, but multiply that by 80 lectures a year and then thirty
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years and you’re pretty sure to have a hit.

Remember how I said, it’s hard to tell a story when you don’t know the end of the story. I
want today to summarize and then tell you a bunch of open problems.

So we starte with constructions of 4-manifolds. We figured out some topological invariants,
c, χ, and t. Here c and χ are just different ways of describing σ and e, and then t is a Z2

which tells whether the manifold is spin (even).

We learned a little about the Seiberg-Witten invariant, which is a Laurent polynomial.
SWX ∈ Z[t, t−1], where t ∈ Z[H2(X, Z)]. Let me again remind you of the constructions
we came up with to get new manifolds.

1. The generalized logarithmic transform started with a torus T 2 ↪→ X with a neigh-
borhood N(T ) = T 2 × D2 and then X4/\N(T ) ∪θ T 2 × D2 = Xθ where θ : T 2 ×
δD2 → δ(X\N(T )) and this is characterized by three integers Xθ = XT (p, q, r). Now
(c(XT (p, q, r)), χ(XT (p, q, r)), t(XT (p, q, r))) = (c(X), χ(X), t′), where t′ is 0 if and only
if t(X) is 0 and r is odd.

a. So we’re wisely choosing particular operations that we know are effective; if
the torus was inessential, π1(X\T ) = 0, then SWXT (p,q,r) = SWX

tr−t−r

t−t−1 =
SWX(tr−1 + . . . + t1−r), where t corresponds to T in H2(X). This assumes there
is a vanishing cycle, so T sits inside of a nodal neighborhood. A philosophical
statement is that we’ve never really used all of our variables, so this is just saying
you can get rid of one of the variables.

b. When T was nullhomologous, there was the Morgan-Mrowka-Szabo formula, which
was very effective, which described the Seiberg Witten invariants of the p, q, r log
transform in terms of the (1, 0, 0), (0, 1, 0), and (0, 0, 1) log transforms. This gave
us knot surgery. If XK = X\N(T ) ∪ S1 × S3\K then SWXK

= SWX∆K(t).
Then we could use Dehn surgery to unknot the knot, and the Morgan-Mrowka-
Szabo formula gave us a way to understand this.

2. The other technique was rational blowdown. That’s fresher in your mind so I won’t
describe it again.

3. blowup and blowdown, X#CP2
.

4. generalized fiber sum, where you have Σg ↪→ X1, Σ′
g ↪→ X2, and Σ2

g = −Σ′
g, X1#Σg=Σ′gX2.

There’s an operation I didn’t mention, and that’s to change orientation. So there’s a question,
does every homeomorphism type have a canonical orientation? A symplectic or complex
manifold has a canonical orientation. For a symplectic manifold you posit ω2 > 0. The first
question that comes to mind, does an arbitrary smooth manifold have a canonical orientation?
Given X, is ±X homeomorphic to a symplectic manifold? Strangely enough, we don’t know
if this is true or false. This sounds like a stupid thing to be concerned about, but being
left-handed I’m concerned about orientation. All of these are irreducible.
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It’s known thanks to the work of Taubes that if I have an irreducible symplectic manifold that
c(X) ≥ 0. That translates to the fact that regardless of orientation c < 48/5χ for a symplectic
manifold, and the 11/8 conjecture and in fact the 3/2 conjecture, that is, b2

|σ| ≥ 3/2. I apologize
for dwelling on changing orientation. Now in talking about the geography question, I’m going
to suppose there’s a canonical orientation and restrict to symplectic manifolds. We certainly
have complex Kähler manifolds, here’s 9χ and here’s 2χ − 6. Every complex surface lies in
this region or on the χ axis. So inside E(n) there are lots of −2 curves, at least n− 3 curves
connected to a −2 curve. This is the configuration you can blow down. So that lets you fill
out this whole region with symplectic manifolds. When you look at the number of Seiberg-
Witten basic classes. In the computation we did, SWE(n) = (t− t−1)n−2, so there are n− 2
basic classes. In the construction of manifolds in the region on the lower right, they have a
lot of basic classes. This is a construction type problem, to find a counterexample, do there
exist X with c(X) < χ− 3 with fewer than χ− c− 2 basic classes? Again, this is a fact, we
construct manifolds with this many basic classes, are there fewer? Understanding this will
help us understand [unintelligible]. You’d need to be a complex geometer to prove it, sort of
a Noether formula for symplectic manifolds. There are other obvious questions. Are there
any symplectic manifolds above the 9χ line? Are there any at all above the 48/5χ line?
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Okay, suppose I have two homeomorphic irreducible manifolds of general type. How do I
pass from one to the other? The reasonable conjecture is that it’s the list of operations we
made earlier, since those are the only things we know how to do.

Now we know that there are only finitely many deformation types for a given homeomorphism
type of complex manifolds (although we can usually get infinitely many smooth structures.
As an aside, does every X4 contain essential tori? If they have different deformation types,
are they diffeomorphic?) Well, let me give you the first example of manifolds for which this
is not known. These are the Horokawa surfaces lying on the Noether line c = 2χ− 6, which
have two deformation types. I would like to see that these can be passed one to the other,
by these operations, to test the conjecture that these are the operations we need.

We’ll construct them with branched covers. I gave you a formula for figuring out the c and
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χ of a branched cover. I have, say six S2 that run vertically and 2m that run horizontally.
This is a bunch of intersecting lines, not a curve. You can observe what the singularities
are where these lines intersect. I take a two-fold cover, and an exercise is it’s the cone on
the cotangent bundle of S2. I end up with H(2m − 1), and the singularities are a cone on
RP3, which I can resolve by replacing the cone by a −2 curve, a sphere of square −2. What
does that mean? I look at a sphere with normal bundle with Euler class −2 and glue it
in. This is the beginning of the resolution of singularities. I could also find a nice curve in
S2 × S2 with bidegree 6, 2m. One way or another, I get a surface, and the exercise is that
c(H(2m− 1)) = 4m− 8 and χ = 2m− 1. This is the way that Horikawa constructed his one
family, so H(2m− 1) is a two-fold cover of (6, 2m).

The other family is the following. Notice I said there are only finitely many deformation types
in the general region. Now S2 × S2 has infinitely many such types. Consider the Hirzebruch
surfaces F2n, topologically the double of the sphere of self-intersection number 2n. Then the
double has −2n. If this were odd I’d get CP2 and CP2

. So this, anyway, is S2 × S2. So we
have the two spheres, which we will call S± according to the sign of their self-intersections.
So let’s take 5 S+ and 1 S−. This is a disconnected branch set. You can represent that by
a branched curve. We can take the two-fold branched cover of this. Call this H ′(4n − 1).
The exercise is that this is a manifold with χ = 4n − 1 and lying on the Noether line. So
H ′(4n− 1) is the two-fold cover of (5, 1) in F2n. The hard part is not the numbers but that
these are complex surfaces. The even harder part is:

Theorem 2 H ′(4n − 1) and H(4n − 1) are deformation inequivalent. These are the only
complex surfaces along the line c = 2χ− 6.

Are they diffeomorphic? Here’s some motivation that they’re not. Let’s look at n = 1. That’s

H(3) and H ′(3). Well, a relatively easy exercise is that H(3)
diff∼= E(3). But H ′(3) is 5 × S+

and S−, where these have ±2 self intersection numbers. We take the twofold branched cover
over this. What happens when I look at the lift? The sphere of square −2 becomes a sphere
of square −1. So H ′(3) is not minimal.

Okay, and you can see that H ′(4n− 1) is spin if n is even, while H(2n− 1) is always odd. So
if n is odd, n > 1, is H ′(4n− 1) diffeomorphic to H(4n− 1)? This is an open problem. What
I want to conclude with is that, can you pass from one to the other via the basic operations
on the board? Well, H ′(4n − 1) is obtained from H(4n − 1) via a ±1 log transform on an
essential torus.

So I’m not changing the Seiberg Witten invariants since it’s essential. This is interesting
because it’s the first torus we’ve seen without a vanishing cycle.

Okay, two minutes, how do you prove this observation? One has a disconnected branch locus,
and the other has a connected branch locus. I can braid them together with a half twist to
make it connected. So one way to connect these is to look locally and get S1 times this
picture of connect sum with a twist. So upstairs this can correspond to a log transform. This
braiding operation is worthy of graduate students to further think about.
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The end of the story might be in another direction. We committed ourselves to this direction
and this is where we’re at. We understand something about existence. We also only know
something about the number of such manifolds at a point. We conjecture that the list we
made gives all the ways of passing from one thing to another at a point in this geography.
This is where we’re at. In some sense, this is the end of this particular process. We were
talking last night, at the ending dinner in twenty years, what will they be talking about in
topology. Hopefully it will be this, probably it won’t.

[Could there be a symplectic form on both a manifold and its opposite?]

That’s open.

[Is there any hope of new invariants?]

A lot of us have been dragged around by new invariants from the physicists. This other
question is, does every manifold have simple type, either from Seiberg-Witten or Donaldson
type? So have we milked everything from Seiberg-Witten? Donaldson theory is very sensitive
to fundamental group; Seiberg-Witten invariants are insensitive. So there’s a marriage there
of opposites. Sensitive, or not, and somehow the same. Many people have thought in the
Donaldson setting about higher gauge groups. Basically the SU(n) theory is determined by
the SU(2) theory.

How many people here really are four-manifold graduate students? Six? I hope you have
learned something here. I hope the rest of you got a few buzzwords, so you can nod your
head, yeah, yeah, yeah, that’s a very important property of mathematicians.

3 Morgan

As I was saying this morning, you needed these two basic results from Ricci flow to movo to
Ricci flow with surgery, the κ-non-collapsed condition and the canonical neighborhoods.

Let me remind you of what happens with κ-non-collapsing in normal Ricci flow. I followed
points back by backwards geodesics, and those had length at most 3/2, and I got a subset at
time 0 of a reasonably sized ordinary volume, and then the integrand e−` ≥ δ and vol ≥ C,
and then we used the result to push a subset up along geodesics only making the volume go
up. Then I made a local argument.

It’s pretty clear what the problem is. What about `-geodesics that run into the surgery caps
and just stop. You needed `-geodesics defined everywhere to apply the maximum principle.
I can’t do that in the naive case. To hit a point way over near the cut, you’d have to use
something piecewise. But you can do the minimum argument if you know that geodesics
back to the surgery caps have length at least 3/2 + ε

For the canonical neighborhoods you had Qn = R(xn), with a rescaled metric, and you
wanted to be able to flow these back and get an ancient solution. But there might be a cap
in the way.
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Okay. So the solution to both of these is the same. Let δ be the surgery control parameter.
Then as δ → 0, the R(y) → ∞, so the radius goes to 0 as δ does. I can say how tightly I’ll
control the metric on the surgery region where I do the cutting.

That turns out to be the freedom that allows me to arrange that the geodesics are long and
that I get canonical neighborhoods.

So I define δ(t) : [0,∞) → [0,∞). When we do surgery at time t, we use δ(t) as the control
parameter. We can specify it a priori if we want. The scale at which we do surgery, the
function will tell you the control parameter. So, δ of course always has to be positive, it’s
convenient for it to be decreasing, and it has to fall off sufficiently fast.

The advantage of making δ very small is, let me draw it big. Here’s half of a δ-neck. This
end goes off to the horn. Now I glue in my standard cap glued in to size δ. These converge
to the standard solution. Now, it’s true, the amount of time I have to control is only one
unit in this scale. This is exactly what you need. If when you rsecale at xn you always find
a surgery picture, you know that you can find it in the flow of a standard solution.

That’s exactly how you solve the canonical coordinates problem. So that gives me the
canonical neighborhood not coming from a κ-solution but from the evolution of the caps.
Those have the same compactness properties, and you’ll still be able to make things work.
Now this diagram also solves the κ-non-collapsed problem. Coming in from the side gives
you length; coming in from the top the curvature is huge.

That’s briefly the argument for extending these arguments from Ricci flow to Ricci flow with
surgery. Now let me state for you the theorem that one proves. You might wonder what kind
of function δ should be.

Theorem 3 There exists an ε > 0 and a decreasing sequence of positive constants κ0 ≥
κ1 ≥ . . . 0, r0 ≥ r1 ≥ . . . 0, δ0 ≥ δ1 ≥ . . . 0, such that for any normalized initial conditions
(M, g(0)), there exists a Ricci flow with surgery defined for all time, where the region [0,∞)
is divided into the regions [0, ε), [ε, 2ε), [2ε, 22ε), . . . , which I will call the intervals 0, 1, . . . ,
where the surgery parameter is δ(t) = δi in the ith interval, and the Ricci flow with surgery
in [0, 2iε) is κi-non-collapsed on scales at most ε. and has canonical neighborhoods at points
x where R(x) ≥ r−2

i .

The constants must be chosen very carefully and inductively and by contradiction. So they’re
falling off pretty fast. We don’t have any explicit estimates.

That’s the actual theorem about the existence of Ricci flow with surgery for all time. ε goes
with something like, gluing things and needing them to be isotopic. That makes sure that
the description I gave you of manifolds covered by ε-patches is concrete.

All right. What time is it? Now we want to switch gears and see what we can do now that
we see that the solution exists for all time.

Let me talk first about geometrization. If for sufficiently large t, we can prove that the
manifold satisfies geometrization, then it does at all time.
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I omitted something. Every time you do surgery you cut off half a δ-neck, and there’s a
fixed amount of volume lost that depends on δ, but it’s positive. Under Ricci flow, volume
grows at a fixed exponential rate. Every time you do a δ-surgery you can only cut a certain
amount away. Each surgery up to time T cuts out at least a certain amount since up to
T, δ is bounded away from zero, so there can only be finitely many in a given time interval.
Surgeries that throw away components, well, there are only finitely many components, and
the other kind of surgery can only add one component, and there are only finitely many of
those.

So Hamilton studied what happened at ∞ if the Ricci flow existed for all time. This divided
into pieces that were almost hyperbolic with torus boundary and other parts that were
collapsed. In Ricci flow with surgery, for all sufficiently large time it will divide into things
where the curvature is negative, very close to zero, and then collapsed things with short
loops. These fit together along tori, the limit tori of hyperbolic pieces are very small so they
fit with the collapsed pieces.

Hamilton argued that the tori are incompressible. I’m not going to give it, but if you suppose
it’s compressible look at a minimal disk, and what happens to the area of the disk? Its area
is going to go negative in a finite amount of time. If you go further out in time, a limiting
argument tells you that you can’t have any such compressing disks.

If you’re interested in geometrization, if you get this picture you might as well stop because
it’s Haken. If you get the hyperbolic pieces, you can stop.

The theory of collapsed manifold was first studied by Cheeger and Gromov, and developed F -
structures, which in dimension three says that given certain conditions, the collapsed pieces
are either Seifert fibered surfaces with short fibers or tori fibering over a 1-manifold, with
a short loop in the torus. These are in general nilpotent; in this dimension they’re Abelian
because it’s in two dimensions. So Shioya-Yamaguchi have a result, very delicate and relying
on unpublished work of Perelman, say the collapsed regions are graph manifolds. I’m not
sure about that part. I think the Chinese may have an explicit argument.

The other way to go is to be modest and go for the Poincaré conjecture, or maybe that’s too
modest, and go for the 3D-space forms.

Theorem 4 Say that π1(M) is a free product of finite groups and cyclic free groups, then
M is a product of 3D space-forms connect sum with S2 bundles over S1.

Theorem 5 For 3-manifolds of this type, MT = ∅ for some T ≥ 1.

We start with this kind of manifold, and start doing the surgeries, which will eventually do
the decomposition, and eventually those disappear. As each one disappears, it’s either S2

fibering over S1 or has a round metric.

So, why does this happen? Well, it’s really for the same reason I hinted at with the com-
pressing two-disks. There are three steps.
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1. After a finite time all of the two-sphere surgeries are on trivial two-spheres.

2. After a finite time all π2 are trivial. So either you have a homotopy three-sphere as
universal cover or you have a K(π, 1) as universal cover.

3.

So why are the 2-sphere surgeries trivial after finite time? Here’s some topology, you’ll be
happy to know. This is called Grusko’s theorem.

Theorem 6 Suppose G is a free product of G1 ∗ · · · ∗GK . Say a free group F maps onto G,
then rk F ≥

∑
rk Gi. He really proves you can write F as F1 ∗ · · · ∗ FK so that Fi maps

onto Gi. In particular you can’t write a finitely generated group as an arbitrary free product.

So any time you cut a manifold along a two-sphere, you get a nontrivial decomposition into
a free product. So after a certain number of cuts, all S2 surgeries are along homotopically
trivial 2-spheres. Let’s follow a component after surgery. It could disappear, keep flowing,
and if I do a surgery, I get something homotopy equivalent to the manifold I start with, along
with some homotopy three-spheres. So X ′ has the same π2 as X. The only way to destroy a
π2 is to kill that component. Follow the one that’s homotopy equivalent until it disappears.
If there’s one of these arbitrarily far out, we can find a component X(T0) at time T0, and
then at any time t > T0 there’s an X(t) which flows from X(T0) during normal flow, and
moves to something homotopy equivalent during surgery.

Notice I don’t need to deal with this for Poincaré, I can just assume I started with something
prime.

So S2 ϕ→ X(t) for ϕ � ∗, with minimal area of φ equal to W2(t) where W2 is a continuous
function of t with dW2(t)

dt ≤ −4π− 1
2Rmin(t)W2(t), bounded in the sense of forward difference

quotients. So I can bound Rmin below by 6
1+4t . So you get the equation dW2(t)

dt ≤ −4π +
( 3
1+4t )W2(t). So if there’s a solution when this is an equality, you will get negative volume in

finite time. This only arose because I assumed an all time existence of this X, so that this
actually gives me a bound on when X disappears.

Look at the minimal sphere. If I can show the particular inequality for the area of this sphere,
it will bound the minimal sphere. The formula for the area, what is fracddtA(ϕ(S2))? It’s
simply ∫

ϕ(S2)

1
2
Tr (

∂g

∂t
)|Σda = −

∫
ϕ(S2)

Tr Ric(g)|Σda

where this trace is Rm(e1, e2)+Rm(e1, e3)+Rm(e2, e3)+Rm(e1, e2) = 2K(e1, e2)+K(e2, e3)+
K(e1, e3) = 1

2R + K(e1, e2).

So this is
−

∫
ϕ(S2)

1
2
Rda−

∫
ϕ(S2)

K(e1, e2)da
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Now we use that ϕ is minimal and the Gauss-Codazzi equation which says KΣ = K(e1, e2)+
det(II), so we can rewrite this as

−
∫

ϕ(S2)

1
2
Rda−

∫
ϕ(S2)

KΣda +
∫

ϕ(S2)

det(II)da.

Since this is minimal the determinant is negative, so we forget it. Then we have the inequality

≤ −1
2

Rmin(t)A(ϕ(S2))− 4π.

So the homotopy equivalence along the surgery can be chosen to be a distance-decreasing
map, and so it’s area decreasing and so get the appropriate area drop, or at least not increase.
This shows that eventually π2 is trivial.

So either it’s covered by a homotopy sphere or it’s acyclic. What if you have finite π1? It
might bifurcate into other components. I want to follow them all. I have a finite collection
of components generated by this one. In terms similar to the previous argument you can
get a bound during which these will disappear in finite time. So take a nontrivial element
α ∈ π3(X(T )). This can be thought of as a one-parameter family of two-spheres; Perelman
did something more naive, but on the face of it something more twisted. It’s easier in the
end to analyze.

Lemma 2 Assuming π2(X(t)) is trivial, then π3(X(t)) ∼= π2(ΛX(T ), ∗).

So we reinterpret α, so we have a 2-sphere of homotopically trivial loops. For each trivial
loop, we associate something we call the area. It’s simply the area of the minimal disk
spanning c.

[Is this based?]

It doesn’t matter. I need them to be homotopically trivial. If I have a family of loops, say
a S2 worth of loops Γ, then I define A(Γ) to be the maxc∈S2 A(Γ(c)). I can call W (α) =
inf [Γ]=α A(Γ). This is a typical minimax approach.

Theorem 7 W (α) is continuous, and dW
dt (α) ≤ −2π − 1

2Rmin(t)W (α).

It’s exactly the same as before except I have 2π, not 4π. You have to be careful about
the boundary, you flow it by the curve-shortening flow, and that keeps you from needing a
boundary correction term.

I don’t actually work with forward difference quotients, I work on a fixed small interval.

Suppose, fix t0, t1. I want to say that for every loop, the area of the minimal disk of the loop
at time t1 is at most VA(c(t0))(t1). If I can show this for each loop, I can substitute in the
solution for the biggest value. So A(Γ) at time one is below the solution for A(Γ) at time
zero. So taking limits that’s true for any time in this interval.
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Curve-shortening in a three-manifold can develop singularities. You cross with a really tiny
circle and study what they call ramps. You make it a graph over that tight circle. On ramps
it’s very good. All the estimates don’t care about the tightness of the circle, they only care
about the curvature, so you can take a limit back.

This is nontrivial. There’s no boundary issues the other way, but they get index one critical
points in the energy functional. We pay with something in dimension one, which is easier to
understand. Notice you get the same estimate on each piece.

This argument does not say anything about acyclic components. This might bubble off
three-spheres over and over again. There’s no differential equation coming up from below
telling you how this will disappear. You can say how long it takes now that you have the
three-sphere, but nothing tells you you can’t keep doing this, keep bubbling things off.

And we’ve proved the Poincaré conjecture.

I would like to thank the organizers, I think this was a great conference, I think we should
thank Peter and Tomasz in absentia.
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