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1 Etnyre

Okay, so, remember, yesterday we did a couple of things. If you start with a taut foliation
and perturb it into a contact structure, so you can construct a weak semi-filling, so you get
a tight contact structure. So we want now to construct the symplectic caps.

I’m going to start with the main theorem about the caps.

Theorem 1 Eliashberg, Etnyre
If (X, ω) is a compact symplectic manifold which weakly fills (M, ξ), then there exists a closed
symplectic manifold (X ′, ω′) into which (X, ω) embeds (as a symplectic manifold).

So we want to see how to construct the caps. I’m going to go over the proof I know better,
which is the one that I figured out. Eliashberg’s proof is different and gives you slightly
different information.

I’m going to pretend that there’s only one boundary component, but you’ll see that the
method would work for each boundary component seperately.

Definition 1 Let Σ be an oriented compact surface with boundary. Let φ : Σ → Σ be a
diffeomorphism equal to the identity near the boundary.

Then we can look at the mapping cylinder of φ, Tφ = Σ× [0, 1]/(x, 0) ∼ (φ(x), 1).

For each boundary component, you get a torus. Let MΣ,φ = Tφ q| δΣ|(S1 ×D2)/ ∼, where
we glue the solid tori to δTφ so that {pt}× δD2 maps to the interval direction and S1 ×{pt}
goes to the boundary of Σ.

So all of the pages in this picture come to the same core, that’s why it’s called an open book.

Exercise 1 If L is the cores of the solid tori, then MΣ,φ\L fibers over S1.
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Definition 2 The fibers are called pages, and L is called the binding. An open book decom-
position of M is a diffeomorphism to some MΣ,φ as above.

This is a weaker definition than we would usually use.

[This should be called a Rolodex.]

The terminology of open books is fairly well established. I don’t know whether they had
Rolodexes then. [Ed.: the Rolodex was first marketed in 1958, the term “open book” was
introduced in 1973]

All three-manifolds admit open book decompostions.

Exercise 2 Prove this. Hint: think about branched covers and braids.

An open book Σ, φ for M is said to be compatible with or support a contact structure ξ if
there exists a contact form α for ξ such that

1. α(TL) > 0.

2. dα|page is (up to sign) a volume form on Σ.

Theorem 2 Thurston-Winkelnkemper
Any open book supports a contact structure.

Given (Σ, φ) supporting (M, ξ), a positive stabilization of the open book is the open book
with

1. page Σ′ = Σ with a one-handle.

2. φ′ = φ ◦Dγ where Dγ is a Dehn twist.

Exercise 3 M(Σ,φ)
∼= M(Σ′,φ′). and the open books support the same contact structure.

Theorem 3 Giroux
There is a bijection between oriented contact structures up to isotopy and open book decom-
positions up to positive stabilization.

This has been key to a lot of progress in contact geometry and topology in the last five years.

There’s an analogous statement for higher dimensions, but it’s more technical.

Next I want to see how surgery interacts with open books. So given (M, ξ) and an open book
(Σ, φ) supporting it, let γ be a simple closed curve on the page of the open book.
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Let F be the framing induced by the page, and let M ′ be obtained from M by F ± 1 Dehn
surgery on γ.

Exercise 4 Show an open book for M ′ is (Σ, φ ◦ D±
γ ). It’s a little strange that if you do a

framing plus one surgery you get the negative Dehn twist.

I’ll givee you a hint in the form of the picture. This also helps show that every three-manifold
is obtained by surgery on a link. I’m going to cut open along the page that contains γ. If
I remove kind of a square neighborhood of γ, if I glue back everything except the square
neighborhood, you get everything in M with the torus deleted. That’s the same as in M ′. If
you stare at it long eonugh you’ll be able to see it.

Now we’re going to pay attention to the contact structure, so we’ll want γ to be Legendrian.
So we have this fact. If γ is nonseperating on the page, then we can isotope the page a little
to make γ Legendrian and the contact framing agrees with the page framing.

This is a very nice result that allows us to do what we just did in the topological setting in
the contact setting. So let (M ′, ξ′) be obtained from (M, ξ) by Legendrian surgery. This is
Dehn −1 surgery on the curve.

[What is the point of nonseperating?]

To make it true?

Okay, so the fact is that (M ′, T ′) is supported by (Σ, φ ◦Dγ). So given a symplectic (X, ω)
filling (M, ξ) with open book (Σ, φ) and γ on a page, we attach a symplectic 2-handle to
(X, ω) to get (X ′, ω′) with boundary(X ′, ω′) = (M ′, T ′) then we get that an open book for
(M ′, T ′) is (Σ, φ ◦Dγ).

We want to build our caps, but to do this we need some facts about the mapping class group
of a surface. If Σ is a surface with one boundary component then any diffeomorphism φ of Σ
up to isotopy can be written as the composition of a bunch of twists Dm

c ◦D−
γ1

1 ◦ · · · ◦D−1
γn

where c is a curve parallel to the boundary and γi are simple closed curves.

Okay, now we start to construct our caps. So given (X, ω) weakly filling (M, ξ), and (Σ, φ)
an open book supporting (M, ξ), and assuming Σ has one boundary component, well, how
can we do that?

[Stabilization?]

Exactly. If you do positive stabilization, you can connect boundary components and make
sure there’s only one boundary component. Also assume that φ is written as above, as
Dm

c ◦D−
γ1

1 ◦ · · · ◦D−1
γn

.

Now, using the idea above, we can Legendrian “realize” all the γi, then construct (X ′, ω′)
by attaching 2-handles to (X, ω) along γi. So δ(X ′, ω′) = (M ′, ξ′) with open book (Σ, φ′),
where, well, φ was the composition of all of these Dehn twists. A Dehn twist along γn gets
rid of D−1

γn
so we get φ′ = Dm

c .
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That’s good enough for some people but I still don’t see what’s going on. Attach more 2-
handles so that φ′ = Dm

c ◦Dδ1 ◦ · · · ◦Dδ2g , where g is the genus of Σ and the δi form a chain
of curves that serve as a basis, so that δi · δi+1 = 1.

Exercise 5 if the genus of Σ is g, then M ′ is 1
n surgery on g-trefoils.

Here’s a fact. If (X, ω) is a weak filling of (M, ξ) and M is a homology sphere then we can
slighly perturb ω so that (X, ω) is a strong filling. Now that I remind you of this fact, can
anyone notice anything about M ′?

[The M ′ is a homology sphere.]

Yes. Great, so, (X ′, ω′) is a strong filling of (M ′, ξ′) with (X, ω) embedded in it. So now I
only have to tell you how to construct caps for strong fillings. But it’s not that hard just to
construct a cap for a strong filling. So let’s just do that.

So now we can stabilize the open book for (M ′, ξ′) so that the page looks like, well, the
monodromy has a bunch of Dehn twists around the boundary curve, and then a chain around
the genus. When we stabilize, we add links to the chain when we add more genus.

I can arbitrarily pick any open book for M, so I’m not affecting X here. So if we stabilize
(Σ, φ′) enough, then after adding positive Dehn twists you gan get φ′ = Dc′ . We’ve gone
from the situation of having m Dehn twists, we have just one. If I had more time I’d try to
justify this to you, but I don’t.

How do I do this on the symplectic level? Attach more handles. So using this we can
construct a symplectic manifold (X ′′, ω′′) such that (X, ω) embeds and δ(X ′, ω′) = (M ′′, ξ′′)
with open book (Σ′, φ′′′), where φ′′′ = Dc′ and δX ′′ is strongly convex.

Exercise 6 M ′′ is the Euler class −1 circle bundle over Σ′′ where Σ′′ is just Σ′ with a disk
glued on.

Exercise 7 As time gets short, more and more exercises start appearing. If Y is the D2 bun-
dle voer Σ′′ with Euler class +1. Then Y supports a symplectic form such that δY is strongly
concave and δY will be −M ′′. Also show the induced contact structure is contactomorphic to
ξ′′.

So what do we have here? We’ve constructed (X ′′, ω′′) with strongly convex boundary
(M ′′, ξ′′) and then (Y, ω) is strongly concave and the contact structures match up so you get
your closed manifold. The cap is the handles and then (Y, ω).

As you can see, the idea is to fiddle around in the mapping class group to get the monodromy
under control, so that you can cap off.

Let me remind you, we went through the basics of contact structures and foliations, perturb-
ing foliations to contact structures and symplectic handle attachments. I hope I’ve given you

4



some idea of some of the rich interplay among different parts of mathematics that occurs in
contact geometry.

[Can you tell us how Eliashberg’s proof differs?]

He attaches a handle transverse to the binding. It’s delicate but gives different information.

2 Ozsvath

Okay, I would like to say something about knot Floer homology. I’d like to say more, but
unfortunately this is the amount I’ll say. Everything I say is joint work with Zoltán Szabó.
Some of this work is also [unintelligible]. This work is about understanding how to compute
knot Floer homology along the lines, well, what is now familiar from Khovanov’s theory.

So Khovanov tells us that really the skein exact sequence for the Alexander polynomial is
what you want. You want a pair, my conventions will be random. For a positive crossing,
you want a relation between an invariant for a singular link and its resolution. For a negative
crossing you want it in the opposite order. I didn’t define knot Floer homology but I assume
everyone knows. So you could draw a cube of resolutions by iterating this, with edge maps.

I’d like to describe a candidate for what to put at a singular resolution. There are two can-
didates. Well, so be it, here’s the candidate. Both of these were suggested by [unintelligible].
The candidates are the following. In the Heegaard diagram for a knot, one associates to a
crossing a β circle going around like this and α circles going around the regions. So what
should one associate with a crossing. You can use planar diagrams. If you have a crossing of
this type, you replace each crossing with β-circles with other β circles inside of them, and α
circles for edges. You place w and z basepoints. The w basepoints can’t be crossed by disks,
while the z can. I have as many z as I have edges. The differential will give the sum over all
intersection points and homotopy classes of U

nz1
1 . . . U

nzn
n . There’s also a pair of basepoints.

I should be a little bit honest. I’m going to draw all my knots in braid position. That edge
will look different. We set that to be zero. Now this looks like it has more structure but
it doesn’t. You might think it’s easier to compute because it’s planar but the differential is
pretty complicated.

Okay. So for the singular crossing you could put the figure eight. [Picture.] This is what you
do when you resolve the crossing.

So what I’d like to say is that there is indeed an exact triangle with these digrams. The idea
is that one has here a collection of immersed β circles. So we can just think of this as the
invariant of a singular link. I would count only smooth holomorphic curves.

I can actually, um, um, right. There’s an alternative description that has a more intuitive.
There’s an alternative candidate for what to put at the singular point that has a more
intuitive definition.

So really, given how easy it is to prove exact triangles it’s not that bad a thing to do. What
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one needs to understand is, one needs canonical generators. To that end we have to compute
the Floer homology, let’s try to understand the homology of this picture. Here we have four
intersection points. We need to count flow lines. What you see is that the homology groups
here are, we have the x1y1 gets mapped to x1y2 with differential U3 − U4 and x2y1 → x2y2

via the same differential.

In fact, what we’d like to do, we define the maps to be tensoring with one of these generators.
The problem is that you need pairs of cancelling triangles. What we need, the double
composite to be chain homotopic to zero, we need the associativity of triangles. I have a
generator coming in over here, and what we want to see is that the pairings give zero, like
there are pairs of canceling triangles. We want the generators to be points connected by pairs
of triangles. One of the points in my picture isn’t closed.

[Pictures.]

Let me say it the way I like to, which is perhaps not the simpler way. We have a higher
term and a lower term. Now Xβγ → Yβγ , we can look at the mapping cone, nad there’s
a differential down here which is multiplication by v. My point is that this isn’t a cycle,
but you can cook up a cycle from it. You can think of it as a differetntial graded algebra,
[unintelligible]

So Θβγ will be Ye + X.

Since we made the identification between two of the U, there’s a verson that relates the three
versions. [unintelligible]

We can compute the bottommost terms. The Floer homology of a completely singular link
is actually lovely.

We want a chain complex over Z[U1, . . . , Ue]. We take our knot in braid position, singularize
all our crossings, and get a module over this polynomial algebra supported in a single degree.
In that fixed degree it is A , which should start to smell reminiscient. In order to get a nice
looking theory I’d like to work over a Novikov ring. I need additional basepoints, which
should give me extra t powers. It’s not so interesting in this picture. So now we allow finitely
many t−1 and infinitely many positive powers.

The algebra is the following: introduce one relation for each crossing. The relations should
be UaUb and UaUb = T 2UcUD. We introduce the relation

∏
Uout = T#vert

∏
Uin.

[At this point I admitted to myself that I had been completely lost for maybe 45 minutes
and stopped trying to take notes.]

3 Fintushel-Stern

Today’s lecture is on smooth simply connected 4-manifolds with b+ = 1. There’s CP2, CP2#kCP2, S2×
S2, and then we have to work. Start with any smooth simply connected X and equip it with
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a Riemannian metric. Recall that on Monday, I said the moduli space of solutions to the
Seiberg-Witten equations has good properties given that there are no reducible solutions.
But that was a lie.

Okay you need to perturb the equations. This is accomplished by choosing a self-dual 2-
form η. It’s still the case that reducible solutions cause the problems, and they’re still of
the form (A, c), where A is a connection on the characteristic line bundle and c a section
of an associated vector bundle. The equation they satisfy is F+

A = iη. Let’s recall what
some of this stuff means. Once you have a metric you have a ∗ operator, and Ω± are the
eigenspaces of the ∗ operator. We can split H2(X, R) = H+

g (X) ⊕ H−
g (X). Then [FA] =

2π
i c1L. Then −2πc1(L)+,g = η ∈ H+(X), so (2πc1(L) + η︸ ︷︷ ︸

∈H−
g

)+,g = 0. So this is the same thing

as (2πc1(L) + η) · v = 0 for all v ∈ H+
g (X)︸ ︷︷ ︸

dim=b+X

.

So bad solutions cut out a codimension b+ affine subspace. If b+
X > 0 then SWXg,η (L) makes

sense. If b+
X > 1 then we can connect any two good points by a path of good points. So in

that case, SWX(L) is well-defined, just choose one and calculate. If b+
X = 1 then in a path

(g, η) you might run into reducible parameters (g′, η′).

So what we can see is that, really what is determining the value in any case, when b+
X = 1,

then H+
g (X) is spanned by a single element. We’re choosing an orientation of the line.

We choose a period point, in H+
g whose square is one, so there are two choices and that

determines an orientation. The value of SWXg,η
(L) depends on the sign of (2πc1(L)+η) ·ωg.

Then we write

{
SW+

X,ωg
(k) = SWXg,η (k) if (2πk + iη) · ωg > 0

SW−
X,ωg

(k) = SWXg,η
(k) if (2πk + iη) · ωg < 0,

There is a a wall-crossing

formula that says the difference as you cross a wall, by ±1.

Okay. So there is a small perturbation invariant SWX,ωg
=

{
SW+

X,ωg
(k) if kωg > 0

SW−
X,ωg

(k) = SWXg,η (k) if kωg < 0,

This also has a wall-crossing formula.

Exercise 8 Show that if b− ≤ 9 then SWX,ωg is independent of ωg.

As a hint, use well-crossing and the fact that SW (k) = 0 if d(k) < 0.

So SWX,ω satisfies all the usual properties of SW for b+ > 1. For example, if g is a positive
scalar curvature metric for X then SWX,ωg = 0. So the small perturbation Seiberg Witten

invariant of CP2#kCP2
for k ≤ 9.

Let’s do some examples. We’ll start with the Dolgachev surfaces. We’ll start with E(1) =
CP2#9CP2

. This fibers over S2 with generic fiber the torus. We can look at E(1)p, the
multiplicity p log transform. This means we think of the fiber as S1×S1 and the neighborhood
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of it as S1 × S1 × D2, and then perform a p-framed surgery. It’s a good exercise to try to
distinguish this manifold from E(1) and then if you do, you’ve made a mistake because they’re
diffeomorphic. BUt E(1)p,q for p, q relatively prime, will give a manifold homeomorphic to
E(1) but not diffeomorphic, assuming here that p, q ≥ 2. The first exotic four-manifold was
E(1)2,3, that gave a counterexample to the 4-dimensional h-cobordism theory. This was
Donaldson (1985). These are called Dolgachev surfaces. You can calculate SWE(1)2,3 =
t+ t−1. The primitive class is the fiber divided by six, and that’s represented by t. Remember
that E(1) has Seiberg-Witten invariant zero. So they’re not diffeomorphic. This was much
more difficult to do with Donaldson invariants.

I’m sure it’s a good exercise to calculate that p, q classify these. That’s a result of Freedman
and Morgan.

Let’s to knot surgery on this manifold, E(1)K . Then let’s look at Kn a twist knot, with 2n−1
right handed half twists in a double of the unknot. Then ∆Kn(t) = nt − (2n − 1) + nt−1.
Then SWE(1)Kn

= −nt + nt−1.

Did I write down that SW−
E(1),T =

∑∞
n=0 t2n+1, evaluated on the ray given by multiples of

the fiber. If you multiply throught you can make this calculation.

So right here alone there’s an infinite family homeomorphic and not diffeomorphic to E(1).
This always lives through blowups. So it’s unknown whether there are minmial four-manifolds
homeomorphic but not diffeomorphic to CP2#(9 + k)CP2

for k > 0.

So for b− = 8 there is the Barlow surface B constructed around 1989 by Kotschick, which is
not homeomorphic but not diffeomorphic to P2#8P̄2. Then there’s the Park manifold P (J.
Park, 2003) which is homeomorphic but not diffeomorphic to P2#7P̄2. Then within a year,
there was one with b− = 6, which I should call SS for fairness, discovered by Stipsicz-Szabo.

There’s a time-dependent thing. Let me say, there’s a fundamental dichotomy, for all known
four-manifolds, if the homeomorphism type of X contains more than one smooth structure,
it contains infinitely many. This wasn’t true, and what I’d like to describe to you is how to
correct this and restore the dichotomy, which was done about two years ago by Ron Stern
and myself.

Are there any where there’s known to be only one?

[There’s not a single four-manifold for which we can classify all the smooth structures.]

Okay, I want to take as a starting point E(1), the elliptic fibration which contains singular
fibers I8, I2, and 2I1. So In consists of a cycle of n 2-spheres with self-intersection number
−2. So I2 can be deformed into a double node. These two, the cycles that vanish to these
are homologous.

Okay, so you have E(1) looking like this. Let me draw the same picture I erased and had so
much trouble telling you about. In the double node neighborhood, let’s take a fiber and do
a knot surgery on that fiber. Let’s remember what that is. We replace a neighborhood of
that fiber with S1 × 0 surgery on the knot. Look at the loop Γ around the clasp. It’s a loop
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in pt× S3\Kn. Now push to pt′, and isotope Γ off itself to Γ′ with linking number one with
Γ. When we glue this into E(1), sending the longitude to the boundary of D2, and we’ll glue
the meridian to the vanishing cycle of the double node. So we see that Γ bounds an annulus
to Γ′ and then a −1 disk. So Γ bounds a disk of linking number +1− 1− 1 = 1.

Now recall the effect of knot surgery on a section. So back in the nodal fiber we’ve introduced
some genus. We have a genus one pseudosection of self-intersection number −1. We’ve glued
in a Seifert surface with Γ lying on top of it, generating homology but trivial in the ambient
manifold. If this were self-intersection zero, you’d do surgery on it and turn the torus into
a sphere, but here instead you get an immersed sphere, and you get a nodal pseudosection.
You blow up once and get rid of the double point, but you have to add four to the self
intersection number of S. If you wanted manifolds with b− = 8 and b+ = 1, well, you have
−5 and −2 transverse to one another. That’s something we can rationally blow down. So
we know the Seiberg Witten invariants of this and of the blowdown.

Let me just show you how to see b− = 7, and then all the ideas will be there. Blow up a
nodal fiber, add to the section, and resolve the double point by replacing the crossing with
the annulus. In the −8-singularity, you can see a lot of −2s to play with. So you can blow
down the −7,−2,−2,−2. So if we use Kn, let’s call the blowdown Xn. Then SWXn will have
exactly two classes, and both will have Seiberg Witten invariant ±n. All the others will give
0 or ±1. So this gives an infinite sequence of manifolds equivalent to CP2#kCP2

for 8, 7, 6.
A few moments later Park-Stipsicz-Szabo found the same for b− = 5. So the next question
is b− is four or less.

If it’s not true that CP2 has exceptional structures, we should figure out why, what the excuse
is.

I’d like to thank you for your patience and interest. It’s been a great experience except for
the lack of sleep.

[How do you construct the elliptic fibration?]

You can use words in the mapping class group of the torus, and [unintelligible] classifies all
possible singular fibers. Or find a good pencil in CP2 to blow up, and just be careful to see
what the possible exceptional fibers look like.

4 Morgan

We’re in the midst of discussing a theorem, I’ll put that on the board.

Theorem 4 (Perelman)
If (M, g) is a finite time Ricci flow on M a compact 3-manifold, and we have a sequence
(xn, tn) in M × [0, T ) which is a blowup sequence, meaning Qn = R(xn, tn) →∞ as n →∞.
Then after passing to a subsequence there is a limiting flow for the rescaled and time-shifted
(M,Qng(Q−1

n (t − tn)), (xn, 0)). Here this is an ancient solution, existing for all negative
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time. It’s not flat or negatively curved. Each time slice (M∞, g∞) is complete and of bounded
curvature, and lastly the limit is κ-non-collapsed for some κ depending only on (T, (M, g(0))).

You have to control injectivity radius inj(M,gn(0) at xn, bounded below by a constant inde-
pendent of n, of the rescaled flow, and get bounded curvature at bounded distance from the
basepoint (again uniformly independent of n). This is because the higher derivatives of the
curvature are controlled by curvature bounds, so that will be taken care of.

Last time I finished up with the L -function, used it to show that the sequence is κ-non-
collapsed at every point for a universal κ. So that addresses the injectivity radius at the
basepoint. This will come from the bounded curvature at bounded distance along with κ-
non-collapse. This will pass to the limit because κ-non-collapse is geometric and passes to a
limit.

I want to talk about dealing with bounded curvature at bounded distance what these κ-non-
collapsed solutions look like.

If I were Bourbaki I would put a funny twist like an S in the margin to indicate a funny twist
in the argument.

We’re going to have to do a funny induction on space and time, assuming what the limits will
look like. I can’t just prove the bounded curvature bit without knowing what the solutions
will look like.

The structure of κ-solutions, meaning, something that has all the properties of the solution
M∞, g∞(t) in the theorem.

How do you understand what these look like? You use the L -function again.

Go back to any time slice τ. I’m using things parametrized by negative time. τ will go from 0
to ∞, being −t. I look at the `-geodesics back to the time slice M ×{−τ}. I’m going to need
the lemma again that says there’s a a qτ with a short geodesic γ to qτ so that `(γ) ≤ 3/2,
where

`(γ) =
1

2
√

τ
L (γ) =

1
2
√

τ

∫ τ

0

√
τ ′(R(γ(τ ′)) + |X(τ ′)|2)dτ ′

This is not a geodesic in this whole space, and ` is not a length function. So I produce qn in
time τn with short `-geodesics.

Now it turns out that again properties of the length function tells me that [unintelligible]. So
now consider (M∞, τ−1

n g∞(τnt), qn − 1)). This is a blowdown limit rather than a blowdown
limit.

I think of this as a flow defined from −∞ to −1. What used to be time slice −τ gets shrunk to
−1. This is a sequence of Ricci flows where I throw away what is happening above qn. So these
converge, after passing to a subsequence, to a limit (M ′

∞, g′∞(t), (q∞−1)), for −∞ ≤ t ≤ −1.
But you get a very special kind of thing in the limit, a gradient shrinking soliton.
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There’s something called the Harnak inequality telling you that the curvature at different
points and times are related by an exponential depending on distance in space and time.

As a family of Riemannian manifolds, they’re all the same up to a scaling factor. So we have
to start by understanding what the gradient shrinking solitons look like. So what are these
in dimension three? This is something we can classify. The universal cover of one is either
(S3,−tg0) or (S2 × R,−tg0 × ds2). So we can classify all of them as either compact round
shrinkers, like the dodecahedral space or a lens space. We could take RP2×R or the twisted
line bundle over RP2. If you have S2 × S1, that solution wouldn’t be κ-non-collapsed. So we
won’t be able to deal with RP2×R, we’ll assume that we don’t have anything like that. You
could think, if you want, only about orientable manifolds.

This M ′
∞ and associated information is called the asymptotic gradient shrinking soliton of

the κ-solution.

So how much can we learn about κ-solutions. So suppose we have a κ-solution whose asymp-
totic gradient shrinking soliton is compact. Well, it’s a general fact about limits, if the limit
of a geometric sequence is compact, then all of the things in the sequence are eventually
diffeomorphic to the limit. So M is compact and diffeomorphic to the gradient shrinking
soliton. So things are getting closer and closer to round. We have Hamilton’s theorem that
round things get rounder and then shrink away in finite time, and if you get close enough
you only get rounder. How close you are to round in invariant. As I flow forward, then, it
gets only closer to round. Se the whole κ-solution is just a round manifold shrinking. So
when the asymptotic gradient shrinking soliton is compact, the M actually is its gradient
shrinking soliton.

We want to understand singularity development. To do that you have to study κ-solutions.
Then to understand those we need to understand the gradient shrinking solitons. The S on
the board means that the flow of the logic isn’t so simple.

So what happns if the gradient shrinking soliton is S2 × R. Suppose that M3 is a compact
Riemannian manifold with nonnegative curvature, containing a long almost-cylinder. In it,
we can find for appropriate ε, a region very close to S2 × (−ε−1, ε). The manifold somehow
completes, and this is a metric statement, the metric is close to this product metric. Then
what can you say about the topology of M?

Let’s make life even easier. First let’s assume the curvature is positive. Then this manifold
admits a round metric and is covered by the three-sphere. But what manifolds allow this
kind of thing? Either S3 or RP3. One caps off with two balls, the other with a nontrivial
R-bundle over RP2.

In the noncompact case, then M is R3, a classical theorem of differential geometry, and it
has one positively curved cap.

Now let’s talk about if the Riemannian curvature is greater than or equal to zero. Here I’ll
use the strong maximum principle. This tells me that either the curvature is strictly positive
or it locally splits as a surface cross a line.
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In the world of κ-non-collapsed, you can either have S2 ×R or an R bundle over RP2. Then
you have the more interesting ones, S3 and this one-capped cylinder. In the cigar you get
large curvature and low injectivity radius, so that’s different.

Understanding gradient shrinking solitons has helped us to understand some of what the
κ-solutions look like. The result is a focus on what are called canonical neighborhoods. You
need to prove a compactness condition for κ-solutions. So any sequence of κ-solutions with
basepoint [unintelligible], everything will converge to another κ-solution.

So you can prove the following:

Every point in a κ-solution has a neighborhood of one of the following types:

1. compact round

2. center of an ε-neck.

3. in the core of a cap, either a three-ball or a punctured RP3 with positive curvature.

4. manifolds of positive curvature, compact, but not round, either S3 or RP3, and com-
pletely bounded geometry.

This comes out when you flow in one of these round ones. If we let this solution go far
enough, it will become arbitrarily small. So it should go from having something horrible at
−∞, with a long neck, the neck should collapse down eventually since it has to shrink to
nothing in finite time.

It’s not known how many of these things there are. These are not easy to come by, you can
make one example.

So this leads to a notion of a canonical neighborhood. If you have a neighborhood close to
one of these, you call that the canonical neighborhood. You might put an ε on that controls
how close your metric is to the product, how long your neck is, and so on.

That’s our discursion into what κ-solutions look like, and we ended up with these models of
canonical neighborhoods. Now I’m ready to state a theorem, let’s call it a lemma.

Lemma 1 Suppose we have a Ricci flow (M, g(t)) up to time T. Suppose there are constants
Q0 < ∞ . . . ,

[Very long pause.]

I’m just trying to think [unintelligible]formula [unintelligible]

Suppose we have a sequence of Ricci flows (Mn, gn(t)) for time up to Tn which are bounded
by some T < ∞, and that (xn, tn) ∈ Mn × [0, Tn] Qn = R(xn, tn) →∞ and suppose that all
(y, t) with either t < tn or t = tn with R(y, t) ≥ 2R(xn, tn) have ε-canonical neighborhoods.
Then so does (xn, tn) for all n sufficiently large.
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We have these at zero, because there won’t be points of high curvature near zero. I should
have said (Mn, gn(0)) normalized, with Riemannian curvature at most 1 and the volume of
a ball of radius 1 at least half the volume of a Euclidean ball.

So here’s the idea of the proof. Take a blow up sequence based at the (xn, tn). We want
to form a blow up limit. Since the original manifolds are [unintelligible], all solutions are
κ-non-collapsed. We look for points (yn, tn) where the curvature is arbitrarily large compared
to (xn, tn), but the rescaled distance

√
Qndgn(tn)(xn, yn) stays bounded by, say, C.

Because of the canonical neighborhoods you can take a limit out to the first such point.
First you have to see that this distance stays bounded below. Then you take an incomplete
geometric limit out to the first bad point, from the compactness and differential equations
satisfied by the canonical neighborhoods.

It turns out that you look at the neighborhood of the singularity, and you get little ε-necks
near the singularity. In fact, this is positively curved. So then you can take a limit around
the missing point, the y∞, and you get a cone. So you get a Ricci flow that ends in the
open piece of a non-flat cone. But a cone has a direction of trivial sectional curvature. It
ends up in a non-flat cone, but it has a flat direction, so is a metric product by Hamilton’s
maximum principle, but a cone is not a metric product, so this sequence doesn’t exist. So
you have a κ-solution and so there’s a canonical neighborhood out near the limit, meaning
that eventually there’s one near the xn for high enough xn.

I’d better stop, I can see the goons in the back.
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