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1 Etnyre

Great, since it’s been a few days since the last lecture, I thought I’d go over the program
again. Recall we were working on steps two through four of the following program, which
has given good results in low dimensional topology in the last few years: given a closed
irreducible 3-manifold M and a surface Σ of minimal genus in its homology class (but genus
not zero),

1. Gabai gives a taut foliation F with Σ as a leaf.

2. Eliashberg-Thurston perturb F into positive, negative contact structures ξ± on M.

3. Eliashberg-Thurston also give a symplectic structure on M × [−ε, ε] that fills (M, ξ+)q
(M, ξ−)

4. Eliashberg-Etnyre find a closed symplectic manifold X into which M × [−ε, ε] symplec-
tically embeds. To construct the caps we need

(a) Giroux’s correspondence between contact structures and open book decomposi-
tions.

(b) Eliashberg, Weinstein’s ideas of symplectic handle attachment and Legendrian
surgery.

5. use Seiberg-Witten, Heegaard Floer, . . . , to conclude something about M,Σ from X.

Today I’d like to start talking about, I want to start with three and then 4b.

All right, so, in the first four lectures we talked about the basics of contact geometry. We’re
now on step three, part three off the lectures, taut foliations and fillability. Recall that given
a foliation on M we can perturb it to two contact structures, ξ±, positive and negative. The
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real question is, what can we say about ξ+? Is it tight? Is it fillable? Those are the things
we’d like to know.

Recall if ξ is a Reebless foliation, then e(ξ), the Euler class, evaluated on [Σ], gives you a
lower bound on −χ(Σ) if Σ 6= S2, and is 0 if Σ = S2.

If ξ+ is C0-close to ξ, then e(ξ+) also satisfies this inequality, which will imply that ξ+ is
tight.

So when we’re perturbing foliations into contact structures, basically Reebless perturbs to
tight.

There are refinements of this inequality, but Reebless does imply tight. This is more moti-
vation than justification.

You don’t actually need a Reebless foliation to get a tight contact structure. You could put
a Reeb foliation on both solid tori in S3, and depending on the parity choices of the direction
of the Reeb flow, one such will perturb to be tight, and one will perturb to be overtwisted.

Exercise 1 Figure out which is which, which is tight and which is overtwisted.

Definition 1 A foliation ξ is taut if each leaf of ξ has a closed transversal curve. Equiva-
lently, there exists a vector field v transverse to ξ and a volume form Ω such that the flow of
v preserves Ω.

Exercise 2 Show the definitions are equivalent.

Suppose you have a taut foliation. How does that relate to Reebless foliations? If ξ has a
Reeb component then it’s not taut. It’s easy to see this. If you transversally come into this
thing, you’ll be sucked into this swirling vortex and never be able to come out again.

Okay, so the taut condition is a strengthening of Reebless, but the main thing we’re interested
in is the theorem of Eliashberg and Thurston that says

Theorem 1 If ξ′ is a contact structure C0 close to a taut foliation ξ then ξ′ is weakly
semifillable.

This is actually fairly easy to prove. The symplectic filling will be X = M × [−ε, ε]. Let
ξ = ker α, and let ω̃ = ιvΩ with v,Ω as above. There are two obvious properties of ω̃.
First note that ω̃|ξ > 0. The transverse direction and then the two plane directions, with the
volume form, it’s positive if I choose my orientation light.

Then dω̃ = dιvΩ + ιvdΩ = LvΩ = 0. Then set ω = ω̃ + ε1d(tα).

Exercise 3 Check that ω is a symplectic form on X = M × [−ε, ε].
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Then ω|ξ+ , ω|ξ− > 0 so (X, ω) is a weak filling of (M, ξ+)q (M, ξ−).

We now have lots of tight contact structures from the theorem of Gabai

Theorem 2 If M is an irreducible three-manifold and Σ an oriented surface minimizing
genus in its homology class, not equal to S2, then there exists a taut foliation ξ with Σ as a
leaf.

Corollary 1 If (M,Σ) are as above, then there exists a weakly semifillable contact structure
on M such that 〈e(ξ±)[Σ]〉 = ∓χ(Σ)

We demanded a C2-smooth foliation, but if Σ is genus zero, you might not get a C2-foliation.
But the breaking of the smoothness is not so bad and you can get the corollary in the general
case, with a torus as well.

We can now move on to part IV, which is about constructing symplectic manifolds and
Legendrian surgery.

Now we want to take M × [−ε, ε], and build a bigger and bigger manifold, to eventually get
a closed manifold.

So let (X, ω) be a symplectic 4-manifold. A vector field v is symplectically dilating if Lvω =
ω.

So suppose v is transverse to δX, which maybe I’ll denote M, and v points out of X. Set
α = (ιvω)|W , then dα = dιvω + ιvdω = Lvω = ω.

Then α ∧ dα = (Lvω) ∧ ω = 1
2 ιv(ω ∧ ω), which gives you a volume form on M so that α is a

contact form on M.

So, a contact manifold (M, ξ) is strongly filled by a contact symplectic manifold (X, ω) if

1. δX = M

2. There exists a vector field v t δX, pointing out, and dilating.

3. ιvω is a contact form for ξ.

We also say (X, ω) has convex, or sometimes even strongly convex boundary. If v points into
X, then δX is strongly concave.

So weak fillings seem to be perfectly good for contact geometry. Before I go on let me give
you an exercise.

Exercise 4 A strong filling of (M, ξ) is also a weak filling of (M, ξ).
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So why are we interested in this? What is strong convexity good for? The answer is gluing.
Suppose we have two symplectic manifolds (X1, ω1) and (X2, ω2). Suppose one has concave
and the other convex boundary. Call these contact structures ξ1, ξ2. If ξ1 is contactomorphic
to ξ2, meaning there’s a diffeomorphism preserving contact structure, then we can glue X1

and X2 together to get a closed symplectic manifold.

So the strong form of convexity allows us to do this sort of gluing. The weaker form, from
weak fillability, which I didn’t define, doesn’t allow this.

Exercise 5 Check this. This uses some ideas we haven’t discussed, but it isn’t terribly hard.

Okay, so we’ve introduced this notion of strong convexity. Next we need to discuss how to
discuss four-manifolds. I’m going to use handle decompositions. Let me give a couple of
definitions. If we start with a 4-manifold X, then h1 is a D1 × D3, attached to δX along
δD1 ×D3. To attach h1 you just need to specify two points in δX you want to glue to.

Let me try to draw the picture in three dimensions. You specify the two points and then
glue the handle on like this.

A two-handle h2 is D2 ×D2 is attached to δX along δD2 ×D2 = S1 ×D2. Now to glue it I
need to specify the core, S1, and a framing to say how to glue the handle down.

Of course, again, let me give you the schematic picture in three dimensions. Note that if X ′ =
X∪h2, then what is δX? What happens in the attaching region? It’s δX−S1×D2∪D2×S1.
This is a Dehn surgery, and in fact an honest surgery. So the boundary is obtained via surgery
with framing given by the attaching framing, so I’m just doing integer surgery.

Exercise 6 Check which surgery this is.

A couple more definitions.

Definition 2 Let (M, ξ) be a contact manifold. Then a knot K in M is called Legendrian
if K is tangent to ξ, that is, TxK ⊂ ξx for all x ∈ K.

There’s a very special feature of Legendrian knots, you can ask how many times the contact
plane flips around the knot. These give a framing of K.

Okay, so we’re finally ready to state the following:

Theorem 3 (Weinstein)
If (X, ω) is a symplectic manifold with strongly/weakly convex boundary, and X ′ is X with
a 1-handle attached or a two-handle attached along a Legendrian knot in δX with framing
equal to one less than the contact framing, then ω extends to a symplectic form ω′ on X ′

such that δX ′ is strongly/weakly convex.
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It turns out that in dimension four this is it, in higher dimensions you can always do a similar
structure up to the middle dimension. In higher dimensions you can fix the framing so you
can attach handles as you please.

A couple more definitions

Definition 3 If (M, ξ) is the contact manifold filled by (X, ω), and M ′ = δX ′, where X ′ was
obtained from X by attaching a 2-handle along K, then M ′ has a natural contact structure
ξ′ and we say (M ′, ξ′) is obtained from (M, ξ) by Legendrian surgery on K.

In the weak fillable setting, lots of different contact structures can be weakly filled by the
same manifold, but once you specify the structure on X, there’s a unique one on X ′. This is
a minor point that you might be worried about. You should be, but I won’t enlighten you.

Let me give you a sketch of the proof of the theorem. I’ll describe this for the one-handles.
In C2 construct a madel 1-handle. You can write a region D1×D3, and you can find a vector
field v′ coming in along the D1 axis and leaving on the D3 plane. The vector field is always
coming in on the attaching side and exiting on the non-attaching side.

So assume (X, ω) is strongly convex. Now you have the region you want to attach to. We
want v, v′ to glue the handle on (X, ω).

Exercise 7 Do this.

The attaching region is two three-balls. Notice I’ve got, this vector field is supposed to
be dilating. On the orange part it will induce a contact structure. The contact forms are
the same near the center points of those three-balls. Then you can kind of put these ideas
together and attach with a contactomorphism.

[What about weak fillings?]

You can slightly perturb things, it’s fairly challenging but not undoable.

2 Fintushel-Stern

Oh, do you have some chalk? I like these. I’ll try to use this though. I’ll save this for the big
theorem. That comes Friday.

First, I have some announcements. First, at 1:00 PM today, Peter Teichner will be talking
about topological 4-manifolds. Second, MSU alumni and former postdocs should come for
a photo op at 12:50 today in front of this building. Third, I thought as long as I’m going
to be on the internet, I thought I should advertise that we have a tenure track position at
Michigan State this year. I expect a lot of applicants.
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As the other Fintushel-Stern, I’d like to begin with a short review. First of all, remarks
about the blowup formula. My alter ego pointed out to me that I left out a hypothesis,
an important hypothesis called simple type. There are more simple classes in the blowup
if you don’t have simple type. Remember that the Seiberg Witten invariants SWX come
from counting solutions to a differential equation modulo equivalence. There’s a dimension
involved d(k) = 1

4 (k2− 3σ +2e). So simple type means that whenever you have SWX(k) 6= 0
then d(k) = 0. There are no known examples of simply connected four-manifolds with b+ > 1
which are not simple type, that’s a good problem.

Let me say something about log transforms. SO E(n) comes with a fibration over the S2 by
tori, and this is not a fiber bundle, it has singular fibers. The most common singular fiber
is a nodal fiber, and what that means is some 1-cycle on a typical torus has collapsed to
a point. This is called a vanishing cycle, and you can see that nearby, this vanishing cycle
bounds a disk. Look at a path in the two-sphere from a nonsingular fiber to a singular fiber.
That gives a family of circles degenerating to a point, that’s a disk. And this disk has relative
self-intersection number −1.

Okay, so in an elliptic fibration, simply connected, there are many many singular fibers. You
can see just because π1 is zero you can see that the vanishing cycles are going to have to span
the homology of the fiber. If F is the fiber then vanishing cycles α, β, span H1(F ). So if you
want to do a log transform on NF = F ×D2, then we can take as a basis {α, β, [δD2]}, and
Ron mentioned that when you do a log transform with this basis you can write the resulta s
XF (p, q, r) = (X\NF )∪ϕ (T 2×D2) where ϕ∗([δD2]) = pα+qβ+r[δD2]. Ron pointed out for
these E(n) surfaces this only depends on the r, called the multiplicity of the log transform.

So I want to indicate why this might be true on the level of Seiberg-Witten invariants. So
we’re going to see that SWXF (1,0,0) and SWXF (0,1,0) are both zero in the Morgan-Mrowka
formula. The 1 corresponds to α, the vanishing cycle which bounds a disk of self-intersection
number −1. When you cut this open and do the surgery, you’re going to cap this disk off
with δD2. So in XF (1, 0, 0) we’ve created an exceptional curve, a sphere E of square −1 built
from the vanishing cycle disk and the surgery disk. This intersects the torus in one point.
So you have T · E = 1. So now, oh, and this is a torus of square zero, of course.

So what happens when you blow down this −1-sphere? I’ll talk more about blowdown in a
minute. You get a new manifold, b− is decreased by 1, and T becomes a torus T ′ of square
+1. But the adjunction inequality tells you that if there are any basic classes you can’t have
any tori of positive self-intersection, so SW is zero. Then XF (1, 0, 0) comes from blowing
this up, so by the blowup formula you can see that SWXF (1,0,0) is going to be zero.

Let me pose in front of this [Michigan State tenure track topology position.] PBS doesn’t
have ads, but they have sponsors. [Smiles]

Okay, so the other point I wanted to make is, Ron wrote out the formula. If you look at
t−r−tr

t−1−t = tr−1 + tr−3 + . . . + t1−r So whenever you do a log transform you multiply the old
Seiberg-Witten invariant by this, keeping in mind that the t here is a t corresponding now
to a multiple fiber, so the old variable is tr in this equation.
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The last thing I wanted to talk about before rational blowdown is knot surgery. Recall you
have a torus T 2 ↪→ X of square zero, it’s essential, X is simply connected, and so is X\T 2,
the complement of the torus.

Then we took a knot in S3, and formed X\NT ∪ϕ S1 × (S3\K), where ϕ takes a longitude
of the knot to δD2, where we identify NT with T 2 ×D2.

Let me indicate why we might think this might be useful. Look at E(2). We have sections.
So we have a section of self-intersection number −2. I can’t apply the adjunction formula
because it only works for genus at least two and self intersection number at least zero. So
you take your section and add in a fiber, and you get a torus, because the fiber is a torus,
you smooth out the intersection by replacing the crossing with an annulus. If this helps your
vision you’re as crazy as I am. So F + S is a torus, that’s a little joke for Ron and me, and,
um, you get a torus with T · T = 0, self intersection number zero, and it intersects the fiber
once, since the section intersects the fiber once and the fiber doesn’t intersect itself at all.

So now let’s ask, can a multiple of the fiber possibly be a basic class? And so here’s our
adjunction inequality:

2g − 2 ≥ T · T + |T ·mF |

if mF is a basic class.

So this is 0 ≥ 0 + |m| so that m has to be zero, so a multiple of a fiber can’t be a basic class.

But on the other hand, suppose we first do knot surgery, and suppose that the knot K has
genus g. So nowe the picture looks like this. Now we remove the neighborhood of a fiber and
stuck in S1 × S3\NK , and glued the longitude to the boundary of the disk. So the part of
the section we cut out is replaced by a Seifert surface for K of genus at least g. So this, call
it Σ, has self-intersection number 2 and genus g. Let’s look at F + Σ. Now let, instead of T,
you have Λ = F + Σ. Now Λ has genus g + 1 and still intersects the fiber once. Okay, so
now let’s apply the adjunction inequality, and we get 2g − 2 has become 2g. That has to be
greater than Λ2, which is zero, plus |Λ ·mF |, we’re still testing whether a multiple of a fiber
can be a basic class. So this is |m|. So we now have the freedom for up to 2gF to be a basic
class. Recall the Alexander polynomial can be degree at least g, but you’re evaluating it on
t2.

So knot surgery gives you the opportunity to have new basic classes.

The new operation I want to talk about today is rational blowdown. This is a picture I
learned from complex surface theorists. I want to plot manifolds on the c versus χ graph.
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This is called the geography of complex surfaces. This was probably named by Ulf [Klausen?]
So, uh, I’d rather not plot my surface here. So the K3 surface lives right here, the E(n) live
along this line, and the log transforms live along this line. This is called the elliptic line.
There’s a famous line that goes this way, c2

1 = 9χ, this is called the Bogomolov-Miyaoka-Yau
line.

Another line is c = 8χ, which is σ = 0. There’s another line c2
1 = 2χ− 6, called the Noether

line, and complex manifolds that live on this line are called Horikawa surfaces.

The Kodaira classification of complex surfaces says that you’re of general type, you’re in this
region.

Minimal means there’s no 2-sphere of self-intersection number −1. There’s nothing you can
blow down.

So what is blowing down? You have a sphere of self-intersection number −1. You know that
CP2 is built from a Hopf bundle, a sphere with self intersection number 1, and B4. Then
C̄P2 has the opposite orientation, so you have a C̄P2 factor. So blowing down X into X(1) is
(X\Nbd(−1)) ∪B4. So b+

X(1)
= b+

X and b−X(1) = b−X − 1.

Okay, we could decompose CP2 another way. It’s, this is the class of a line, and its com-
plement. Instead we could take a quadric and its complement. So look at 2H, which has
square 4. So its neighborhood has boundary the lens space L(4, 1). Here you cap off with a
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neighborhood of RP2, which has rational homology only in dimension zero.

We call this neighborhood a rational ball. Let’s call this B2. This tells you, you have to be
careful about orientations when you glue this in. This says whenever you see a sphere of
self-intersection number 4, you can blow it down.

So you can replace a curve C2 of square −4 with B2. This is sort of like blowing down, it
changes things in the same manner.

If we assume that π1(X), π1(X\C2) are trivial, then π1(X(2)), the resulting manifold, is
trivial.

Note that π1 of the L(4, 1) is Z4, and π1(RP2) is Z2, and this map is onto, it’s multiplication
by 2.

So say you have two two-spheres intersecting transversally at a point, with self-intersection
number −5 and −2. Then δC3 = L(9,−2).

So look at these options for spheres:

−5 2 = C3

−6 2 2 = C4

−7 2 2 2 = C5

(p + 2) 2
p−2

2 = Cp

So δCp = L(p2, 1− p).

Now the lens spaces L(p2, 1− p) bound rational homology balls Bp.

So you can get a ruled surface Fp−1 [Ed.: I missed this part] The ruled surface will have
rational homology spanning all of the rational homology. So the complement has to be a
rational ball.

Look at #p−1CP2. Let me call hi the generator corresponding to the i factor here. Look at
−2h1 − h2 − . . . − hp−1. This has self-intersection number p − 2. Then intersect this with
h1 − h2, and then h2 − h3, and so on. This will give the diagram for Cp. This spans the
homology (rationally) of #p−1CP2, so its complement must have the rational homology of a
ball.

Here’s a picture to show it. Here’s a two-handle attached via Kirby calculus, and here’s Bp.

It turns out that any diffeomorphism of the boundary every one extends over Bp. So suppose
X = (Y = X\Cp) ∪ Cp. Then let X(p) = Y ∪Bp. This is a rational blowdown. Since Cp has
length p − 1, it’s negative definite, this operation leaves b+ alone, and reduces b− by p − 1.
So it moves you up the geography by the amount p− 1.

You’re lucky, I was going to give an argument about why this was true, but I wasted a lot of
time.
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[Can you characterize lens spaces that bound rational homology balls?]

Oh, by the way, the final exam is Saturday at noon. If you want your check. . .

There’s a paper of Szabo and Stipsicz where they classify plumbing manifolds that bound
rational balls, so that’s even better.

Okay. So suppose we know SWX and want to know SWX(p) . Then we have a characteristic
homology class k in H2(X(p)). I was going to show you that there exists a lift k̃ ∈ H2(X).
Well, let’s talk about cohomology.

So k̃|X\Cp
= k|X(p)\Bp

and further dX(p)(k) = dX(k̃). Then the theorem is SWX(p)(k) =
SWK(k̃).

Let’s see some examples of this in action.

Remember the adjunction inequality relates surfaces of self intersection number at least zero
and genus at least one. Well Cp satisfies neither of these. If all basic classes of k ∈ H2(X)
satisfy this inequality, well, let’s name these spheres

U0 U1 U2 Up−2

Then we would need k · U = 0 for all i ≥ 1 and |k · U0| ≤ p. If this is satisfied, we call the
configuration taut.

If you look at H2(L(p2, 1 − p)) and H2, oops, my arrow is going the wrong way. I’ll just
assert that a class can extend over Bp if and only if it represents (in homology) a multiple
of p in Zp2 = H1(L(p2, 1 − p)). So it should intersect U0 in ±p or zero. You can make a
characteristic class argument to say that if it’s zero blowdown gives you nothing. However,
if k̃U0 = ±p, then k̃ is the lift of a class k ∈ H2(X(p)) which will be basic by the theorem.

So one example, E(4), the section of square −4. You can find nine different sections in E1,
of square −1. Then fiber sum four of those together to get this, C2 Recall that the Seiberg-
Witten invariant SWE(4) = (t − t−1)2 = t2 − 2 + t−2. Then we get basic classes ±2F and
0. So we can blow down −4 ; Y4 = E(4)(2). You can easily check that these three are the
only basic classes. Now ±F descends correctly to give two basic classes in the blowdown.
So Y (4) has basic classes k,−k coming from twice the fiber and minus twice the fiber, with
SWY (4)(k) = 1. So SWY (4) = tk + t−1

k .

Perhaps I didn’t state the theorem in its complete form. No, I did. A characteristic homology
class below lifts to something whose Seiberg Witten invariant will give you the Seiberg Witten
invariant back downstairs.

So check that Y4 is minimal. Then you have Y4 below the Noether line and so it’s not
complex. There’s a lot more to say about this, but, oh, please, read the book, Gompf and ,
or read our paper.

I’d be glad to talk more about this, but I don’t want to keep anyone from their lunch. Don’t
forget the photo.
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3 Teichner

[Thanks for giving up an hour.]

I’m here to explain a little bit of history. Most of this is more than twenty years old, and
has been mostly forgotten.

I wanted to start with a theorem that Ron, this is about classification of topological 4-
manifolds. So the purpose of the talk is to give you an idea of the statements that are known
and some idea of the proofs.

You may be surprised to see that not much is known about 4-manifolds up to homeomorphism.
The 4-manifolds I’m studying will be closed, connected. Let me start with the classification
theorem.

Theorem 4 (Freedman 1981)
The intersection form induces a surjection on simply connected four-manifolds up to homeo-
morphism to unimodular quadratic forms on a finitely generated Abelian group, up to isomor-
phism. You might know that this is not surjective in the smooth world. Q is one to one in
the even type and two to one in the odd type, where even type means that the self-intersection
number of every form is even. For the odd type the two ar give by the Kirby-Siebemann
invariant.

Definition 4 KS(X) = 0 if and only if the stable topological normal bundle νx is linear. So
the Kirby-Siebemann invariant tests whether the normal bundle is linear, which is the first
obstruction to smoothing.

So this is always, in any dimension, in H4(X, Z2). This is the only obstruction of putting a
PL-structure on a topological manifold in dimensions bigger than four. In four, this is just a
little Z2 you have to take care of.

Definition 5 ∗X, if it exists, is a manifold

• homotopy equivalent to X

• KS(∗X) 6= KS(X).

So for example ∗CP2 is called the Chern manifold, which was named in honor of Chern’s
70th birthday. So we should stick to the name.

Any questions about the statement of the result? A good question would be, why don’t you
have the same thing if you have even type? Why don’t you have star of the Kummer surface?

So the last thing on this board is a generalization of [Rohlin’s?] theorem, if X is spin, then
KS(X) = σ(x)

8 mod 2.
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So ∗CP2 is D4 ∪h2, where the attachment is by the Poincaré homology sphere. So we attach
along this to C, a contractible manifold whose boundary is Σ. This is not mysterious up to
the construction of C.

Part of the theorem is that any homology three-sphere bounds a unique contractible four-
manifold.

There are two things I want to do. One thing is, I want to give you a very rough flavor of
Freedman’s proof. I also wanted to show you some generalizations of the theorem and some
open problems in that area.

Let me do that first, and I’ll come back to the proof.

Maybe before I move on to more interesting fundamental groups, let me derive this corollary
that Ron Stern keeps using in his class. He said that definite forms are not understood. This
is one of these things, if you’re a topologist, you have a bijection like this, you’re done. But
maybe not if the algebraic side is too hard. For any rank there are only finitely many, but it
grows exponentially with the rank.

The indefinite forms are well-understood. They are classified by type, signature, and rank.
The rank is e(X)−2. This is a beautiful theorem, I believe due to Serre, classifying indefinite
forms. Why is that of any use?

Theorem 5 Donaldson
If QX is definite, let’s say positive definite, then QX

∼= α1 if X is smooth.

We knew that E8 could not be a smooth manifold because KS was nonzero. But we didn’t
know E8 ⊕ E8 was nonsmooth until Donaldson.

So for a smooth manifold you know that the form must be indefinite or boring, and then you
use Serre, and finally Freedman to show this corollary that Ron was using.

Here’s an open problem I don’t recommend. What pairs (σ, b2) are realized for even smooth
manifolds? There’s a conjecture that it’s precisely those where the ratio is at least 11/8. It
is proved up to 10/8.

The next group that is actually classified, I’m moving away from simply connected manifolds.

Theorem 6 Freedman-Quinn The intersection form induces a surjection on π1 = Z ori-
entable four-manifolds up to homeomorphism to unimodular quadratic forms on a finitely
generated Z[Z]-module, up to isomorphism. You might know that this is not surjective in the
smooth world. Q is one to one in the even type and two to one in the odd type, where even
type means that the self-intersection number of every form is even. For the odd type the two
ar give by the Kirby-Siebemann invariant.

So they studied 4-manifolds with π1 = Z. via the intersection form is not injective or even two
to one. So you do this in the universal cover. So you get quadratic forms on Z[Z] modules.
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So a question, is any such X homeomorphic to S1×S3 connect sum with a simply connected
4-manifold.

Ian Hamilton and I found an example in 1997, a counterexample. I have the paper with me.
We wrote down a 4× 4 matrix form to attach the two-handles. It doesn’t say how to attach
so that you bound a smooth homotopy S1 × S3.

An open problem that is probably not that hard is, is this manifold smooth? It’s four copies
of CP2 and then S1 × S3.

There is no known smooth manifold not homeomorphic to S1×S3 connect sum with a simply
connected four-manifold.

I should say that moving from π1 zero to π1 = Z made the algebraic question even harder.
If you go to more and more complicated fundamental group, the equivariant pairing gets
harder and harder.

Let me talk a bit about type. In the presence of π = π1(X), I can say τ = (π,w1, w2), the
Stieffel-Whitney class. Here w1 = H1(π, Z2) ∼= H1(X, Z/2). For w2 there is a short exact
sequence

0 → H2(π; Z/2) → H2(X, Z/2) → H2(X̃, Z/2).

If w2(X) maps to zero, I can pull back to w2 ∈ H2(π, Z/2). Otherwise we will call this odd,
meaning the universal cover is not spin. For Z you could have two cases, orientable or not.
For Zn, depending on whether it’s even or odd, we can get a similar result. For even n we
could get three types. We could get either of the normal w2 ∈ Z2, and we could also get the
odd case.

So

Theorem 7 (Hambleton-Kreck 1988)
The intersection form, for oriented 4-manifold with π1 = Z/n, for n odd gives the theorem as
before, over Abelian groups, and for n even, is 2 to 1 in the even type (w2 not odd.) detected
by w2, and then is 2 to 1 in the odd type, depending on the KS.

[Do these cyclic manifolds decompose as something connect sum with a simply connected
manifold?]

That’s a good question. Any X with π1(X) = Zn is homeomorphic to Σ# a simply connected
manifold. So we know that, and I should probably assume that w2 is not “ODD” then Σ has
the smallest possible rank, is a rational homology 4-sphere.

This corollary is actually proved first and used in the proof of the theorem. They had
good candidates for manifolds by this method and then showed that every manifold was
homeomorphic to this.

An open problem is, which groups are the fundamental groups of rational homology 4-spheres?
This is a very interesting open problem. There are some partial results. I proved that if π is
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finite Abelian then Σ exists if and only if rk π ≤ 3. If I have an Abelian group I can write it
as a product of three cyclic groups. If I have a product of four cyclic groups I cannot.

The [unintelligible]surface is homeomorphic to a rational homology sphere along with E8 and
S2 × S2.

Now, I’m generalizing these invariants that Ron was talking about. Now I’m going to gen-
eralize the signature in the presence of fundamental group. I’m going to define the bordism
group Ωτ

4 for a fixed type (π,w1, w2) is 4-manifolds of type τ up to cobordisms of type τ.
There are smooth and topological versions of this.

This turns out to be a generalized homology theory if you work it out right, and this is the
correct generalization of the signature. Let me calculate some examples.

Example 1 Let’s look at (π, 0,ODD). Then DIFFΩ(π,0,ODD)
4

∼= Ω4(K(π, 1)) ∼= Z × H4(π),
and so it’s (σ, u∗([X])) where u : X → K(π, 1) induces an isomorphism on π1.

Okay, now let’s look at DIFFΩ(π,0,0)
4

∼= ΩSpin
4 (K(π, 1)) which is in isomorphism up to 2-torsion

with 16Z×H4(π).

So let me say one more word about this, there’s a short exact sequence

0 → DIFFΩT
4 →TOP ΩT

4
KS→ Z2 → 0.

Theorem 8 (Kreck, 1985) Assume X and Y have the same type τ and the same “signature:”
σX = σY ∈ Ωτ

4/Aut(τ). Then X#k(S2 × S2) ∼= Y #`(S2 × S2). This works for TOP and
DIFF. This is if and only if.

So as a corollary, KS(X) = 0 if and only if X#k(S2 × S2) is smooth for some k.

Now you can see k = ` if and only if e(X) = e(Y ). So if you generalize type and signature,
and fix those and Euler characteristic, then you get a diffeomorphism after adding sufficiently
many S2 × S2.

It’s still possible that you only need one S2 × S2 here, but for now we only know we need
some finite number. But again in the topological case,

Theorem 9 Cancellation theorem (Hambelton-Kreck, 1990)
We may cancel down to k = 1 in the topological category.

I’m almost out of time, I wanted to give you some idea of the proof. I’ll show how to cancel
these factors. I thought it would be my last twenty minutes, but it’s my last five minutes.
Once you have these two theorems, then you can prove classification results. For example, if
I look at π = SL2(p), then you can classify X with indefinite QX . If, say, X is smooth, then
indefinite is automatic if it’s smooth, and you can classify indefinite 4-manifolds by these
three invariants.
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So let me give you a flavour of the topological arguments, say in the easiest case, the Poincaré
conjecture. I wanted to do this in this harder case. To give you the flavor, You want to prove
that Σ4 ∼= S4. The bordism group is Z given by the signature. So since σ(S4) is zero you
know it’s the boundary of a five-manifold W 5. So then we can do surgery on W. After all,
if it’s the four-sphere, it bounds the five-ball to show that it bounds contractible C5. If you
get rid of π1 and π2 then by Lefschetz duality you’re done, it’s contractible. So you have to
be careful, and there’s a beautiful argument by Kervaire and Milnor about how to do this.
Now the third step is to look at the handle decomposition of C. Now you should say, why
does it even have a handle decomposition, it’s not smooth. This is a beautiful theorem of
Kirby and Siebemann that says that every manifold of dimension five and above has a handle
decomposition. In dimension four you can take this to a smooth structure but the argument
breaks down in higher dimensions.

So you hav D5 with no h1 and then h2 and h3 cancel algebraically. You can work at a
four-dimensional level, and if a 3-handle goes geometrically over a 2-handle once, you can
cancel them. I want to show that C is the 5-ball. There are 2-spheres from the ascending
and from the descending manifold. If they intersected once we could cancel, but not if they
intersect twice. You have to push the disk off, since we’re in a four-manifold, it doesn’t exist
embedded. So there’s a crazy disk, and you need to embed the Whitney disks. If we get
that then the handles cancel. Then Freedman was in this position with the Whitney disks
and the spheres, and he added these Casson towers, and these big shrinking arguments, and
proved the lemma that if π1 was sufficiently small, then you could change the Whitney disk
to the embedded disks. I’m sorry for going over and not finishing the argument but I’m out.

[What happens in the exact sequence for, say, type 0, 0, 0. Then why is there Z2?]

Remember KS in the case of spin is σ(X)/8? Well, the differential group is 16Z and the
topological group is 8Z.

[Why can you erase the h1]

The handles don’t matter homotopy theoretically. Below the middle dimension there’s no
problem making them cancel geometrically.

[It was 25 years ago almost exactly that this occured, this explosion in 4-manifolds. It’s a
fitting celebration.]

If someone discovers a new manifold they should call it the Freedman manifold. Well, we
should call E8 the Freedman manifold. Anyways.
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