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1 Gabai

[Manolescu’s talk will be in this room; the other talk will be in Coalition 3.]

I’d like to give a complete proof today of the tame ends theorem, at least in the context of a
hyperbolic manifold without any parabolics. This gives the heart of the story. So there are
no rank one or rank two cusps.

So last time we gave a proof of Canary’s theorem. Because of certain technical issues, we
need to prove a certain proposition:

Proposition 1 Let M be an irreducible homotopy handlebody and γ1, γ2, . . . pairwise dis-
joint locally finite simple closed curves not homotopic to a point map. After passing to a
subsequence and allowing γ1 to have multiple components, there exists an irreducible open W,
both π1 and H1 injective in M and exhausted by W1 ⊂W2 ⊂ · · · such that

1. if Γi = γ1 ∪ · · · ∪ γi then Γi ⊂Wi, with δWi connected and 2-incompressible relative to
Γi.

2. There exists a core D for W equal to B3 with some one-handles (a thickened graph) so
that Γi can be homotoped into D via a homotopy in Wi.

Assuming M is free is not a big stretch, because we saw in general it’s a finitely presented
free group free product with finitely many surface groups.

A little point here is that the W has a finitely presented fundamental group so it really does
have a core.

If I had fifty minutes I’d give you a pretty good exposition of this, but I don’t. The proof
is based on the theory of end reduction developed by Brin-Thickston, from the 1980s. As
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an addendum, if M is hyperbolic and γi are simple geodesics, then each Wi are atoroidal,
meaning there are no embedded π1-injective tori. This is a little black box. In ten minutes I
could explain this.

Exercise 1 Any torus in M is a tube (bounds a solid torus) or a convolutube (bounds a cube
with knotted hole).

If you use that fact you can prove the atoroidality.

The next black box is this:

Theorem 1 Thurston tameness theorem
Let W be a compact χ(W ) < 0 irreducible atoroidal 3-manifold, with δW 6= ∅. If Ŵ →W is
a cover such that π1(Ŵ ) is finitely generated, then int(Ŵ ) is topologically tame.

If you just apply Thurston’s hyperbolization to this, then W = H3/Γ where Γ is geomet-
rically finite. Subgroups of geometrically finite groups are geometrically finite. So covers
corresponding to atoroidal 3-manifolds corresponding to finitely generated π1 are topologi-
cally tame.

Corollary 1 Let Ŵi denote the π1(D) cover of Wi then int(Ŵi) is topologically tame, where
D is the core of W.

There’s an issue here. The cover has boundary coming from the boundary of the surface.
Thurston’s theorem doesn’t say that the manifold compactification with boundary is tame.
So one problem is to show that the two compactifications agree.

Also, we should maybe be able to find a topological proof of Thurston’s tameness theorem.
We need this in the context that the fundamental group is a free group.

Now the question is, we want to show this manifold is tame. To do this we show that it
satisfies the taming criterion. Say it has one end. Then the end is either geometrically
finite or there is a sequence of geodesics exiting the manifold. We can assume these are
simple closed curves bounding tubes of uniform radius. Remember, the taming criterion says
there exists a sequence of surfaces Ti mapping into N such that they exit, their genus is
boundoed above, they homologically seperate, they’re Cat(−1). Okay, let me show you how
to find these. Okay. So here’s W10,000. So what we do, given N exiting geodesics we use
the topological proposition to produce the W . Then how do you find a genus three surface?
Here are the words. Pass to the π1(D) cover of Wi. Then each δj has a canonical lift, fixing
a basepoint. plus many other lifts.

So ˆ̂
Si is the manifold boundary of int(Ŵi) pushed slightly into int(Ŵi). We need this to be

2-incompressible. So if it’s not 2-incompressible, we just compress it until it is. Then Ŝi is
this surface maximally 0, 1 compressed.
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Now we do what we did in the context of Dick Canary’s theorem. This might have many
components. We let Si be the component bounding Bagi. Then Si is chosen such that there
exists p with for each i, . . . , δ̂p ⊂ Bagi and lim p(i) →∞ where i, . . . , δp(i) ∈ Bagi.

Just think of it this way. Imagine you have infinitely many marbles and then like ten buckets.
You look at the first marble and put it into one bucket. If you look at the first i marbles,
you just partition them into the ten buckets. Then if you look at the first j marbles, you
just put them into the ten bucket. After passing to a subsequence, they’ll all contain the
pth marble for some p, and that bucket, the first bucket, second bucket, third bucket, will
contain arbitrarily many marbles. The geodesics are like the marbles and the compressed
bags are like the buckets.

So you pass to the covering space, which compactifies, you push the boundary in and do the
compressions to get the surface which always contains a lifted geodesic δp and also geodesics
of high index.

This is just purely topologically at this point. Then we take Si and shrinkwrap it with respect
to δ̂i ∈ Bagi. This produces a surface Pi, which gives us the Ti we want by projecting down
from the cover.

There’s this technical problem, that the shrinkwrapping may not want to occur in Ŵi.

The original solution (Calegari-Gabai) was to first shrinkwrap δWi inN. If the shrinkwrapped
δWi ∩ ∆i = ∅, then δŴi is smooth, with mean curvature zero, so acts as a barrier for
shrinkwrapping in Ŵi. In the general case we do a limit argument. We perturb the metric
near these geodesics, and take the limit as the perturbations approach the original one.

Let me show you Soma’s solution, which uses a very clever covering space argument. If
you want to do PL-shrinkwrapping, you need a convexity property in the covering space.
But Soma noticed that this cover embeds in a branched cover of the original N. Given
p : Ŵi →Wi, we can restrict to be away from the geodesics ∆i. So in particular Wi −∆i π1

injects into N −∆i since δWi π1 injects into N − int(Wi).

Now let Xi → N − ∆i denote the cover corresponding to p∗π1(Ŵi − p−1(∆i)). Then Ŵi −
p−1(∆i) embeds in this cover. Let Ȳi be the metric completion. Then Ŷi → N is a branched
cover over ∆i and Ŵi embeds in Ȳi.

Lemma 1 Bowditch
For all j, δ̂j is the only closed curve preimage of δj in Ȳi. All the other preimages are lines.
Therefore the covering space here embeds in this other larger covering space. Now we can do
the PL-shrinkwrapping of Si.

There can be infinite branching, where those parts can be, say, out here, so, and when you
shrinkwrap with respect to the i geodesics on the inside and the others on the outside, it’s
possible that this guy will want to touch one of these guys on the outside, but that’s okay.
We can shrinkwrap there, as I said.
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So now we need to show that these surfaces satisfy the taming criterion. The thing to do is
to focus on the picture. So that surface was shrinkwrapped to Pi and then projected to Ti.
We have to pass to this subsequence so now I have Ti1 , Ti2 , . . .

We need to show

1. genus(Ti) ≤ genus(δ(core))

2. Ti is Cat(−1).

3. Ti exit the manifold.

4. Ti homologically seperate.

We have the first two by consturction.

Let αi be a locally finite collection of proper rays in N such that for all j, αj starts at δj .
Then if j ≤ i let α̂i

j denote the lift of αj to Ȳi starting at δ̂j . Since δ̂p(i) ∈ Bagi, 〈Si, α̂
i
j〉 = 1

where j = p(i). So Pi ∩ α̂i
j 6= ∅ because of the way the shrinkwrapping works. So when you

project downstairs, Ti∩αj 6= ∅, so that Ti hits the ray itself. That is, for all i, Ti∩αp(i) 6= ∅,
and p(i) → ∞ as i → ∞. Then by the bounded diameter lemma, these surfaces have to go
off to ∞.

For i very large, d(Ti, δp) is large, so [Ti] = n[δ(Core(N))] ∈ H2(N − int(Core(N))) where
n = 〈αp, Ti〉. This is because while you generally have to go along a ray from the core to see
this, for sufficiently large i, you can choose a short path from the core to δp. So here we only
need to count intersection number with the ray αp.

How do we make this calculation? We notice this one to one correspondence between inter-
section points of αp and Ti downstairs and preimages of the ray with the surface Pi upstairs.
Note that since Ti is far from δp downstairs, we have that q−1(δp) and Pi are far from one
another upstairs. Notice that there’s one canonical lift of αi, corresponding to starting in
δ̂p. I claim that 〈α̂p, Pi〉 = 1 if α̂p is this canonical lift of αp. Since ˆdeltap ⊂ Bagi, then
〈α̂p, Si〉 = 1. But since Si

∼= Pi by a homotopy missing δ̂p, you also have 〈α̂p, Pi〉 = 1.

With the other lifts, the claim is that we have algebraic intersection number zero. The other
preimages of δp are lines. So the preimages of αp start on the lins. So then we can move
these αp along the line. Remember that Si is homologically trivial, so that Pi is homologically
trivial, meaning there’s a compact chain with Pi as boundary. So we just take the endpoints
and push them out to avoid the three-chain. So 〈β, Pi〉 = 〈β1, Pi〉 = 〈β1, ∅〉 = 0. So when we’re
calculating the homology class of Ti, we get one 1 and all the others zero. So Ti represents
the generator in the end. So we found the sequence of simplicial hyperbolic surfaces that
seperate, exit, and have this bounded genus.

Any questions? Anyway, that’s it for these lectures, thank you for your attention.
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2 Fintushel-Stern

I’m again professor Fintushel-Stern. It’s good pedagogy to repeat what you said before. I
wanted to compare techniques useful in three dimensions in dimension four. The second
thing that Ron did, he gave a user’s guide to using invariants to distinguish the manifolds
we’re discovering. The two constructions I want to talk about today, there’s one called the
log transform. It’s nothing more than Dehn surgery, removing and resewing T 2×D2. So say
T ↪→ X4, Xθ = X\N(T )∪θ T ×D2, and here θ is the gluing map. To record the information
for the gluing map, you get:
θ : δ(T 2 ×D2) → δ(X\NT ) So really the information that’s important is homological, just
like in Dehn surgery. So in T 3 you choose a basis α, β, [δD2]. Then we can look at three
integers, as we have θ∗[δD2] ⊂ H1(δ(X\NT ),Z) and θ∗([δD2]) = pα + qβ + r[δD2] and we
call the resulting manifold X(p, q, r).

So okay, another operation, like knot surgery. So you remove S1 × (S1 × D) and sew in a
knot complement. I want not to disturb the homeomorphism type of the manifold. Oh, that
reminds me that tomorrow at 1:00, Peter Teichner will be giving a talk about topological
four-manifolds, here.

I need S3\K to have its fundamental group killed. If I can assume that the generators
of the homology die in the complement, then by Van Kampen I haven’t disrupted simple
connectivity. So assume π1(X\T ) = 0. By Alexander duality, then, this torus is homologically
essential, so that [T ] 6= 0 in H2(X). I’m not assuming the torus for the log transform is
homologically essential, but I need that for the knot surgery.

Exercise 2 Show that XK
∼=homeo X.

Okay, so XK = X#TS
1 × MK Now I can do zero frame surgery on the knot K ↪→ S3.

Then I can call the manifold MK the manifold with zero frame surgery. Now sitting inside
of S1 ×MK is S1 cross the meridian. So this is again a fiber sum. This is just a convenient
way. That’s a review of the first lecture.

The second lecture was developing invariants to see if these operations were fruitful. We’ll
treat the Seiberg-Witten invariants very formally for the purposes of this lecture. They’re
defined on homology elements which are characteristic, SWX = {c ∈ H2(X)|cx = x2

mod 2∀x} → Z. Ron wrapped this up into a Laurent polynomial. Since the Seiberg-Witten
invariant of a class is ± the invariant of minus the class, so we can make it symmetric.

So SWX ∈ Z[H2(X)] is SWX(0), which only exists if X is even, plus
∑
SW (B)(tB +

(−1)χ(X)t−1
B ).

So we want to work out gluing operations, and how they affect the Seiberg Witten invariants.
Ron used the theorem, suppose X = X1 ∪T 3 X2 and there exists a homology class ¯omega ∈
H2(X) that restricts nontrivially to T 3. Then SWX = (j1)∗(SWX1)(j2)∗(SWX2). Okay. So,
let’s suppose 0 6= [T ] ∈ H2(X) and I do a log transform.
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Exercise 3 Check that the hypotheses of Taubes’ theorem are satisfied

So then the theorem tells us that SWXθ
= (j1)∗SW (X\N(T ))SW (T 2 ×D2).

So SWE(n) = (tF − t−1
F )n−2. Then SWE(n)θ

= E(n)θ = E(n)(p,q,r) = E(n)(0,1,r) so p and q
are sort of extraneous.

So let Tr be the “core” torus in E(n)θ. So this is a primitive homology class, but F = rTr.
You have to think about that. So if I let t be in the group ring of H2(X) corresponding to
Tr, then I get SWE(n)θ

= (tr − t−r)n−1 1
t−t−1 . If I do two of these I don’t do anything bad,

but if you do three log transforms you’ll disrupt simple connectivity.

This is sort of a proof that the elliptic surfaces log transforms are all the same, but different
for different r. Really the name of the game here is to do obvious things, and hope that
someone intelligent in analysis comes up with something, and then you do your tricks.

How in the world are we going to compute the Seiberg-Witten invariant for when you sew
in the complement of a knot. So S1 ×D2 is the complement of what knot? Let’s see who’s
awake? The figure eight. No, the unknot. Okay, how do you go from this to another knot?
You change crossings. You have some crossing and we want to change the crossing. What
you want to do, now, is cross that with a circle. That’s a nice observation, so far useless,
but how do we change a crossing? The only operations I told you about are fibered sum and
Dehn surgery. Make the observation, if I want to get there, that’s the same thing as the other
crossing, but with a Dehn surgery on a loop, this one in this picture, it’s a −1 Dehn surgery.
The effect of doing a −1 surgery, that wraps into a −1 right handed twist. So that changes
the crossing. If this is the first time you’ve seen that, it’s your exercise for this afternoon.

So what I’m more interested in is the complement of the knot. So I’m looking at S1 × S3\
this picture. So what other property do you have with this curve? This curve has linking
number 0 so that it’s nulhomologous in the complement of the knot. So I change K by Dehn
surgeries, ±1, on nulhomologous tori, to get the knot surgery. So XK is related to X via a
sequence of ±1 log transforms on nulhomologous tori.

That’s the topological input. I get a little depressed, I really do. So if r is ±1, and I do
this on a homologically essential tori, I don’t change the Seiberg-Witten invariant. But on a
nulhomologous torus, there’s a massive change in the Seiberg-Witten invariants.

Theorem 2 If K ↪→ S3, and T ↪→ S with [T ]2 = 0. I guess I mean [T ] 6= 0. Then
SWXK

= SWX∆K(t2). So it’s meaningful if you do it with something with nontrivial Alexan-
der polynomial.

So, an example corollary is that if the Alexander polynomial is not monic, then XK cannot
be symplectic, because the Seiberg-Witten invariant of the canonical class of a symplectic
manifold is ±1 so the Laurent polynomial is monic.

Certainly the way to prove this, last time Ron stated the gluing formula, in terms of the
(0, 0, 1), (0, 1, 0), and (1, 0, 0) log transforms. So the name of the game is to just do the
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equation. Think of the Alexander polynomial. Dow do you compute it? You have portions of
your knot K+,K−, and K0, and ∆K+ = ∆K− = (t+t−1)∆K0. The game in this computation
is to start building a tree, then at each branch in the tree the K− becomes your new K−.
So then at the end you get some split links and unknots. Then you go back up through the
tree and get the Alexander polynomial of the knot. That’s why knot theory is so attractive
to undergraduates.

So, let me draw the trefoil.

trefoil

t+t−1 &&MMMMMMMMMM

yyssssssssss

unknot Hopf link

t+t−1
''NNNNNNNNNNN

xxrrrrrrrrrr

unknot 2− unlink

So ∆T = 1 + (t+ t−1)∆K0 = 1 + (t− t−1)2.

I’m not going to prove the theorem. It’ll be in the lecture notes. But the takehome message
is that the important thing is the nulhomologous torus.

Exercise 4 Let T ↪→ X4 with [T ] 6= 0 and [T ]2 = 0. Does every X with b+(X) > 1 have
such a T?

So just about every manifold you have includes a torus. But that’s not true for b? ≤ 1.

Exercise 5 Let Xn = CP2#CP2
. Show that such a T exists in Xn if and only if n ≥ 9. So

one fact is that CP2#nCP2
, for n ≥ 5, there are infinitely many smooth structures on these,

precisely because there’s a trick to find a nulhomologous torus.

Of course it would be a nice trick to look at a manifold and find appropriate tori. Is there
a sort of homology theory, a Fukaya category of nulhomologous tori? I have absolutely no
idea.

Here’s a wonderful thesis problem. They all have χ an integer. Construct a manifold that
has χ a half-integer that’s not, say, a connect sum of manifolds. Look at E(2). Inside of that
is a sphere S with self intersection −2. What’s the boundary of its tubular neighborhood?
As an exercise, the boundary is RP3. This admits an orientation reversing diffeomorphism.
Take E(2)∪θ:RP3→RP3 −E(2). Exercise: χ is a half-integer. But this should be a nonstandard
manifold. It’s been dormant. Is this a nonstandard manifold? The standard picture for this
would be E(2)#E(2). It’s homeomorphic to this manifold, but is it diffeomorphic to it? If
it is that, it’s probably doable by someone with perseverence. If it’s not diffeomorphic, it’s
possibly doable by someone with very high IQ points.
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[Why is it n ≥ 5?]

That’s the game. It could be lower, maybe it’s zero? It’s hard to say, maybe CP2 has
infinitely many smooth structures.

3 Morgan

[I had a lot of trouble today, the heat is getting to me more and more during the afternoon
lectures.]

Yesterday someone asked me, where’s Perelman, all we heard about was Hamilton. We need
a couple of consequences of the maximum principle for tensors due to Hamilton.

Theorem 3 (Hamilton)
As the curvature gets large, the negative eigenvalues of the curvature operator are arbitrarily
small multiples of the largest positive eigenvalue. So this is for Ricci flows on compact 3-
manifolds. R(x, t) ≥ 2X(x, t)(log(X(x, t)) + log(1 + t)− 3). So if you assume the curvature
is at most ±1 then R(x, 0) ≥ −6, so that X = max{0,−V (x, t)}.

Exercise 6 As |Rm| → ∞, then R → ∞. If the smallest eigenvalue is negative, then, well,
lim(v/R) ≥ 0.

The second theorem is a consequence of the strong maximum principle. Let me say what
that is for the heat equation ∂h

∂t = ∆h. Suppose the initial conditions are h(x, 0) ≥ 0, and
h(x, 0) > 0 for some x. Then h(x, t) > 0 for all x and all t > 0.

This theorem has an analogue in higher dimensions:

Theorem 4 (Hamilton)
Suppose (M, g(t)) is Ricci flow, and that Rm(x, t) ≥ 0, and at some positive time there is
a zero direction for Rm. Then M3 locally splits as (Σ2, h) × (R, ds2) and Σ has positive
curvature.

Those are the two facts we’ll need later on when we start chasing the analysis.

Let me talk for just a few minutes about some elementary constructions with Ricci flow, and
then talk about blowup limits.

So we have a Ricci flow (M, g(t)) and we rescale by Q > 0, so we define a new family (M,h(t)),
where h(t) = Qg(Q−1t). In this Ricci flow I move much more slowly. The curvature is much
smaller. If (M, g(t)) satisfies Ricci flow then so does (M,h(t)). You can also time translate
(M,h(t)) to (M,h(t− t0)).
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So using these two notions we can talk about blowup limits of Ricci flows. So suppose I have
a Ricci flow (M, g(t)), and a sequence of points (xn, tn) in M × [0, T ) where the flow blows
up. So take Qn = R(xn, tn). Now take a sequence of based Ricci flows {(M, g(t), (xn, tn))}n.
So then we shift to rescale and start at t = 0, so that gn = Qng(Q−1

n (t− tn)).

I write the new Ricci flows as (M, gn(t), (xn, 0)). This is the nth Ricci flow where I’ve scaled
up and moved the time to zero. So R(xn, 0) = 1. I’m interested in studying negative time.
It makes sense to talk about a smooth or C∞ limit of these. You could just ask for a limit
of the time zero slice or a flow backwards for some time, or a flow back to −∞.

A time 0 slice would be (M∞, g∞(0), (x∞(0)) where M∞ is a complete manifold. Then the
pullback is [[unintelligible]] uniformly to ψn : K → (M, gn(0), (xn, 0)) on compact subsets.
You could ask that they pull back flow, not just a point, and then maybe ask that it goes
further backward in time. You might find this counterintuitive, but because you’re rescaling
time, there is more and more time available for the same backward flow.

[A lot of very rapid talk.]

Now, if a blowup limit exists then it has nonnegative curvature. That follows from one of
the earlier theorems. So if you have a time zero slice or a backwards flow of any size, then
the Ricci flow will have nonnegative curvature.

It’s not flat. In fact, at the basepoint, the scalar curvature R(xn, 0) = 1.

There are two issues here. The first is, when can you construct blowup limits. The second is
what they look like, whether you can classify them. If the answer to the first is yes, and the
answer to the second is pretty good, then you can get an idea about finite time singularities.

Okay, so let’s talk first about, what do you need to be able to construct a blowup limit?

In general, that’s a hard problem. I’m asking for C∞ convergence, so I have to control higher
derivatives of the curvature. Fortunately, there’s a bootstrap procedure to ratchet up bounds
on the curvature to bounds on its higher derivatives.

Lemma 2 Shee’s lemma.
If |Rm| ≤ C then there exist constants c1, c2, . . . , so that |nablaiRm| ≤ ci/r

i on B(x, t, r/2).

That takes care of one of the three parts of geometric limits. You need to control the
curvature, its higher derivatives, and the injectivity radius.

But if we have a sequence of Ricci flows (Mn, gn(t), (xn, 0)) and if for all R then |Rm| ≤ C(R)
on B(xn, 0, r) × [−ε(R), 0], and if inj(xn,0)(Mn, gn(0)) ≥ δ > 0, then there is a smooth
geometric limit at time 0.

With those two conditions you get control of the derivatives with Shee’s theorem nad then
you can pass to a subsequence. If you had better control in the time direction, you could
pull your flow back to −a, and if you had a sequence of these, you might be able to go back
to −∞.
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So you need to control the curvature and injectivity radius bounded away from zero.

Let me give you an example. You find in the manifold pieces that look like S2× (−ε, ε). The
metric is not the product, but it’s close to the product. Varying a little bit the metric on the
cylinder, it could be negative.

[What if you started with a hyperbolic manifold?]

Those will inflate. You know there won’t be finite time singularities. I don’t know a statement
for negative curvature, even bounded away from zero. Maybe it could be so bouncy that
things could bubble off.

So you must control curvature at a bounded distance and injectivity radius at the basepoint.

Theorem 5 (Perelman)
Given (M3, g(t)) a Ricci flow, which is developing a singularity at finite time, then for any
blowup sequence (xn, tn) along which the scalar curvature goes to ∞, there exists a subsequence
with a geometric limit.
This limit is an ancient solution, meaning it exists from time −∞ to 0, it is nonnegatively
curved, not flat, has bounded curvature, and is what I will call κ-non-collapsed. Here κ is a
fixed positive number depending on [the bound on the injectivity radius?] and upper bound of
the norm of the Riemannian curvature.

Let me say what κ-non-collapsed means. We have a ball B(x, t, r) and the backward parabolic
neighborhood in time −r2. That’s P = (x, t, r,−r2). Suppose |Rm| ≤ r−2 on P. Then
vol(B(x, t, r)) ≥ K · rn. This is a statement in all dimensions.

This is intimately related to the question of the injectivity radius.

Suppose I have a complete manifold of bounded Riemannian curvature that is κ-collapsed.
Then it depends only on the curvature bound and the lower injectivity radius bound. Bound-
ing the volume below is like bounding the injectivity radius below.

We’re going to have a control of the injectivity radius so strong, that it will pass to the limit.
Then the injectivity radii are bounded away from zero. I’ll also get that in the limit it will
be κ-non-collapsed.

If I had to rate the originality of Perelman’s contributions, this is it.

[Did he draw any inspiration from gravity?]

I don’t know.

How do you get control here? You introduce the L -function. So you have, say, (x, T ). I want
to look at γ(τ) where τ takes values as T −t. I have γ(τ) which lies in M×T −τ. So γ(0) = x.

We define the L -length of a path as
∫ τ̄

0
(
√
τ)R(γ|T ) + |X(τ)|2dz. Here γ′(τ) = (x(τ),−1).

We can try to minimize the length of the paths back from (x, T ). So I get ∇XX = 1
2∇R −
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1
2τX − 2Ric(X, ·).

If you reparameterize with s =
√
τ this is a ODE which is nonsingular at 0.

Up in the tangent space we’ll have an open set Ũ(τ). At time T − τ we’ll have the image
U(τ). Once you know the tangent vector you get the whole differential equation. Then you
get an exponential to come down. You have the open dense cut locus. Then the map on Ũ
is a diffeomorphism. These sets vary with τ. The closure af Ũτ is contained in Ũ(τ ′) if τ ′ <
tau. So the τ are minimal geodesics but they may not be unique, but if you back off you get
something complete and unique and the exponential map is an isomorphism.

On the cut locus, things are more complicated, but this is analogous to how you deal with
this via Riemannian geometry.

All right. So how are we getting toward the injectivity radius? It turns out to be useful to
study `(γ) = 1

2
√

τ

∫ T

0

√
τ(R+ |X|2)dτ. This is scale invariant.

Now we look at the reduced volume Ṽ (W × {T − τ}) is
∫

W
τ−n/2e−`(w)dw. I wish I could

tell you what the integral means but I can’t. When is it going to be small? It will be small
when ` is large. The τ is just to make it behave well under scaling.

Theorem 6 Ṽ is monotone nonincreasing as a function of τ when we flow along minimal
L -geodesics.

Here’s the point x at time T, here’s the space W i’m studying. I’m going to pretend that I’m
in the good set, every point has a unique family of L− geodesics going te it. I comupute the
comparison of the two reduced volumes. I get that Ṽ (W (τ ′)) ≥ Ṽ (W (τ̄). Let me use this to
produce κ-non-collapse.

Start now with (M, g(0)). I want to prove that this is κ-non-collapse. Come back to, say, the
1/2 level. If my original metric has curvature bounded by one, I’ll have control, nothing will
have gone to a singularity. Now there is a γ with `(γ) ≤ n/2. Now take a ball centered at
time 0, and draw curves from the point xt down to the ball.

[unintelligible]

The `B4×{0}×··· ≤ C and then Ṽ ≥
∫
τ−n/2e−Cvol(B). You’re only supposed to check things

on the ball

[unintelligible]

The volume factor is going to zero, so you won’t get much reduced volume from these
geodesics, you have a fixed amount of reduced volume down here and get a fixed amount of
ordinary volume here. That’s the basic argument for the κ-non-collapse.

At each point in the manifold you have the curvature scale, to give a ball of radius one on
which the curvature is bounded by one. You really only check this at the curvature scale.
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Hamilton would always take a sequence along which the curvature was maximal. The cur-
vature everywhere would be bounded by one. Here we could have two singularities, so you
have to prove that the distance rescaled by the rescaling for one singularity, goes to infinity.
I’ve postponed that from today until tomorrow.

I think I’d better quit, I see Kirby back there giving me the time to quit sign.

4 Kirby

[Rob is a topologist famous for triangulating manifolds, or almost triangulating manifolds,
and the Kirby calculus in four dimensions.]

My title used to be “How mathematicians think in dimension four” and I was going to chase
away the topologists. I was told not to do that, so then Bob Edwards suggested this topic.

To talk about Boys’ surface I have to talk about the projective plane P 2. Some people talk
about the complex projective plane, but this will always be the real projective plane.

Recall Rn is just real space with n coordinates {(x1, . . . , xn)}. inside that is the unit ball
Bn = {x2

1 + . . .+ x2
n ≤ 1}. The three ball is the ball you bounce, the two-ball is the disk in

the plane. The one-ball is the unit interval, and the higher ones are what they are.

Then the sphere is the boundary of the ball Sn−1 = {x2
1 + . . .+ x2

n = 1}. So S2 is the sphere
you think of, S1 is a circle, and S0 is a pair of points. Now Pn is the n-sphere, and then
you glue together points at opposite ends of a diameter. So it’s Pn/x ∼ −x. So P 0 will glue
together the two points of S0 into one point. For P 1, you want to glue together opposite
points on the circle. Anyway, you go like that. That means, I just take away this arc and
glue it on the other side. I can take this arc, which goes up there, I can cut this arc and glue
it to there. Then finally there are these two points which need to be glued together, they’re
opposite ends of a diameter, and you can only do that by pulling them together, and so you
get the circle.

So how is it that we do this with the two-sphere? You can start off with the two-sphere. One
way is to take off the upper cap and the bottom cap. We’ll put that cap aside. Now they’re
gone, we set them aside. The next thing you can do is think of the front half being glued
to the back, so I can throw away the front, and am left with the back. Now one side has to
be glued to the other side. But remember, it’s across diameter so in particular, you flip all
the points around. When you finish doing the identification after throwing away the arctic
and antarctic caps, you get a Mobius strip. So now that circle has to be glued to the edge of
this, which is this circle right here. You get out your needle and thread and glue the circle
to the circle. There’s no way to do this in three dimensions, it can’t exist. That’s because
the projective plane does not embed, does not sit inside three-space. You’ve probably seen
another example of this because you’ve probably seen pictures of the Klein bottle. This is a
cylinder and the cylinder is attoched back to itself, not like this, to give an inner tube, but
like this, so you pass through the side and glue to the bottom and get a Klein bottle. The
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point is that this does not embed. It intersects itself and it’s not supposed to. In four space
you could step out into fourspace and cross over and then glue it in.

It’s the same for the projective plane. You could take the circle boundary in the mobius strip
and unwind it in a movie, in time, and then glue in the disk. But it’s hard to imagine this
in three-space.

Let me say one more word about immersions. An immersion must have a continuously
turning tangent. That’s the property an immersion must have. This cusped picture does not
have a continuously turning tangent. This is also an immersion because it has a continuously
turning tangent.

In 1901 a German mathematician named Werner Boy came up with an immersion of P 2,
which is hard to do. If you google this you can find lots of pictures, but they’re not fully
satisfactory, because they don’t show what’s happening on the inside. Now you might have
two parts of the surface intersecting in a line, but then you might imagine that if you had a
third part of the surface intersect that, it would end up with a triple point. You can prove
that any immersion of P 2 must have a triple point. So we could start with that.
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So when they picked a logo for PCMI they thought, “Let’s see, what will Rob Kirby need
for his talk in 2006?” So look at this picture of an octahedron, or like K6 with a triple-
intersection point. Here is the triple point, and you can see the three planes here which lead
to them. Now you can also see three squares, the horizontal square and the three vertical
squares. You add the two triangles on the sides on the top and the two triangles in the front
and back on the bottom. Now I want to argue that this is the projective plane.

So first I want to argue that this is a surface. When you put two faces together, you can
round that off. If you put a third face in on an edge, you wouldn’t have a surface. This red
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edge is the boundary of this triangle and this square. The same argument is true at every
edge. So that’s how you check that it works at the edges. Now let’s check the vertices. Up
at this vertex, you have this line from this triangle, then this other triangle that we added
in. Then there are the two squares that we added in. What I’ve drawn there looks kind of
like two triangles that have met at a corner.

The two squares give the two lines that cut across one another, and the two triangles give
the other two lines.

So this figure eight is an immersion of the circle. The cone of a regular circle is just a disk.
The cone of the immersed circle is a disk which is not actually immersed, but it’s a disk.

Now the question is whether we have an immersion, and whether it’s P 2. So it’s not immersed
at the six vertices. It doesn’t have a continuously turning tangent at the vertices. But let
me convince you that this is the projective plane.

To do that let me remind you of the Euler characteristic, which is the number of vertices
plus the number of faces minus the number of edges V − E + F. For P 2 it’s 1 Why is that?
Let’s break up the sphere. If we break up the equator with two vertices and two edges and
two faces, we get V − E + F = 2− 2 + 2 = 2. So to get the projective plane we identify the
two vertices, the edges, and the faces, and get 1− 1 + 1 and so that’s an Euler characteristic
of one. So we have 6 vertices, 12 edges, and 7 faces. What, you didn’t expect it to come out
wrong, did you?

[Is this a correct count? Maybe in the immersion, two vertices intersect so you should count
them twice instead of once.]

You have to look at this to see that it’s not the case. You can take, if you take the cube,
there’s a cube, and now chop off every corner. Cut across diagonally and remove the corners.
Then you have an object that’s still a sphere, the boundary is, and you can still use the
antipodal map to identify opposite things. When you do the cutting, I want to take a big
corner off.
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Okay, so there’s this problem with the six vertices where it’s not immersed. So we have to
do another trick.
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So this is a line of intersection. Is purple visible? You have this line of intersection. You
have this circle that runs from here, around, and has a double point in it. Now if you were
to put your fingers on this part of the object, pick it up, and push this part down flat, you
would have the cone on the figure eight. If you just lift this up, that would look like there
are rays going out from the point to all of the points on the figure eight. So I could find a
bunch of these in the picture I’ve drawn. I could come up with a line connecting these two
double points in this picture, corresponding to this red line here.

So then you can draw these two together, and sort of pull them together. We want to replace
these two cusps, along the red line, so that instead of having the two bad points, we connect
them, push them toward each other and cancel them.

We colud do this one to get rid of those two and this one to get those two, and then get rid
of these two with this edge.

The virtue is that you don’t just see a pretty picture, you see how it’s built. Then bits of
the projective plane will intersect in curves. So you see this thing. Now you’ve takn this
curve, and extended it to a curve that runs along there. So then you extend them and make
them meet along this curve. The double curve dous this and then comes back, and comes
along this side, and comes back to where it was on this side. So you have one circle of double
points, with one triple point in the middle of it.

As I say, we were discussing it last Thursday or Friday, and Bob Edwards basically told me
this description, Bob gavo me the mathematics, and [unintelligible]drew the picture, it’s like
the evening news. I should have gotten a beautiful woman out in the audience to read the
news to you. I didn’t do anything. To me, this is enlightening, and the other description is
less so.

In the last few minutes I want to say how it’s useful in turning the sphere inside out. I could
never follow it and tell what’s going on. I’d never seen the two-sphere turn inside out. If you
draw the circle, here’s the inside. Suppose I wante to move this through immersions, now
the red side is poking out, but if you keep on doing this, most of the red side is out, you’ve
almost turned it inside out, but there’s a nagging problem there. You get a cusp when you
pull it tight, you don’t get an immersion. You can’t turn the circle inside out that way, and
it’s a theorem of Whitney’s that you can’t do it at all.

Then there’s this theorem of Smale in 1956 that you could take the 2-sphere through immer-
sions inside out. The first time this was actually visualized, it was by a blind mathematician
named [unintelligible].

The description that made the most sense conceptually to me uses Boy’s surface. There’s a
perpendicular line to any point in a surface in three-space. If we take the unit interval, we
cut them off, we just take the line interval everywhere. This is called the line interval bundle.
Everywhere you have the interval [−1, 1] on Boy’s surface. So now on the outside, the −1
and 1 points, those define the sphere again. Up here there’ll be a piece, don’t here there’ll
be a piece. So everywhere along Boy’s surface are these two points. That’s the sphere. It’s
immersed. Let’s say the red is inside again, notice what we can do. We can take this point
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and this point, taking this point north and this point south, take them through each other,
and we’ve turned the colors inside out. When the two endpoints meet, we’re at the projective
plane. That’s Boy’s surface, an immersion of the sphere, going around twice.

There’s a difficult problem I don’t have anything to say about. Now you have to move that
sphere through immersions to the round sphere. You might think of putting a straw in there
and blowing it up but you don’t know that that doesn’t create cusps. In that I don’t really
have any insight, you might think, well, how do you unwrap that and make it round? That’s
your homework problem. Thank you.

[Questions?]

[Can you see a Mobius band in Boy’s surface?]

Yes, but that’s another homework problem.

Come on up, Bob.

[You drew a picture that reminded me of something I forgot to tell you, Rob. There’s another
picture that is easier to see but hides some of the symmetry.]

Here I gave a 50 minute lecture instead of a 75 minute one, but I failed, because now he’ll
fill up the rest of that time.

The Klein bottle can be cut in a way that will give you two mobius bands. I should be
doing this in color. Over here, this is leading to another picture of Boy’s surface. Here
the horizontal cut circle goes like this. There’s an immersed circle, and hanging down from
it is the Mobius band, just the bottom half of that. This circle in the plane is regularly
homotopic, that is, homotopic through immersions, to the standard circle. There drawn in
the blackboard plane is the same circle. In general principles Whitney’s theorem says since
the turning number is one you can do it. But you can see it. Push it out over this curve. So
there’s a regular homotopy. Put the regular homotopy, and then cap off with a disk. The
single triple point occus when th first push goes across the point there. So the homework
exercise is to compare the two immersions and see that they’re the same.

[How many immersions are there up to regular homotopy?]

Another homowork problem. Do you know the answer?

[I think it’s one.]

[I have a question and a comment. The question is on the regular homoteopy of P 2 into R3,
I guess that was asked.]

The smart guys in the back said two.

[The comment was, I think there was a video before.]

I think the first visualization was by [unintelligible]in the sixties which is likely to be before
any video.
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[Construct a map from that immersion to an embedded sphere, can you always do that?]

Yes, by Smale’s theorem, but I don’t know how to visualize it.

[Any other questions? Let’s thank Rob again.]
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