Lusztig Conference Notes May 31, 2006

Gabriel C. Drummond-Cole

May 31, 2006

1 Roman [unintelligible], MIT, a geometric approach to modular representations of semisimple Lie algebras

Let me start with some standard notations. We'll work over an algebraically closed field k and then we'll have G and $\mathfrak{g} \supset \mathscr{N}$ the nilpotent cone, and then we have $\mathscr{B} = G/B$ and $T^*\mathscr{B} = \tilde{N} \to N$ which can be written $\{b, x | x \in rad \ b\} \mapsto x$ which is also the moment map for the standard symplectic form.

I should say, as source,

- 1. This is a realization of the affine Hecke algebra of the Langland dual group G^{\vee} . This is some algebra over the ring of Laurent polynomials. In some form this goes back to a paper of [unintelligible], it can be realized as [unintelligible]and the product is by convolutions. You can realize the standard module over the affine Hecke algebra. It contains the finite Hecke algebra, and so you get the antisymmetrizer.
- 2. This is some conjectural description of a canonical basis in the cohomology of the Springer fiber $H^*(\mathscr{B}_e)$ and a relation to modular representations of \mathfrak{g} .

What I am doing is

- I. Categorification of 1, well, using the Grothiendieck-[unintelligible]function philosophy, it is a K-group over some other.
- II. If you like it's a kind of categorification of 2, geometric methods for modular representations of \mathfrak{g} .

You can apply I to II to show canonicity of the basis.

III. A generalization of methods of II. to other geometric contexts, namely the cotangent bundle of a flag variety is replaced by some other algebraic variety. One can replace it with any resolution of singularities carrying a symplectic form. I'll discuss it carrying the Hilbert scheme of points on a plane. Then it is the modular representations of \mathfrak{g} are replaced by modular representations of rational [unintelligible].

Let me talk briefly about I. If you have $\mathscr{H}_{aff} \otimes \mathbb{Q}$ with $q \mapsto p^a$ then this is $\cong \mathbb{Q}[I \setminus G^{\vee}(F)/I]$ where $F \cong \mathbb{F}_p((t))$ and I is the Iwahori group. The quotient $G^{\vee}(F)/I \cong \mathscr{F}(\mathbb{F}_{p^a})$ where \mathscr{F} means the affine flag variety.

So $\mathscr{H}_{aff} \iff D_I(\mathscr{F})$.

We have $M_{\text{asp}} \cong \mathbb{C}[I \setminus G^{\vee}(F)/N(F), \psi]$ where N is the maximal nilponents and ψ is a non-degenerate character.

Theorem 1 $D^b(Coh^G(\tilde{N})) \cong D^b(P_{asp})$ where this is antispherical perverse sheaves on \mathscr{F} .

So I will now pass to II.

Let char $k = p > h, U = U(\mathfrak{g})$. So $Z = Z(U) \supset U^G$ but also the Frobenius center $\langle X^p = X^{[p]} \rangle$.

So a central character is specified by (λ, e) . It's known from old work that it's enough ot study $e \in \mathcal{N}$ and then $\lambda \in \underset{\mathbb{F}_n}{*} = \Lambda/p\Lambda$, where Λ is the weight lattice.

So U_e^{λ} sits inside U with an intermediate thing $U_{\hat{e}}^{\lambda}$ in between for technical reasons. So say λ is regular if its stabilizer is trivial. Then

Theorem 2 –, Markovic, [unintelligible]

If λ is regular, then the bounded derived category $D^b(U^{\lambda}_{\hat{e}} - mod^{f.g.})$ is a full subcategory of $D^b(coh(\tilde{N}))$.

There are variations of this.

Corollary 1 the number of irreducible representations of U_e^{λ} is the same as the dimension of $H^*(\mathscr{B}_e)$.

Some of the more difficult elements of this construction arise as follows, from the compatibility of I and II: The irreducible objects in the derived category of coherent sheaves on the cotangent bundle, which corresponds to irreductible representations of U_e^{λ} , as follows: for some $F \in P_{asp}$ such that, let \mathscr{C}_F be the corresponding sheaf, then we can find [unintelligible]so that \mathscr{C}_F is supported [unintelligible]. Then the irreducible representation is a direct summand in \mathscr{C}_F restricted to π^{-1} of a slice to G(e), up to a shift.

Now I want to just explain a little bit about how this works. So in characteristic zero and for a regular dominant λ an equivalence between U^{λ} -modules and a category of *D*-modules on the flag variety.

At this point I ceased taking notes.

2 Beilinson

It's a pleasure to be back here. I would like to thank George for so much great mathematics.

Recall that ϵ -factors have two sides. They come as constants in equations for Galois type functions. Let V be a finite dimensional graded vector space along with a self-map which is frobenius. Then L(V,t) is $\prod det(1 - Fr t, V^i)^{(-1)^{|i|}}$.

Then $\epsilon(V,t) = \prod det(-Fr \ t, V^i)^{(-1)^{|i|}}$.

I couldn't see the board.

3

It's a great pleasure for me to speak here. Today I want to speak on graded lift. I will let \mathscr{O} be $\{M \text{ in the } \mathfrak{g}\text{-modules which are finitely generated and locally finite over } \mathfrak{b}$ and semisimple over $\mathfrak{h}\}$. So let \mathscr{F} be $\mathfrak{g}\text{-modules, finite dimensional, with } \otimes$. Then $E \otimes : \mathscr{O} \to \mathscr{O}$. Then \mathscr{O} admits a \mathbb{Z} -graded version $\mathscr{O}^{\mathbb{Z}}$. Then does $E \otimes$ exist as a functor that lifts $E \otimes$.

The first question is whether every functor $E \otimes$ admit a graded lift. The answer is yes. Lots and lots of them. I will discuss this later. The second question is, can we choose these graded lifts such that $(E_1 \oplus E_2) oti \tilde{m}es = (E \tilde{\otimes}) \oplus (E_2 \tilde{\otimes})$? How about that $(E_1 \otimes E_2) \tilde{\otimes} = (E_1 \tilde{\otimes}) \circ (E_2 \tilde{\otimes})$. The answer is also yes but it is not so easy.

The third question is whether we can lift the action of (\mathscr{F}, \otimes) on \mathscr{O} to an action on $\mathscr{O}^{\mathbb{Z}}$? The answer is no way. The isomorphisms are not canonical at all, and cannot be made canonical. Between the second and third question there is much work to be done, I haven't done that.

The first thing is about the graded version of this category \mathscr{O} . This is old work, based somehow on ideas of [unintelligible]. This category \mathscr{O} breaks up as $\oplus_{\lambda} \mathscr{O}_{\lambda}$. This $\lambda \in \mathfrak{h}^*_{dom}$. So $\mathscr{O}_{\lambda} \cong A_{\lambda}$ -modules. Now A_{λ} admits a \mathbb{Z} -grading with only positive degree parts and A^0_{λ} semisimple. We insist that A^1_{λ} generate A_{λ} over A^0_{λ} . This is not unique but the ring you get is.

So wipe this out and you get A_{λ} -graded modules over this algebra. Then you have the forgetful functor v and so you think that $\mathscr{O}_{\lambda}^{\mathbb{Z}}$ is this category and to get the whole category you take the sum of the blocks $\oplus \mathscr{O}_{\lambda}^{\mathbb{Z}}$.

The graded objects are in correspondence with $\mathfrak{h}^* \times \mathbb{Z}$ by $(\mu, n) \mapsto L^{\mathbb{Z}}(\mu) \langle n \rangle$.

To convince you that this graded category is notural to consider, although the Verma module admits a graded lift $\Delta^{\mathbb{Z}}(\mu) \twoheadrightarrow L^{\mathbb{Z}}(\mu)$.

Then $[\Delta^{\mathbb{Z}}(x \cdot 0) : L^{\mathbb{Z}}(y \cdot 0) \langle i \rangle]$ is some coefficient of a KL-polynomial.

There's a last thing I want to say, that is, a trivial example. Take \mathfrak{sl}_2 . Then \mathscr{O}_0 is equivalent to

the quiver \bullet \bullet with the condition that going once around starting at the left vanishes.

In \mathcal{O}_0 it is the same thing except each arrow has degree one and representations are in graded vector spaces.

If I have a functor $\mathscr{O}_{\lambda} \to \mathscr{O}_{\mu}$ which is a projective functor, a direct summand of a functor $E \otimes$. Considering these up to isomorphism, they correspond with projective objects in \mathscr{O}_{μ} . To each functor I associate its evaluation on the Verma module.

Now, what should I say, somehow it's not difficult to prove that they lift and somehow, all these functors admit lifts and the possible lifts are parametrized by gradings on a projective module. It's a big mess if you have more than one summand.

Let me perhaps explain once more how to do this in \mathfrak{sl}_2 . Say, this functor I just erased, this representation tells you that a graded lift is well-determined by its action on the Grothiendieck group. I take the two-dimensional representation and I want, I want to grode the tensor with every finite dimensional representation.

So $L(\rho) \tilde{\otimes} [\Delta^{\mathbb{Z}}(i)]$ is $\Delta^{\mathbb{Z}}(i+1) + \Delta^{\mathbb{Z}}(i-1)$ for $i \neq 0, 1$, and then $\Delta(-1)\langle 1 \rangle + \Delta(1)$ for i = 0and $\Delta(-2) + \Delta(0)\langle 1 \rangle$ for i = 1. So this looks like

So we get in the antidominant projective:

These ad hoc [unintelligible]don't really help in general.

If you take just integral weights, this is the same size as $\tilde{H}\underline{H}_{\omega_0}$. We can take the shortest. This lambda, this is shortest in $e^{\lambda}v$. This is in the affine Weyl group.

A Verma module $\Delta(\lambda - rho\langle i \rangle \mapsto v^i V_{\lambda}$. This gives, by $v = \sqrt{q}$, [unintelligible].

Then $E \otimes$ corresponds to a Hecke algebra element. I want it to be spherical. Then [unintelligible]. We have $\langle i \rangle \iff \cdot v^i$.

Let me describe how to find this thing, basically there is just some positivity to check. Namely, I claim the following statement. Which way should I put it? It is pretty clear what is the underlying picture, I should take the affine Grassmannian, I should think of it as G/P. Really it's the loop group divided out by the disk group G((t))/P[[t]]. It's the geometry corresponding to this model. This acts basically, take *P*-equivalent objects on G/P. This will act on this thing here. So we have this Grassmannian, and now if we take sheaves on this Grassmanian, take $Der_I(Gr)$ then $\times Der_P(Gr)$ then I'll have a convolution, giving a wholly equivariant sheaf on the Grassmanian, $Der_I(Gr)$. The point is the following. This is somehow a theorem. The essential theorem in this whole story

Theorem 3 Take the IC complex of Iwahori orbit, extend this, and then convolute it with an IC complex in this last category. Then restrict it with i^* . We have $PyP/P \hookrightarrow^i Gr \leftrightarrow^j PxP/P$. This all is perverse semisimple.

An *E*-equivariant sheaf, semisimple on a parabolic thing in the flag variety, extend it by zero and then convolve it and restrict it to another parobolic orbit and it is semisimple again. I think this is a very funny property, and in fact, I should say somehow this semisimplicity gives me the combinatorial positivity needed to define these equivalences. It gives me much more but I did not prove it. This thing is an affine fibration of a parabolic flag manifold. This is like one block of category \mathcal{O} , well, is Kozsul dual to it. If I fit anybody in here, it's Kozsul dual to doing [unintelligible]. This is a good point to stop.