
[Nadler: What about singularities?]
[You can definitely formulate things, but I don’t know the best thing that’s true.

The application I’ll describe today needs singularities.]
The previous lecture was motivation for what I’ll assert in this lecture.
[If you go back to a K(A,n), what is a description for that version of homology?

hocolimMapc(U,X), where U are disjoint unions of disks and X is K(A,n). I could
write it as X = Ω∞E; then I could do the same thing with spectra with maps into
E, and I could look instead at Ω∞hocolimMapc(U,E), and if things are connected
enough then this is a homotopy equivalence. In spectra, the coproduct and product
are the same, and you can thus use a single disk. Then this is the homology of M
with coefficients in a local system.]

All right, so today I’d like to bring the last two lectures together and apply
this noncommutative Poincaré duality. This is unfinished joint work with Dennis
Gatesbury [sp?] I’m going to give some notation now at the beginning.

Fq is a finite field with q elements. X is a smooth complete algebraic curve over
Fq. K is the fraction field of X. If X were over C, this would be a Riemann surface,
and this would be meromorphic functions on this Riemann surface.
x ∈ X is a closed point, and Ox is the complete local ring of X at x, functions

defined on a small disk around x, and Kx is a fraction field of Ox. The ring of

adeles A is the product (restricted
res∏
x

Kx

Now G0 will denote a semisimple, simply connected algebraic group over K, and
as a consequence of being an algebraic group over K, we can evaluate G0 on a ring
containing K. So in particular, you can talk about G0(A). The adeles, I should
say, are locally compact, so G0(A) is a locally compact group. It has a canonical
Haar measure as in the first lecture, which I’ll denote µTam for Tamagawa. This
contains G0(K) diagonally embedded, which is discrete. Given all this notation, I
can formulate what we are trying to prove, namely Weil’s conjecture, that

µTam(G0(K)\G0(A)) = 1

We started with the classification of quadratic forms in the same genus as a given
form. When we phrased it in terms of the measure of a coset space. Now I would
like to undo the steps of the first lecture and rephrase this as a counting problem.

The group corresponding to our count in the first lecture was SO, which is the
automorphism group of the quadratic form. So what sort of objects will we count?
This group G will be the automorphisms of something.

I’ll make a choice. Inside the algebraic curve X there is its generic point Spec K,
and G0 starts its life as an algebraic group over K. Let G be a group scheme over
X with generic fiber G0. Let me add the adjective “nice,” which I’ll use in a
non-technical sense.

Remember, we can evaluate G0 on any K-algebra. So K ⊂ Kx, so it sits in
the adeles, but K is not in Ox. So a priori we can’t talk about G0(Ox). Now we
have an integral structure now, so we can talk about G(Ox). We could talk about
quadratic forms over any ring, starting from the integers.

Our coset space in the first lecture was SOq(Q)\SOq(A). For this we only needed
a rational version, but to go back to the integers, we needed to mod out on the
other side SOq(Ẑ)× SOq(R). For that we need integrality.
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Let me say something about “nice.” [missed some.] If I want to get as close as
I can get to semisimple using general existence theorems.

I wrote G0 before but now we will write G(K)\G(A) and now we can mod out on
the other side by

∏
G(Ox). This, just like in the first lecture, has a combinatorial

description. It’s the set of isomorphism classes of principal G-bundles on X. The
identification is not entirely trivial, and relies on the Hasse principle. Any G-bundle
is trivial over a generic point of the curve, which requires the curve to be, say, simply
connected.

How do we connect the double coset to this? G(K)\G(A) inherits a Haar mea-
sure, and is acted on by

∏
G(Ox). If the action is free, this should be the number

of double cosets times the measure of
∏
G(Ox). These are compact so this would

be finite.
This isn’t quite correct because the group doesn’t act freely. What is correct is

that µ(G(K)\G(A)) is µ(
∏
G(Ox)) times a mass term, which is

∑
P

1
|Aut P |

where P varies over G-bundles. The automorphisms over a finite field are finite.
This sum is infinite, and I’m claiming it converges to something that makes this
true.

This is the kind of statement that we want to prove. You should find that∑
P

1
|Aut P | is 1

µ
Q

G(Ox) which is qd
∏
λx. (this is by definition).

Let me scale back my goals. I’m not going to get to details about what the λs
are. I’ll show that the left hand side has a presentation of this form. I’ll leave out
the problem of showing they are the same local factors as in Tamagawa measure.

That’s my goal now, to convince you that there is a formula of this type.
Informally, let me call the left hand side “the number of G-bundles on X.” This

is what we want to do, we want to count the G-bundles on X. So far this is parallel
to the story in the first lectures. We had the number of quadratic forms in the
same genus, which was a set. This has a structure, because G-bundles on X are
parameterized in an algebro-geometric way.
BunG(X) is the moduli stack of G-bundles on X. That means BunG(X) can

be evaluated on R containing Fq, where these are G-bundles on X × Spec R (over
Spec Fq).

This is like a variety, but we want to think of it as a groupoid whose objects are
G-bundles and whose morphisms are automorphisms.

Then what are we doing? What are we interested in? I can rewrite the left-
hand side, we want to compute the number of points in BunG(X)(Fq). When I say
number, again, I mean counted with multiplicity.

Let’s ignore that for a moment and say that Y , as a warmup, is an algebraic
variety over Fq and we ask a question like “what is the number of points in Y
defined over Fq. This is the subject of other famous conjectures of Weil. There
is a map called the Frobenius map Frob : Y → Y . You take all the coordinates
and raise them to the qth power. The equations definining Y are preserved. If you
want to know if Y is defined over Fq, because this is the set of fixed points of the
Frobenius map, that you should be able to count with the Lefschetz fixed point
formula.
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This should be a sum, an alternating sum of the traces∑
i

(−1)iTrace(Frob(Hi
c(Y )))

Let me call this the Grothiendieck-Lefschetz trace formula. The difficulty is
making sense of Hi

c(Y ). Y is defined over a finite field Fq, but Grothiendieck
introducted étale cohomology, and then you can make sense of the right hand side
and connect it to the left-hand side.

Let me specialize to Y being smooth of dimension d. Then you have Poincaré
duality. Frobenius is not compactible with it, and you learn that Y (Fq) is given by
qd

∑
i(−1)iTr(Frob(Hi(Y ))), which I can phrase as

#Y (Fq)
qd

=
∑

(−1)iTr(Frob(Hi(Y )))

Let me now apply this when Y is not an algebraic variety but instead BunG(X).
The points ofBunG(X) over Fq over qd will be a sum

∑
(−1)iTr(Frob|Hi(BunG(X)))

[missed some]
Let’s remember our goal, to prove that this expression is a product of local

factors λx.
What are we doing now? Now it’s a topological problem, to find the alternating

sum of the trace of Frobenius on the homology of the moduli stack.
This is all standard. Let me input the new idea, which is to use non-Abelian

Poincaré duality. Let’s imagine that G came from an algebraic curve defined over
Fq. This is a map from X into BG. We’re asking about the homology groups of the
mapping space Map(X,BG). That’s non-Abelian cohomology and you can rewrite
it to unintelligible.

We saw that we could build this as a homotopy colimit. Now let’s translate to
algebraic geometry. We can take last lecture as motivation, and write down some
algebro-geometric objects relevant to this description. Let me define RanG(X),
which will parametrize the following: you should give a finite set S, a map U : S →
X, a bundle P on X, and a trivialization away from U(S). These are G bundles
concentrated at these special points. Ran(X) is the same thing when G is trivial,
finite sets S → X. RanG(X) maps into BunG(X) by forgetting verything but the
bundle and into Ran(X) by forgetting everything but the finite sets.

The map to BunG(X) is a homology equivalence (probably a homotopy equiv-
alence). Now we can rephrase again. Our goal now is to compute the alternating
sum

∑
(−1)iTr(Frob|Hi(RanG(X)).

So let’s do this by analyzing the map ψ to Ran(X). We need sheaf theory for
this calculation. This means compactly supported cohomology with coefficients in
the dualizing sheaf. Let me write KRanG

for the dualizing sheaf. Se we can rewrite
this as ∑

(−1)iTr(Frob|Hi
c(RanG,KRanG

)

We can take the compactly supported image under ψ and then maeasure what’s
left.


