
Today I’d like to talk about something that is a priori really different, something
I’ll call non-Abelian Poincaré duality. Let’s review the usual Poincaré duality.
LEt M be a compact oriented manifold of dimension n (without boundary). The
cohomology H∗(M,A) ∼= Hn−∗(M,A). To get this isomorphism we need a few as-
sumptions. The most important is that M is a manifold, which is a local condition,
that every point has a neighborhood looking like Euclidean space.

You can’t do this for Euclidean space itself, unless the dimension is 0. We
can change this to use non-compact manifolds if we use H∗

c , compactly supported
cohomology.

Let’s state the proof of Poincaré duality in two parts. Euclidean space is con-
tractible, and so you should just get A in degree 0. Then the stament is that the
compactly supported cohomology with coefficients in A is 0 except in top degree,
where it is n. Now we’d like to understand why this is true for an arbitrary mani-
fold. Ultimately I’d like to talk about cohomology and homology groups. For now
let’s talk about chain complexes. If U is a subset of M , let C∗(U,A) and C∗

c (U, a)
be the singular chain complex or compactly supported cochain complex of U , and
from now on I’ll omit the letter A. These are chain complexes, covariant functors
of U , if you consider U → C∗(U) or U → C∗

c (U), you can extend compactly sup-
ported cochains by 0. Poincaré duality unintelligibleboth of these are (homotopy)
cosheaves of chain complexes.

To be a sheaf, to every open set you have an Abelian group, and there is a
gluing condition when you have two open sets and their intersection. You can talk
in this covariant situation about a dual condition. If U, V ⊂M , we can look at the
diagram

C∗(U ∩ V ) //

��

C∗(U)

��
C∗(V ) // C∗(U ∪ V )

You could ask that this be a pushout, which is unreasonable, but it’s a homotopy
pushout, so you have a quasiisomorphism, which gives you a Mayer-Vietoris long
exact sequence

Hi(U ∩ V )→ Hi(U)⊕Hi(V )→ Hi(U ∪ V )→ Hi−1(U ∩ V )→ · · ·

This isn’t quite the condition for a cosheaf, you’d want to say something similar for
arbitrary collections of subsets. These are homotopy cosheaves of chain complexes.
Both of them satisfy some sort of excision, have Mayer-Vietoris sequences. If you
have a sheaf on a topological space, it’s described by what happens on small open
sets. In this context, the same thing is true. M is a manifold, so it has a basis of
open sets looking like Euclidean space.

A consequence of being a homotopy cosheaf, if I’m interested in C∗(M), I can
take the colimit over U ⊂M of C∗(U), which maps to C∗(M) by functoriality. This
map, done correctly, will be a quasiisomorphism. Thus you can know what your
chain complex looks like by understanding it on an appropriate basis. The same
statement holds on compactly supported cohomology for the same reason.

Now, I claim we are done. The local calculation tells you how to construct the
isomorphism of the chains. We can write down a term-wise quasiisomorphism. The
local isomorphism depends on an isomorphism with Euclidean space, and if you
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want to choose these compatibly, then you need the manifold M to be orientable.
Then you can write down the desired quasiisomorphism and it passes to homology.

This is the kind of thing I want to bring to the non-Abelian side. What if we want
to talk about non-Abelian cohomology. Let me start by saying what non-Abelian
cohomology is.

Cohomology, recall, is a representable functor on the homotopy category of
spaces. If you have a nice space M and you are interested in Hn(M,A), this
is the same as [M,K(A,n)], where K(A,n) is a space whose homotopy groups
vanish except πn(K(A,n)) = A. There is such a space, unique up to homotopy
equivalence.

What is non-Abelian cohomology about? For example, when n = 1, we can
understand K(A, 1) if A is not Abelian. BG has fundamental group G and no
higher homotopy groups. Then H1(M,G) could be taken to be [M,BG], which is
the set of isomorphism classes of G-torsors on M . If you can assume that M is
connected with a chosen basepoint, this is the set of conjugacy classes of maps from
π1(M) to G.

This is one notion of non-Abelian cohomology, studying maps into BG. If you
take this, it suggests a generalization. Let’s drop the assumption we’re mapping
into an Eilenberg-MacLane space and map into any space whatsoever. For any
space X, we could define H(M,X) to be [M,X]. When X = K(A,n), this recovers
Hn(M,A). If X = BG you recover the definition just stated.

The question this lecture is addressed to, if this is like cohomology and M is
a manifold, this should also be some kind of homology. What is the analog of
Poincaré duality in this setting.

Let me make sort of a dictionary of how these ideas will match up in the Abelian
and non-Abelian cases.

I wanted to talk earlier about compactly supported cohomology.

Abelian non-Abelian
an Abelian group A and degree n an eventually pointed space X (K(A,n))

Hn(M,A) is a set with a group structure [M,X] is a set.
Hn

c (M,A) [M,X]c where outside a compact subset of M everything goes to the basepoint.
C∗(M,A) Map(M,X), which can recover [M,X] by taking components
C∗

c (M,A) Mapc(M,X)
This is the analogy we are following.

One side of Poincaré duality will tell us about compactly supported cohomology.
So we want to talk about Mapc(M,X) “via homology.”

The proof was in two steps, locally and then by going from local to global. Let’s
first consider the local case, where M = Rn (a different n than before).

What is Map(Rn, X)? This means you’re supported in a ball of radius r, which
means I don’t care what r is, so I might as well shrink it to radius 1. So then that
is a ball where the boundary is taken to basepoint, which is the n-fold loop space
of X.

I can look at compactly supported maps from U into X. We can ask the question,
is the functor that takes U to Mapc(U,X) a homotopy cosheaf on M? I should
probably say what the target category is. That should take open sets to spaces. If
it is, we can recover the global sections by a colimit over a convenient basis. The
answer is that it can’t be right.
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What would this be saying? We could draw our diagram

Mapc(U ∩ V,X) //

��

Mapc(U,X)

��
Mapc(V,X) // Mapc(U ∪ V,X)

Then we could find every compactly supported map either in U or in V , which is
plainly impossible (check the circle).

This is a different category. Earlier we were taking a homotopy cosheaf, you had
a Mayer-Vietoris thing. We could pull something back to a sum of things from U
and V . We’re in the non-Abelian setting, so we can’t add.

There is a situation where it makes sense to combine two such maps. If the sets
are disjoint, then we can look at compactly supported maps from the union, which
will be the product, Mapc(U ∪ V,X) ← Mapc(U,X) ×Mapc(V,X). This is like
addition in chain complexes.

The idea now is to make use of this. In other words, this is not a homotopy
cosheaf of spaces, but it’s not just any functor, it’s a functor with this sort of
special feature. If we modify our notion a little bit, maybe we can salvage our idea.
What do we want to say? Pretend for a moment the answer had been yes, what
would we have done then? Then we would have proceeded as in the Abelian case,
looking at Mapc(M,X), and that receives a map from the colimit of Mapc(U,X)
over disks U , which is the n-fold loop space of X. Then this would be a homotopy
equivalence. This won’t be a homotopy equivalence because we haven’t used the
factorization property. We’ve only used things that look like disks, and then you
don’t get closure under disjoint union. Now let’s take the colimit when you have a
disjoint union of finitely many disks.

Theorem 1. If X is n−1-connected, then this map from the colimit to Mapc(M,X)
is a homotopy equivalence.

I want to say that the left hand side is some kind of homology, because it’s a
colimit, but maybe not of M but of something related.

The hypothesis is needed. Suppose M is a circle, and X consists of two points.
One is the basepoint.

Every map from M to X is compactly supported. There are then two maps.
Mapc(M,X) has two points. But on the left hand side, a map on the other side is
not homotopic to anything supported on a proper subset of S1. The connectivity is
needed. You could generate a similar example in higher dimensions, and I’ll leave
that to you.

Now let me sketch a plausibility argument for why you might think this is suffi-
cient.

On the left, you have something that’s a homotopy colimit over a big category.
In degree zero you can describe this, π0 of this space, we can ask about this being
surjective on π0. This means is that any compactly supported map f from M
into X is homotopic to a map which is supported in a finite union of disks. Once
we’ve got a map in a finite union of disks, then we can get it small. Then this is
concentrated near a finite set. The global statement should be thought of as saying
that can be done with parameters, canonically.
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Let’s say that M is a smooth manifold, and then I can triangulate it. Let me
assume for simplicity that it’s compact. Look at the n−1-skeleton of M , and I can
restrict f to the n− 1-skeleton. The target space in n− 1-connected. This map is
nullhomotopic on the skeleton, and modify the map by a homotopy so it carries a
neighborhood of the n − 1-skeleton to the basepoint. Then the map is supported
on the interior of the n-simplices, and so this is a map from a disjoint union of
n− 1-disks.

That argument should make the statement plausible. I don’t know how to turn
this ingredient into a proof of the statement.

Maybe I should mention an example that might be faimiliar to an algebraic
topologist in the audience. Take M to be the circle, and X to be connected. Then
what are we doing? The left hand side is a homotopy colimit over maps from U
that look like finitely many intervals. So a disjoint union of intervals is just finitely
many products, so of (ΩX)k to the maps S1 → X, which are the free loops LX.
This space on the left has a multiplication, coherent up to homotopy. It’s homotopy
equivalent to a topological group. You’re taking powers of this group, and the maps
are given by multiplication on the group, and this is the cyclic bar construction of
the space X. In this case, the based loop space ΩX, the cyclic bar construction
gives you the free loop space of X. This is more usually stated at the level of
homology. Passing to homology groups, you have H∗(LX, Q) on the right, and on
the right you get the Hochschild homology of a certain differential graded algebra,
namely C∗(ΩX).

I think what I’d like to do with the rest of the lecture is state more strongly that
the left hand side should be thought of as homology (of the Ran space of M). Let
me inttroduce, Ran(M), I will assume that M is connected. This is the collection
of nonempty finite sets S ⊂M . If you chose a metric on M , you could say it’s the
maximum of the distance unintelligible, or you could write a basis, if U1, . . . , Uk

are disjoint open stes in M , then Ran(U1, . . . , Uk) will be the collection S so that
S intersects each Ui and is contained in the union of the Ui.

Here are some subsets, and I’ll declare them to be open. This is a basis. That’s
the same as the metric topology I described a moment ago.

Now, let U be the collection of basic open sets in Ran(M). Let U0 be the subset
of sets of the form U1, . . . , Uk where each one is a disk.


