
I’d like to start with the story of the Siegel mass formula. The mass formula is
a statement about integral quadratic form, a homogeneous quadratic polynomial
in some number of variables. I’ll say it’s over R if the coefficients are in R. So, for
example, x2 + y2 or x2 − y2, which are quadratic over Z.

I can ask if I can convert one to the other with a change of coordinates. These
are equivalent over C because I can multiply y by i. They’re inequivalent over Z
and indeed R since the first is positive definite. Over the reals, any quadratic form
can be diagonalized, so it can be written

∑
±x2

i . The only invariant is how many
plus and minus signs you get. They are equivalent if they have the same number
of variables and the same signature.

So x2 + y2 and x2 + 3y2 are equivalent over the reals, but not over the integers.
Mod 3, the first form is nondegenerate, but the second is degenerate. You can ask
if two forms are equivalent over the integers by looking at the signature, or looking
modulo an integer. This motivates the following definition, which I will restrict for
simplicity to positive definite forms.

Definition 1. Two positive definite quadratic forms q and q′ over Z in some fixed
number of variables are in the same genus if q ∼= q′ mod N for all N .

Do two quadratic forms in the same genus have to be equivalent? No, but there
are a finite number of them, and there’s a formula for how many of them there are.
This is a weighted count of how many there are.

Suppose that q is a quadratic form over Z and R is a commutative ring. I’ll write
Oq(R) is the set of invertible n×n matrices so that q◦A = q, for example, if q is the
standard quadratic form, then this is the usual orthogonal group. If q is positive
definite, then Oq(Z) is a finite group, a group of invertible integer-valued matrices,
so they leave invariant a lattice and a quadratic form, so q(v) = q(w). There are
only finitely many lattice points you can go to, so there can be only finitely many
transformations in total.

These are always finite groups. You can define the mass of the genus of q as
follows: ∑ 1

|Oq(Z)|
If all these summands were one, this would be the number of forms in a genus.
Every quadratic form has at least one, so these coefficients are never one. This is
a weighted count of the number of quadratic forms in a genus up to equivalence.
The mass formula is a formula for what this mass is.

If q is a positive definite quadratic form over Z then the mass of q is something
that I’ll tell you about in a second. Let me tell you the right hand side in the
simplest case.

To explain what I mean in the simplest case, I need to introduce a little termi-
nology.

Definition 2. If q is a positive definite quadratic form over Z then q is unimodular
if it is nondegenerate mod p for every prime p.

The claim is that unimodular forms in n variables comprise a genus. If you have
two forms in the same genus, and one is unimodular, then the other is as well. This
is the converse, if you have two unimodular forms, this says they are in the same
genus.

1



2

This is the simplest genus, and for this genus, well, fix a number n = 8k. If there
are going to exist unimodular forms at all, then the dimension has to be divisible by
8. What is the left hand side in this case? It’s the sum over unimodular quadratic
forms q in n variables (isomorphism classes) and what you sum is

∑ 1
|Oq(Z)

=
Γ( 1

2 )Γ(1) · · ·Γ(n
2 )ζ(2)ζ(4) · · · ζ(n− 2)ζ(n

2 )

2n−1π
n(n+1)

4

It’s not obvious that this is even rational.
What are some examples? Suppose that n = 8. In eight variables, there is only

one unimodular form up to isomorphism, which is the E8 lattice, so the left hand
side is 1

|Aut E8| . You can evaluate the right hand side, and you can get that the
right hand side is 1

21435527 , so you get the order of the Weyl group of E8. This
might make you think this is an equality between numbers that look very small.

This is atypical. Once you start multiplying factorials together, you get some-
thing very large, very quickly. For n = 32, the thing on the right hand side is in
the millions, and each summand on the left is less than one. So there are lots of
pairwise inequivalent unimodular quadratic forms. This tells you they’re out there
without describing them explicitly.

Let me spend this lecture giving a modern reformulation of this statement and
how you would prove it.

Let’s take as a temporary goal justifying this formula. Let’s try to prove that
all forms in the same genus are equivalent, and we’ll fail because it’s not true, and
the method of our failure will suggest something.

Let’s fix q and q′ in the same genus in n variables. What does this mean? For
every N > 0 there is a matrix AN ∈ GLn(Z/NZ) such that q = q′ ◦ AN . You
can see, without loss of generality, you can choose AN compatible, so that if N
divides N ′, then AN ′ reduces mod N to AN . Then the AN for all N give an
element A of GLn(Ẑ), where Ẑ = lim Z/NZ, which is

∏
p

Zp. If we wanted to

prove that q and q′ were equivalent, you would have q = q′ ◦ A for A ∈ GLn(Z)
but instead we get something over GLn(Ẑ). These are equivalent over R because
they’re positive definite, and equivalent over Qp = Zp[ 1p ], and the Hasse principle
says that if two forms are equivalent over every completion of the rational numbers,
then they are equivalent over the rationals. Then there is a matrix B in GLn(Q)
so that q = q′ ◦ B. If you have two different isomorphisms, you can use these to
build an automorphism. So we can say that q = q′ ◦ A = q ◦ B−1 ◦ A, so if I look
at B−1 ◦A, this lives in the orthogonal group of q. What is this, though. It makes
sense to multiply Ẑ and Q in a ring containing them both. So Afin is the ring of
finite adeles Ẑ⊗Q. So B−1 ◦A lives in Oq(Afin).

We started with q and q′ and “defined” this element of Oq(Afin), but it’s not
well defined. I can multiply A by something that preserves q over Ẑ, so it’s only
unambiguous modulo Oq(Ẑ) on the right, and on the left, similarly, by Oq(Q). So
the element of the double cosets

Oq(Q)\Oq(Afin)/Oq(Ẑ)

is well defined. What would it mean if this vanished? Well, then B−1 ◦ A is the
identity. Then A and B would have to be in the intersection of Ẑ and Q, which is
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Z. Then this vanishes if and only if q ∼ q′. It turns out with a little more work
that the other double cosets are the other equivalence classes.

I want to make some modifications. Let me move to the special orthogonal
group. This is a different double coset space:

SOq(Q)\SOq(Afin)/SOq(Ẑ)

We counted them before up to equivalence, but now we consider them up to
orientation-preserving automorphism, so we should get something off by a factor
of 2. We should also use all adeles, not finite adeles. So Ẑ =

∏
Zp, so Afin might

look like
∏

Qp, but it’s actually the restricted product, so only finitely many of
them have denominators. There’s one other completion of the rationals besides Qp,
namely R. So A = Afin × R.

Now the middle is a bigger group, the group in the middle is SOq(Afin)×SOq(R).
If I want to ignore this, I can mod out by it on the right.

SOq(Q)\SOq(Afin)× SOq(R)/SOq(Ẑ)× SOq(R)

Now A has a topology: it’s a locally compact ring. So SOq(A) is a locally compact
group, which has two subgroups of interest to us, which contains SOq(Q) as a
discrete subgroup and SOq(Ẑ)× SOq(R) as a compact open subgroups.

We can now borrow tools from locally compact groups. We can take a Haar
measure µ, invariant under left translation and unique up to scalar. This induces
a measure on SOq(Q)\SOq(A), and this is acted on by SOq(Ẑ) × SOq(R), so the
number of orbits this group has on this set. The measure should restrict and be
finite on the open compact subgroup. So the number of double cosets should be
roughly

µ(SOq(Q)\SOq(A)
µ(SOq(Ẑ)× SOq(R)

This would be true if this action were free, but since it is not, this actually turns
out to be the thing we want to compute:∑ 1

|SOq(Z)|
The fraction doesn’t depend on the scalar in the Haar measure. The next step in
the reasoning is to try to evaluate the numerator and denominator independently.

In fact, there’s a canonical Haar measure on this locally compact group. Let’s re-
member where Haar measures come from, so write SOq(A) as SOq(Afin)×SOq(R).
As a first step, let’s think on SOq(R). How do you write down a Haar measure?
You can take a top degree differential form. If you want it to be left invariant, take
an invariant top form. Let VR be the space of left invariant top forms on SOq(R).
This is a vector space over the real numbers, and is one dimensional over them.
Any non-zero vector gives you a left invariant measure on this group. In fact, we
can say a little bit more. This group is not just any compact Lie group. It’s the
solution in GLn(R) to a set of equations. Those equations make sense over the
rational numbers, since that is where q is defined. So then this has the structure of
an algebraic group over Q and belongs to algebraic geometry. So inside of it is VQ,
the space of algebraic invariant top forms defined over Q. Any nonzero element of
this one dimensional Q-vector space gives you a Haar measure. What about the fac-
tor SOq(Afin)? This is essentially a product of SOq(Qp) (the restricted product).
This is a p-adic analytic Lie group. There’s a space VQp , a one dimensional vector
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space over Qp of left invariant top forms on SOQ(Qp). This contains a subspace of
rational top forms VQ, which is one dimensional over the rational numbers. They’re
the same algebraic group. If you choose a nonzero vector in VQ, it gives you a Haar
measure everywhere. The idea is to choose ω ∈ VQ and multiply all these measures
together. We hope that gives a measure on SOq(A). This would not converge with
the orthogonal group.

What happens when you multiply ω by −5? It gets multiplied by 5 on the real
side. For every prime p, you are talking about the p-adic absolute value. So that’s
1
5 on SOq(Q5) and 1 at every other prime. This measure, µTam, is the Tamagawa
measure.


