
[Prize winners: please sit in the front row]
[Introduction]
It’s a great pleasure to be here, and it’s fun to come to Northwestern. Thanks

for putting the winners up front so I can see who you are, and thanks to the rest
of you too.

I want to talk about the card game set. Let me start by talking about it as a
game. Many of you have played it. You may have played it as kids. Let me explain
it. A typical card looks like this (one purple squiggle). It has a color, purple, a
shading pattern, solid, a number, one, and a shape, blob.

This collection is not a “set.” For each of the four characteristics, three cards
should be all the same or all different. You may say, why should I play this game,
it’s unnatural. Let’s look here. There are all three colors, but there’s two and
one for shading. Without checking anything else, it’s not a set. You would need
all three numbers, or the same number. I’ll lay out more cards. We’ll have an
interactive portion.

For these, there’s all three numbers, all three numbers, all three shadings, and
all the same shape.

The first combinatorial question you could ask is, how many cards are there? If
you were an applied mathematician, you’d count them. There’s three colors, three
shapes, three patterns, and three numbers. Then the number of possibilities is 81.
This is why they had 4 different attributes.

You take turns setting down these cards. If a player sees a set, you grab it. You
lay down more and more cards. If you play with a small child, they will usually
beat you.

A natural folk question is, how many cards can you have without a Set? The
answer is not so obvious. When I first start playing this game, around 1998, I
thought I’d figured it out. It’s not 16, I thought that at first. I worked hard
to prove this, it’s wrong. I’ll tell you the answer in a little bit. Something hard
computationally is, you could play for years and years and not see these. In practice
I’ve never seen 16 on the table at once.

We could do a probabilistic analysis, but let’s not, since it’s not in my notes. I
have the meta question, what kind of math is this? We could ask, is this math? I
want to try to problematize this question. For now it’s in extremal combinatorics.
You’re counting things, and it containes the word largest or smallest, most or fewest.

Let me make the following observations: let x and y be two distinct cards. Then
there is at most one Set containing them.

Any two sets intersect in at most one card. This suggests that thes are not sets,
they are lines. The cards are points. That’s what points and lines are. That’s
modern geometery in a nutshell.

So to emphasize this point, we’re asking, what is the largest set of points with
no three colinear. Now the geometry is not the usual geometry of Euclidean space.
I want to make another cultural point, when we have a problem to which we don’t
know the answer, we can replace the problem with an easier problem or replace the
problem with a harder problem. I’ll replace the problem with an easier problem.
Let’s restrict to two-dimensional Set. Suppose there were only 9 cards. I could just
fix two of the attributes. I could only use red ovals, and there ar 9 red ovals in my
deck. I could take those nine. I’ve drawn them in a suggestive way. This is a set.

1



2

They are vertical, horizontal lines, and then diagonal lines.

• • •

• • •

• • •

• ◦ •

• • ◦

◦ • •
So you can get four, and you can see why we guessed 16. Surely you can’t do any
better than this, you think. I think it’s true, any four card that does the trick is
like this. Let me define the function I want to study. Let f(d) be the maximal
number of non-collinear points in d-dimensional Set. We’ve computed f(2) = 4. I’l
give you f(1) = 2. I started with an extremal combinatorics problem and made it
into a combinatorial geometry problem.

I only did this notationally. Let me make it more formal and like number theory.
Linear structure: we don’t like our objects to be things like blob or oval. We’ll
encode red, green, and purple as 0, 1, and 2 and likewise for oval, blob, and 1,
empty is 0, and three is 0, so three red empty ovals would be (0, 0, 0, 0). I want 3 to
be zero. These are elements of Z/3Z, or F3. I will later use the multiplication. This
is a point in F4

3. I’ll just state the fact that three cards x, y, and z are collinear if
and only if they are collinear from solid geometry, there exists an a ∈ F3 so that
ax+(1− a)y = z. In this particular case, for three elements this is special, if a = 1
I get x, if a = 0, I get y, and if I choose 2, it will be x+y+z = 0. There are no three
points that sum to zero. You can also ask that no three points are in arithmetic
progression. A lot of popular combinatorics problems collapse into one here.

Okay, we’ve gotten rid of cards. In this finite field, a four dimensional vector
space, what’s the largest cardinality of a set of points with no three collinear.

What we know: first of all, let me put down the insight, the lowest possible value
is 2d. The highest value is 3d. With a limited amount of work you could make it a
little stronger. You can make it a little bit better. A better way to say this is that
2f(d − 1) ≤ f(d) ≤ 3f(d − 1). If you wanted to solve 3 dimensional Set, if I want
to make a maximal configuration, each level can’t have more than 4. So f(3) is at
most 12 and at least 8.

Let me draw an example:

• • • ◦ • • • ◦ ◦

• • • ◦ • • • ◦ ◦

◦ • • • ◦ ◦ • • •
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So this shows that f(3) ≥ 9, but it’s actually 9, so f(4) is between 18 and 27.
It’s better because you can check that f(d1 + d2) ≥ f(d1)f(d2) by a Cartesian
product construction, which suggests the following. A consequence, if I want to
know, by multiplying copies of this nine element configuration together, we know
that f(3n) ≥ 9n, where the original lower bound is 8n. One way of looking at this
is to say, this is (3

2
3 )3n, so log f(d), we should divide, if this were growing like

something to the d, so we should divide by d. So how does log f(d)
d behave as d

goes to ∞. The upper bound says, maybe it’s ∞. The lower bound says, it’s at
least 3

2
3 . This makes it a bit of a rarity. I have no idea. Neither do you. Lots

of people who have played this game think about it, and this problem has a long
history in combinatorics, the affine cap set problem (see T. Tao’s blog). I want
to finish, I have explained how this is a combinatorics and then a number theory
problem. I want to say a little about how it’s an algebraic geometry problem. If I
have time I’ll report that it’s a harmonic analysis problem. f(4) is 20. If you try
to construct it, it’s pretty hard. f(5) is 45 and f(6) is 112. This has 23d

subsets. I
don’t see a computational way to do this problem.

How would an algebraic geometer approach this? A maximal nine-card config-
uration is a solution to x2 + y2 = z. So if z = 0, then x and y should be 0. This
solution set, that gives the answer. Why does this work? If you’re an algebraic
geometer of the new school, you say this is a parabolic bowl. You’re doing this for
a finite field, but shut up. Can you find three points on this that are on a line?
No, you can’t. The blessing of modern algebraic geometry is that these arguments
can be made rigorous. Better yet, the twenty card solution is the solutions to
x2 + y2 = zw apart from (0, 0, 0, 0). This is harder to draw, in more coordinates.
A line should strike this in only two points. I got excited. This argument doesn’t
work in more variables. This does explain some of the smaller solutions. No one
knows how to get lower bounds.

That’s the algebraic geometry of set. Let me say the theorem on the upper bound
side, Meshulem, f(d) < 2

d3d. The methods used here were surprisingly enough
Fourier analysis. This involves bounding the Fourier transform of the characteristic
function of the set of cards. This is a way of making it harder.

Harmonic analysis has changed a lot in the last five years, Gowers, Tao. Just
about two months ago, Bateman and Katz said f(d) is less than a constant over
d1+ε3d.

Gowers said he had an idea he was going to blog, and Katz said to take it
down because they were working on it. There were these secretive blog comments.
“Maybe don’t talk about this.”

I’ll close with an open question. I’ve told you what we know. The lower bounds
we don’t know what to do. The upper and lower bounds are far apart. I don’t think
people have worked on this. Call a set of cards maximal if no card can be added to
it without creating a Set. That’s a different concept than the biggest size possible.
How small can a maximal set be? For 1, 2, and 3, it’s 2, 4, and 8. It’s either 14
or 15 for 4. I must have written down a set of fifteen cards that you couldn’t add
to. I’ll leave that as something to work on. I don’t think Terry Tao tried to do this
and failed. I apologize for going over a bit. Thank you very much.


