
Operads

Gabriel C. Drummond-Cole

January 9, 2009

1 Bruno Vallette

[Good morning, we didn’t do a round of introductions because we had too many. I have
made a list of participants. I’ll put it here. Let’s go on now.]

So during this last talk, let me recall what we were doing yesterday. You had a category
of algebra modelled with a properad. Now to model it up to homotopy, I replace it with a
cofibrant resolution, which I choose to be a quasifree resolution. I define a P∞ algebra, or
homotopy P -algebra to be an algebra over P∞ (the cofibrant replacement). We know that
if we take two of these, the homotopy category of algebras is the same. If you want to do
homotopy, you look for a cofibrant replacement; the categories of algebras are not the same
but they are homotopic. If you ask for minimal replacements, then they are unique, the d,
which is characterized by explosions dn into n vertices, you ask that d1 is zero, so then the
underlying category will be the same.

The goal today is to come up with quasifree replacements. Then I will give four equivalent
definitions, and for each we will see what we can do. I want to be lazy and use a definition
that will make things easy for each thing I want to do.

So now I need homological algebra for operads. Let me recall what we know on the level of
algebras. If we start with C,A, a dg coalgebra and algebra, we can consider Homk(C,A),
where we find the convolution product (which is associative) f ? g = µ ◦ (f ⊗ g) ◦∆, which
is a binary product. Now you get that this forms a dg associative algebra, where you can
consider the Maurer-Cartan equation δα + α ? α = 0. We’ll be studying the set of solutions
to this equation. The set of solutions is called the twisting morphisms. Now we can ask
the question, what is TW? It is a bifunctor to Set. Can we represent this? We’re looking
at Hom−1(C,A), in which we want to look at Tw(C,A), which we want to represent on
the left and on the right. So we want a construction on C to give an algebra, so that
Homalg(?C,A) ∼= Tw(C,A) ∼=coalg (C, ?A), and a construction on A to give a coalgebra. So
I need to take the free algebra on C and because of the degree −1, I need a desuspension, so
T (s−1 ⊗ C). I want to deal with nonunital algebras and coalgebras so I don’t have to deal
with the details of killing the unit. On the coalgebra side we do the dual thing, so we take
the cofree coalgebra on the suspension of A, T c(s⊗A), so so far we are close to the solution.
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The difference is that there is no dg. I need to define the differential, and the way I did it
yesterday, it is the exact same as the bar construction on the right and on the left the unique
derivation extending the coproduct, and that is the cobar construction. So here we have bar
and cobar. If you believe, I will not do the proof, the morphisms here, they commute with
the differential. There is nothing to do here.

Hom(ΩC,A) ∼= Tw(C,A) ∼= Hom(C,BA)

[Are they the same relation, the homotopy relations here on the three lines? What is it in
the middle?]

Yes, and the gauge action.

Okay, so now we have an adjunction, and so if I take C to be BA, let me take that to this
case. So here on the right I have idBA which corresponds to a twisting morphism BA → A,
and then a map ΩBA → A, which is the counit of adjunction. If i do the same thing with
A = ΩC, then idΩC ↔ C → ΩC a twisting morphism, to C → BΩC, the unit of adjunction.
So these twisting morphisms are unique in which sense? They factor through morphisms of
algebras and coalgebras:

ΩC
gα (morphism of algebras)

!!CC
CC

CC
CC

C

ι

=={{{{{{{{

fα (morphisms of coalgebras) !!CC
CC

CC
CC

α // A

BA

π

=={{{{{{{{

So I have quasiisomorphisms on the left and right, how do they compare to the things in the
middle? Well, let me look at C ⊗ A. I have dC⊗A but I want to consider a new differential.
If you have a twisting cochain α, and

d̄α = (id⊗ µA) ◦ (id⊗ α⊗ id) ◦ (∆⊗ id)

[Take chains on a space, and that’s a coalgebra. You can think that A is a topological monoid,
and then you can construct B of that monoid. If you look at that monoid. Apply B and you
get a classifying space. Take a space, apply Ω and you get a monoid (with inverses)]

You get this twisted differential, with dα = dC⊗A + d̄α, which is called the twisted tensor
product. When α is a twisting morphism, this dα squares to zero. So one question, when is
this acyclic? this is when α is called a Koszul morphism. It has something to do with Koszul
duality theory. Now the theorem is that the quasiisomorphisms of algebras or coalgebras are
equivalent along our adjunction to the Koszul morphisms.

[This is a formula for the principle bundle, and when the bundle is contractible, the base
space is the universal space]

The lemma first is that π and ι are Koszul morphisms, so that BA ⊗π A and C ⊗ι ΩC are
acyclic.
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Theorem 1 (Brown)
The following assertions are equivalent (in the presence of a weight grading):

1. C ⊗α A is acyclic

2. fα : C → BA is a quasiisomorphism

3. gα : ΩC → A is a quasiisomorphism

We have now solved a syzygy problem. You kill the homotopy step by step, you do everything
at the same time. It involves finding a projective resolution in the category of A-modules, and
calculate Tor. On the bottom we want to find a cofibrant resolution on A. This is a second
syzygy problem. A resolution in the category of dg associative algebras. So the corollary is
that ΩBA → A and C → BΩC are quasiisomorphisms. These resolutions always work. This
corresponds to the Bordmann-Vogt resolution. This gives a cofibrant replacement, which is
huge. The opposite, ΩC → A is smaller but what is C and what is α?

Let me extend this to operads, properads. You’ve seen yesterday what a properad is, it’s a
monoid in a space. A coproperad is a comonoid, you have maps that decompose. You consider
maps Hom(C,P ), which forms a convolution properad. This induces a product which induces
a Lie algebra. You actually want S-invariant maps, and the convolution properad structure
does not survive, but still you have the differential graded Lie algebra structure surviving.
So now you can copy-paste the blackboard, and get ∂α + 1

2 [α, α] = [, and these of degree −1
are called twisting morphisms Tw(C,P ).

So now for the adjunction you need the free properad F (s−1 ⊗ C), P ) ∼= HomS(C,P ) ∼=
Hom(C,F c(s ⊗ P )). What was the differential on the bar construction of A? Here there is
a point. The bar construction of A had BA = T c(s⊗A) and d was the unique coderivation
extending the product of A. In the operad, we take the cofree cooperad, so these are trees
with internal vertices labelled by s ⊗ P , and they defined the differential using the graph
homology of Kontsevich, and when you contract, you form the composite. For properads,
this doesn’t work. Why? You cannot use edge contraction because of [picture]. Go back to
the universal property. It’s the universal coderivation extending the product. You do the
product anywhere you can. You can compose these two [picture] or these two, but not these
because they produce cycles. Just to tell you, now you can extend that, this is the only
subtle thing, that now you have

Hom(ΩC,P ) ∼= Tw(C,P ) ∼= Hom(C,BP )

and you can copy everything, it all remains true. But what is the twisted tensor product?
You just need � instead of ⊗. So the Brown theorem, everything is still equivalent, that
C �α P

∼=→ I, C
∼=→ BP , and ΩC

∼=→ P

Now we get a cofibrant replacement functor for P -algebras, and what we were looking for is
the third condition, to see quasifree resolutions of the properad P along gα, the map from
the twisting morphism α.
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Once again, we want to resolve, we take the generators, homotopies for the relations, and this
will solve the syzygies once and for all. By abstract properties, you will get all the syzygies.
So to get a smaller resolution you look for an acyclic twisting cochain. Bar cobar, you get a
very big resolution. For Frobenius bialgebras, C is really a mess, so maybe use this big one.
This is a nice theory but it is not so far what we are looking for. This gives a nice method
to find these resolutions. It’s exactly where Koszul dualities comes in.

Let me talk about homogeneous quadratic. A properad is homogeneous quadratic if P =
F (V )/(R) where R ⊂ F (V )(2). Let me give you an example. Ass is generated on one
generator with a free S2 action modulo associativity, which is quadratic. Commutative
algebras is similar, so is Lie, where Jacobi is quadratic, Gerstenhaber, biLie, k[∆]/∆2, and
then in parentheses (Frobenius and involutive Lie bialgebras). Koszul duality says that for
C take a construction P ¡ the Koszul dual coproperad, and then you have a nice Koszul
morphism P ¡ → P . It’s easier to prove that something is acyclic than to do something is a
quasiisomorphism. To define P ¡ is by universal properties but I will tell you how to cheat.

If the space of generators and relations is finite dimensional, I can dualize always a coproperad
to a properad (P ¡)∗ = P !, and then the dual is also quadratic. The generators are dualized.
There are signs but for the specialists please say nothing. Take the free algebra on the dual
space of generators F (V ∗). Then Ass! = Ass, Com! = Lie and Lie! = Com. For Frobenius
and involutive biLie, I don’t know how to show that they are Koszul.

Just a few words, how to go beyond. There are two ways, if the relations are not homogeneous,
it means that the properad is F (V )/R where the relations can have linear and quadratic
terms, the basic examples are the Steenrod algebra, the universal enveloping algebra of a Lie
algebra, and a BV algebra. Linear compositions are related to composites. I should mention
names. Priddy, Ginsburg Kapranov Cohen Jones, [unintelligible].

Consider a quadratic properad out of that by killing the linear part. Then add an internal
differential which is defined by an algebraic property. The Koszul dual is now a dg coproperad.
Since I’m short on time, we developed with Merkulov homotopy Koszul, then if you have
higher, then it is a homotopy coproperad. Then you know exactly the space of generators
and how to get the structure on the dual. Here you have the construction of bialgebras (Hopf
algebras). We have concrete methods to make these explicit. How do we do that?

Now we have explicit resolutions, and we can study P∞ algebras. Let me apply the adjunction
you saw before. What is a P∞ algebra (in the Koszul case where we have ΩP ¡ → P )? Well
Hom(ΩP ¡, EndA) ∼= Tw(P ¡, EndA) ∼= Hom(P ¡, BEndA). So Hom(P ¡,Hom(A⊗n, A)) ∼=
Hom(P ¡(A), A) ∼= Coder(P ¡(A)) and I can add to the brevious list square zero coderivations
on P ¡(A). One comment. This works for coproperads. It’s not an algebra but a comodule
in the dual case. What does not work if it is not Koszul? There is no strict adjunction, so
I can’t get Hom(P ¡, BEndA) or square zero coderivations. It’s also a homotopy coproperad
so the twisting morphisms are in an L∞ setting, not a Lie one.

So okay, what is each definition for? The square zero coderivations are for homotopy theory,
∞ morphisms. The first definition allows us to do something over a cofibrant operad. You
take a resolution of BV . Then we have the explicit definition. Since it’s cofibrant, well, we
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know that this is framed little disks, and this is formal, so we can lift homotopy BV to framed
little disks. You know that this is homotopically equivalent to Riemann spheres, and so this
is a particular case of the properad of Riemann surfaces, which are TCFTs. So a TCFT
has the structure of a homotopy BV algebra. Then in that you have Riemann spheres. So
homotopy BV captures a small part of a TCFT. There is no topology here at all. You have
explicitly the relations. The third definiton, that gives easy transfer of structure. Each time
you have S a strong deformation retract of A, and a P∞ algebra structure on A, how do
we transfer to S? We want to take Hom(P ¡, BEndA) to Hom(P ¡, BEndS), and you have
a map BEndA → BEndS from the strong retract, so you push under this map to transfer
structure. With this definition it’s easy. Then you understand the Kontsevich Soibelmann
formula conceptually. You also have explicit formulae for anything.

Then two things, the twisting morphisms, if you want to do transfer beyond the Koszul case
you can do the twisting morphisms for transfer of structure. You start with a P∞ structure
on A, α ∈ Tw(P ¡, EndA) and you want something in Tw(P ¡, EndS) in HomS(P ¡, EndA) and
HomS(P ¡, EndS). You have no strict maps of Lie algebras but you have a weak map. You can
get an L∞ morphism from the map of BEndA to BEndS . So this morphism preserves Maurer
Cartan elements. Now we can go beyond the Koszul case, this is a homotopy coproperad. So
now these are L∞ algebras instead of Lie algebras and the proofs are the same. This gives
the explicit formulas for transfer of structure of anything up to homotopy. Then this is the
good Lie algebra to do deformation theory. The deformation theory sits here because the Lie
algebra is very particular. The dual is weight graded. The ideal was homogeneous, so we can
count a weight on the free construction, and we get a weight graded Lie algebra. The Maurer
Cartan equation splits, and we get on vertex operator algebras a homotopy BV algebra. This
is an example for obstruction theory. Twist the Lie algebra and you get a deformation. The
chain complex is the [unintelligible]complex, so there is a nontrivial L∞ structure there. This
cohomology theory can be understood as being represented by a cotangent complex that I
think will have very nice properties.

Thank you very much.

[In your first lecture QFT was in one corner of the triangle. Did you mean?]

It’s this TCFT connection, then because this is a monoid, Riemann surfaces, you can relax
up to homotopy, and get a homotopy topological conformal field theory, and maybe the link
to vertex operator algebras.

[I’ve been trying to understand quantum field theory so I say “what is the algebraic structure
of correlators?” Mathematicians should have something there. What is the structure of these?
Someone says that it’s an ∞ structure spread out over spacetime. He’s a real physicist and
feels that there’s an algebraic structure, an algebraic and analytic aspect. These ideas are
germane. It’s not there yet. You haven’t got all the traces, degree zero terms]

Just to mention the traces, you can add wheels to this graph. If you add wheels you get a
BV algebra that models this structure of deformations.

[Kevin was on a Riemannian manifold, where he had to renormalize infinities, which was
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close to this and also close to physics. More and more there’s a feeling that an effective
theory is a transfer of structure. Those ideas are to be fit together.]

[This needs the higher category part too.]

[You have semisimple reductive parts and then the nilpotent part. You develop the homotopy
theory, which has a semisimple part for the fundamental group. These are preliminary to
discussing the nilpotent part which has to be fused together.]

[I read your ’78 paper so I know what you’re talking about]

[First schemes were sets and then they had nilpotent elements, and I’m sure Jacob can give
meat to that idea.]

[Let’s thank Bruno again.]

[For those of you interested to this, we are organizing a school in Luminy, the third week
of April, and then we invited several researchers. So you have people using these in many
fields. They will explain what they are doing. Then the next week a conference.]

[Let’s start again at 11:15.]

2 Michael Sullivan

[There’s going to be a thing on TFTs in Northwestern, May 25-29 is a workshop with Ben-
Zvi, Lurie, Toen, and that’s the wrong week, the workshop is the previous week, that’s the
week of the conference. We have funding so people should email us and apply. The workshop
means that there ar minicourses.]

I want to thank Peter for organizing. I’m definitely learning a lot. I wish I weren’t talking
after Bruno’s third talk. I couldn’t listen because I was wondering whether what I was going
to say was correct. The title is Open String Topology and knots. It’s joint, in progress, with
Dennis Sullivan. Basically a quick outline. First I’ll give a tiny little overview for what one
would hope for. Then I’ll do some examples in the case of knots. Then I’ll give a theorem. I’d
like to discuss the proof, and then hopefully Legendrian symplectic field theory. That means
a couple of definitions and a couple of drawings. Okay, so all right. We’re going to start with
a smooth knot K in R3 which comes equipped with a framing, and we’re going to, open string
topology, what we’re looking for here is the space of paths {f : [0, 1] → R3|f(0), f(1) ∈ K}.
So it begins and ends in the knot and can pass through the knot. This space is homotopy
equivalent to S1×S1, where these are just the start and end points. You can just homotope
to the space of straight paths. The goal is to define some string topology operations on this
space, interpret them as an algebraic structure, and then extract nontrivial knot invariants
from that. That would be the goal.

There are a lot of people here familiar with string topology and the problems that arise in
different cases. The first thing you might try would be to do the open version of the Chas-D.
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Sullivan closed string product (’99). In the case like this, if you have strings starting and
ending on a knot where the start point of one coincides with the end point of the other, you
product them to get a single string, but it’s not too hard to see that this has nothing to
do with how K is embedded in R3. The product doesn’t work, it’s a trivial knot invariant.
You might think, okay, there’s no knot theory, because when you try going to the coproduct,
that has, as Dennis likes to say, an anomoly in it that doesn’t commute with the topological
boundary, so let me move to examples. What we’re going to do is take the coproduct and
adapt it so that it passes to homology. So now I have to give a disclaimer. This could be
a different well-known knot invariant. So I’m not claiming this is new. We start with, K
is a framed knot, and choose K a knot projection such that the framing is the blackboard
framing. You can do this with Reidemeister I moves. Then orient K and pick some point on
it and consider the S1 family of straight lines starting at x0 and ending at x.

Then calculate the following contributions: If I have a picture like this: I can think of the
framing as a section in the normal bundle, imagine I have a family of strings running like
this, and then you assign a +1 to running into the knot through the section. On the other
hand, you might have a string with an internal intersection where the string hits the knot,
which is also +1. I think the last one is −1, where the start of the string passes through
the framing going outward. Call this type C. These are switched if you are in the opposite
framing.

This is not a full projection, it’s flattened. I did it this way for the blackboard framing so
that we could look at this picture.

You can perform this computation, but essentially you get no contributions af type C because
the framing is on the other side of the knot, so to speak. In the unknot you get 4 type A
contributions. The invariant should be A + C − B So we have three different numbers for
three framed knots.

For any knot, the first homology is one generator, and the first homology has two generators,
b1 and b2. In the second step, I was picking out b1, a representative for this homology class.
b2 would be fixing the end point and varying the start point. Type B move should be a
coproduct (an open one) so morally to get this, if it worked, we’d have a map from homology
of strings, if the input is k dimensional and the output is i−k dimensional, you’re intersecting
a little 1 manifold with a k manifold and getting a k−1 dimensional manifold [unintelligible].

Now let me get to, well, [∆, δ] 6= 0 implies that ∆ is not well defined on the homology. The
solution is to introduce another operation ∆̃ so that the sum of these commutes with ∂ and is
still coassociative. Every time we see the string passing through the knot we cut and consider
as a pair of strings. Cut instead at type A to the constant string. So ∆̃ will be intersection of
tangent vectors with a 2 dimensional half plane distribution spanned by the framing vector
and knot tangent vector. You might start with a closed family of strings, and ask, where
does this thing intersect the half-plane. This has some boundary, which is where that was
tangent to the knot. Okay, maybe I’ll skip the operad story.

Let me state a simpler version of the main theorem. Let T be the tensor algebra generated
by the homology of the knot and K a framed knot. Then there exists some D depending on
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the knot, which decomposes on the tensor algebra and is square zero. If you have an isotopy,
then these are isomorphic structures, with the same D2, so they are isomorphic A∞ algebra
invariants.

Let me skip to the sketch of the proof or ideas of the proof. The idea comes from Fukaya-Ono-
Joyce and Fukaya-Ono-Odo-Oh. Suppose I have two submanifolds and I want to intersect
them but I don’t know that they’re transverse. What does it mean to take this intersection?

[Oops, I started calculating invariants and stopped paying attention]

Thicken A and B and intersect, but retain thee original information with a section in the
obstruction or normal bundle. Then take the Whitney sum. [unintelligible]

The dimension of the thickening minus the dimension of the fiber is the formal dimension of
the Euler object.

My interest in this comes from rational Legendrian symplectic field theory. This counts J-
holomorphic curves with Legendrian boundary in a symplectization or contact manifold. The
picture is the following. You have a disk here, and then by plusses and minuses you want to
count maps into M × R. I’m not going to say Legendrian versus Lagrangian. The master
equation says that if you have δM , this is by Gromov compactness contained in M ′#M ′′,
and on the other hand it contains it by the gluing theorem. So the question is what is the
gluing. Once you answer that question you can impose structure like an algebra over an
operad. If there’s no boundary it’s called symplectic field theory. At the boundary you have
the problem of bubbling. This one causes a problem from composition’s point of view. Here
you don’t have a sign. That’s one problem. What’s the algebra. Another problem is string
topology, because you are intersecting chains of strings. The final question is that there’s
a natural way of embedding [unintelligible]in [unintelligible]. So all questions in differential
topology can be restated in symplectic Lagrangian homology. So what does ST (K) equal in
the SFT of its lift? That was my original interest.

3 Thomas Tradler

I’m going to talk about higher Hochschild complexes. I hope they fit into the theme of
these conferences. The reason I say that I hope it fits is that I haven’t actually shown it.
For motivation, a goal, something I would like to do that I can’t quite do yet, I would like
some higher dimensional TQFT. Let me be very vague. Nothing here is set in stone. What
is the idea here? If you look at Jacob and Mike’s definition, they look at tensor functors
from some category nBord into a target category C . If this has objects algebras and 1-
morphisms bimodules, then intuitively you associate an algebra to a point and a morphism
will be something like a bordism to two points, and by fairly general arguments, the circle
has to be sent to the Hochschild complex. This is CH.(A), and you put A in a circle. There
is a clear correspondence here to the circle, it’s not very precise. I want to argue that this
interval should be sent to putting A on the edge, with two endpoints. This is like the two
sided bar construction. Let’s say you want higher things between these two things. For a
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surface, what do you put over here? That’s exactly what the higher Hochschild complexes
can provide. That’s the idea.

So I want to be, the idea here is to use Pirashvili’s higher Hochschild complexes. He phrased
this. There’s a paper by him in 2000 which is called “Hodge decomposition for higher
Hochschild complexes.” The basic idea is the following. First of all I’ll fix a field k of
characteristic zero. Various pieces generalize. Everything is going to be over this k. Given
A a commutative associative differential graded algebra with unit, I can do the following. I
can get a functor from a category Fin → dgV ectk. The objects of Fin are finite sets and
the morphisms are maps of finite sets. Over on the right the category is differential graded
vector spaces over k. Let’s say I have a finite set, then I associate, map S to CHS

. (A), which
is A⊗S . What do you do with the morphisms? If I have a map S → S′, then I want to get
a map f∗ = CHf

. (A) : AS → AS′
. If you have a1 ⊗ · · · ⊗ an 7→ b1 ⊗ · · · bn′ , where I look at

the preimages of points, and say bi =
∏

f(j)=i aj . Of course nothing might land here, so if
nothing lands here I just use the unit.

This is sort of everything that is going on here. So I want to point out here, you need A to
be commutative, you don’t know in which order to multiply, so any order has to work out.
Okay, so, this defines the functor.

All right, so we want to get to Hochschild, I want to talk about pointed finite sets. If (M,d)
is a commutative module, right and left module over A, then we get an induced functor from
pointed finite sets to dg vector spaces over k. If you have a pointed set {0, . . . n} with 0 the
basepoint, then you map 0 to the module and everything else to A. Similarly you have induced
maps. If you have a map of pointed sets, the fat point is the base point [picture], the basepoint
goes to the basepoint and maybe other things, so this maps m⊗a1⊗· · · an → m′⊗b1⊗· · · bn′

where again I have preimages of points. Again you have this induced functor and everything
works out.

How do we do something interesting? The next step is to look at simplicial pointed sets.
Recall that a simplicial pointed set is given as a functor, a contravariant functor from a
category ∆ into finite pointed sets, where ∆ is the category whose objects are sets of the
form {0, . . . , n} for n ≥ 0 and morphisms nondecreasing maps f(i) ≥ f(j) for i ≥ j. This is
the short definition but then you have to work to find out what this means. Then we get a
functor from ∆ to dg vector spaces, and we get something which by definition is a differential
graded vector space, and that’s the higher Hochschild associated to that simplicial pointed
set.

Explicitly, what does it mean to have a pointed finite set. You have to, for each n ≥ 0 you
get a finite pointed set. For the morphisms, if you analyze this, it’s generated by maps called
the degeneracy maps and then the boundary maps d0 and so on, and also the degeneration
maps s0, s1, and so on. These are tantamount to the maps in the normal presentation of
simplicial things. The geometric realization will be a pointed space. So we get CHSj

. (A)
maps to and from CHSj+1

. (A). When you have a differential graded simplicial vector space
you can define CHS.

. (A,M) :=
⊕

CHSj
. (A,M) and then you can define b =

∑
(−1)i(di)∗

and then b2 = 0 So then HHS.
. (A,M) := H.(CHS.

. (A,M), b + dA,M ).
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This is the Hochschild complex of A with respect to S. with M . This is functorial in S.,
A, and M , and if S. → S′. is a quasiisomorphism, then the induced map on HHS

. (A,M) →
HHS′

. (A,M) is a quasiisomorphism. Now you have to find these complexes for any set.
So one thing to connect it to regular homology is to do Chen’s iterated integrals. Let A
and M be the de Rham forms on a compact oriented manifold. What do I get? A Chen
iterated integral map that goes from CHS.

. (ΩX, ΩX) → Ω(X |S.|. Then as usual, you have
an evaluation map ∆j ×M |S.| → MSj . You integrate along the form to get M |S.|. In some
cases it’s a quasiisomorphism, if we assume that X is at least connection up to the dimension
of S., then this map is a quasiisomorphism.

If you put in the circle, you get the old result, the usual Hochschild homology is isomorphic to
the homology of the loop space. One last thing before these examples. These were Hochschild
homologies. Now we can define the Hochschild cohomology with the same data to be the
dual space HH .

S.
(A,M), well, cochains, to be HomA(CHS.

. (A,A),M).

Okay. So, um, I want to do a bunch of examples. So far it seems like general nonsense. Let
me start with an interval. The simplicial set, you take Ij to be the set {0, . . . , j + 1}. The
boundary map has fewer points. It collapses one of these at a time. The dj collapses between
dj and dj+2. So the Hochschild chains are

⊕
j≥0 M ⊗A⊗ · · ·A︸ ︷︷ ︸

j

⊗A

The induced map multiplies them. In particular, this was the two-sided bar construction.

If you do the circle, it’s similar, except you collapse the endpoints, and then you have M
with A sitting around it, that’s, well, sn

j just maps the points to each other and it’s exactly
the Hochschild complex with the usual Hochschild differential.

Maybe one more example before I go to higher dimensions.

Even in one dimension, if I take a directed graph, I need a commutative algebra.

[Picture example of pointed graph with genus]

It’s really interesting to go to higher dimensions. Let’s look at the square. This can be the
product of I. and I.. The j simplices are just {(k, `)|0 ≤ k, ` ≤ j + 1}. The Hochschild
complex is CHI2

.
. (A,M) =

⊕
M ⊗A⊗(j+2)2−1. You now need to move the differential. The

first differential d1 would multiply together any pairs next to one another, in either factor.

I really think of this as a grid, of course, in some manifold where forms are sitting. The
boundary has to make sure that each one knows about the next one. I can next go to the
torus, the sphere, higher cubes, any manifold. The next example would be the torus. All
are these are examples of just the part going to pointed finite sets, and the rest follows from
the functor to dg Vector spaces. So you identify the last edges with the first edges, so you
have (j + 1) rows and columns. The last piece of the differential maps the last and first
columns and rows together. This gives a Hochschild complex with the mapping space of
the torus into X. This is a nice finite model with finitely many ponits. You could look at
what operators one has. Here now on the torus you have other operations. Chris Douglas
analyzes this. Then you can do the sphere, S2, and my simplicial model. I can do this for A
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the forms and M also the forms. One example I wanted to do where they’re not the same.
CH .

S2
.
(ΩdRX, k), well, the module is the base point. If this is X, then this calculates, the

homology of this is the homology of the based iterated sphere space Ω2X. If I allow k to be
any de Rham form, it would be the free space. That’s why I wanted to distinguish A and
M . I wanted to mention that Ginot showed how to get, in this case, what the Gerstenhaber
algebra structure is on this space, you can, whatever structure you know exists, you can try
to realize this in a nice simplicial setting, and you get [unintelligible]. It’s interesting that
you can make the BV ∆ and there’s no finite map between these two.

The last example, for any topological space, and I’m not sure what I should say, maybe
call it Z, we have the canonical simplicial set ∆.(Z) where ∆j(Z) are continuous maps
Maps(∆j , Z), which is not a finite set. You can still define the Hochschild for that. For an
infinite simplicial set, take CHS.

. (A,M) by a direct limit construction, where you take the
limit over finite simplicial subsets, and you take the direct limit of the objects CHS′

.
. (A,M),

so in general you can always apply this and get its Hochschild. Z should have been a pointed
topological space. The constant map to the point is the basepoint in Maps(∆j , Z). As
Mike said, this shoud really be blob homology. You have all these relations, like, one can
define a shuffle product on CHS.

. (A,A) which is a standard construction on differential graded
simplicial spaces. This corresponds to the wedge product or cup product, corresponding to the
wedge product under the Chen map, and we have a pushout property, where if W. = S.∪U. T.,
and I have U. inside S. and T., and then the induced map of Hochschild complexes

CHU.(A,M)
f //

g

��

CHT.(A,M)

��
CHS.(A,M) // CHW.(A,M)

So if f or g is an injection, then yuo get that this last is CHT.(A,M)⊗CHU. (A,M)CHS.(A,M).

How would you get an evaluation map like in Kevin’s talk? eval : C∗(Diff(|S.|))⊗CHS.(A,M)
to CHS.(A,M). If we take S. = ∆.(Z), anything would act. I’m out of time, I’ll stop. I
should stop, this justifies a connection, although there are many things one would have to
check.

4 Ingo Runkel

I called this aspects of conformal field theory because I couldn’t think of a good title. I am
Ingo Runkel. I started out as a physicist and now I am trying to become a mathematician.
I was asked to say how conformal field theory relates to physics. How do I get a conformal
field theory from a quantum field theory or from lattice models. In saying this I will say the
word correlator. Then I will try to say how to get from Segal’s CFT to correlators. Today
we will probably get to 1.5 or 2.3 or somewhere. I want to talk about deriving differential
equations for correlators. If there is time for a third bit, I want to say how if one wanted to
talk about morphisms between CFTs, a good way to talk about it is with defect lines.
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[Do you have an a priori motivation for why correlators satisfy differential equations?] It’s
like a connection on the moduli space, or the theories you are most interested in is where
you can compute them, and there they satisfy differential equations.

Let me start then. What is the idea? Conformal field theories do not appear in nature;
they are approximations. Unless string theory has to do with nature, they don’t appear. It
describes either a quantum field theory at short distances, which is synonymous with high
energies, the ultraviolet behavior, or at long distonces, low energies, or the infrared region.
So that’s why there’s no length scale.

They also want to describe lattice models at large scales. That can be in any dimension.
Lattice models at large distances you can’t tell a lattice from a continuuum. In a continuous
thing you expect this to be true at both ends but close up in a lattice you can tell that the
lattice is discrete.

This lattice model is only interesting at critical points. I will want to write down the Ising
model in two dimensions later. The reason I’ll only talk about two dimensions is because
there you can say the most concrete things.

So the first example I want to look at is the free boson. This takes a field φ : R2 → R, with
the Euclidean metric on R2, and there’s an action S which assigns to φ a number

1
8π

∫
d2x((∂1φ)2 + (∂2φ)2 + m2φ2)

Now we see our first correlators. You say 〈φ(x)φ(y)〉 =
∫

Dφφ(x)φ(y)e−S[φ]. This integral
doesn’t make much sense. Then we divide this by the partition function

∫
Dφe−S[φ]. Both

sides are infinite and the answer when regularized, is 2K0(m|x− y|) where K0 is a modified
Bessel function.

There’s an example of a two point function defined by a path integral. The correlator
computes, if I were to do an experiment where I measure the value of the field at position x
and position y, what is the average value that I will get. Now let’s look at this at short and
long distances. So let’s rescale the coordinates by a factor λ.

I would like to do a baby version of the renormalization group. I want to look at 〈φ̃(x), φ̃(y)〉new =
〈φ(λx)φ(λy)〉m = 〈φ(x)φ(y)〉λm. So this is a one parameter family. What happens at the
ends? When we take λ to 0 and to ∞, what do I get? These are the ultraviolet and the
infrared conformal field theories. Now we just take λ to 0 and ∞ and look at the asymptotic
behavior of the Bessel function.

This is not good to do with φ itself, but J(x) = i∂φ(x) where ∂ is the holomorphic derivative
1
2 (∂1 − i∂2). Then I can take 〈J(x)J(y)〉, and then I can take λ → 0, and the answer I get
is (x − y)−2. Then the limit as λ → ∞ is just 0. The theory you would obtain for the first
case is the CFT of central charge one, the massless free boson. That’s what λ → 0 does, kills
the mass. The other case, at ∞ is the trivial CFT with central charge zero and the Hilbert
space is just C.

This happens a lot, the infrared is trivial and the ultraviolet is more interesting. The Hilbert
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space in this example is L2(R)⊗F (the Fock space F (L2(R))).

Let’s talk about the “moduli space of 2 dimensional quantum field theories. When you fix a
quantum field theory, it comes in a family, so these come with flows. Then I might have fixed
points and fixed submanifolds, so these are the conformal field theories. One would expect
that, it’s more of an idea than anything rigorous. These are the sources and sinks of these
flows.

The conformal field theories have more symmetries, conformal symmetries, not just rotations
and rescalings. So there are certain correlators that one can compute. One can try to explore
by perturbation theory a neighborhood of the theories that can be computed exactly. This
allows you to say something about a neighborhood of each of these conformal field theories.
There are few lines where you can say something about theories far from a conformal field
theory. These are called integrable. You have an infinite number of conserved quantities
also away from the endpoints of the flow. There are some lines where there are an infinite
number of conserved charges. That’s one motivation for looking at conformal field theory.
Quantum field theory at long and short range is described by conformal field theory. That’s
one relation to physics.

An example of the integrable world is cosφ which is called [unintelligible].

Now I would want to go to lattice models. In fact I want to discuss just one, the mother of
all lattice models, the Ising model. It can be defined in any dimension, I am doing it in two
only. It can be solved exactly in one and two dimensions, if you can do it in three dimensions
you’re famous. The lattice ΛL are pairs (m,n) ∈ Z × Z so that |m|, |n| < L. Then a spin
configuration is a function σ : ΛL → {±1}. To each spin configuration I assign an energy

E[σ] = −
∑
〈i,j〉

σiσj

where 〈i, j〉 mean neighboring sites, where only one of the lattice variables is changed, by
exactly one.

This lattice model will not be a topological lattice model, which depends on the precision of
the lattice and the spin configuration and the ground state. Never mind, it’s still interesting.
Next you define the partition function which depends on L and β the inverse temperature,

ZL(β) =
∑

σ

e−βE[σ]

This has the advantage of being finite and well defined. You want to take the limit for L
going to infinity. This won’t make sense for the partition function but it will make sense for
the analogue of the correlator.

The correlator of two spins

〈σiσj〉(L) =
1

ZL(β)

∑
σ

σiσje
−βE[σ]

for i and j in ΛL. I can say 〈σiσj〉 = limL→∞〈σiσj〉(L)
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The calculation of these things is very difficult. One thing that one can figure out exactly is
〈σ(0,0), σ(n, n)〉. Let me say that s = sinh(2β). Then this correlator is

s < 1 : (πN)−1/2 s2N

(1−s4)1/4 (1 + O(N−1))
s = 1 : (const)N−1/4(1 + O(N−2))
s > 1 : (1− s−4)1/4(1 + O(N−2s−4N ))

This is the first time we see phase changes. So at s > 1 taking these apart they go to a
constant, there’s long range order in my system. At s < 1, high temperature, the correlation
decreases exponentially as I go to long distances. The interesting point is between. Here my
correlators decay with a power law of the distance. That is where my conformal field theory
is interesting.

Can I take the continuum limit? I could mean two things, adding more lattice points or take
my correlator and measure the correlation further and further apart. Let me define

〈σ(x1) · · ·σ(xn)〉 = lim
λ→∞

λ∆n〈σ[λx1] · · ·σ[λxn]〉

taking the lattice points closest to λxi. I need a compensating ∆ to prevent this from being
zero. We do experiments on spins that are macroscopically separated, so now we calculate
this, or try to, with conformal field theory.

Clearly, with this definition, this should be scale invariant afterward. This will be, for µ > 0,

〈σ(µx1) · · ·σ(µxn)〉 = µ−n∆〈σ(x1) · · ·σ(xn)〉

So ∆ will have to be 1
8 (called anomalous dimension) to cancel the 1

4 in the case we’ve done,
with the two point function. The continum limit at sinh(2βc) = 1 which has the explicit
solution βc = log

√
1 +

√
2. Many different lattice models will give rise to the same critical

behavior. If you put the Ising model on the triangular lattice, numerically you get the same
1
8 and the same correlators.

You may wonder about these correlators, you may want a functor. So you want a functor,
say, from Ising, take the category of 2-complexes where the objects are closed 1-complexes
and the morphisms are 2-complexes which may have a boundary, and then I have a map
from the boundary of one piece to the other.

So if HS = C2, and to B we apply H
⊗|B|
S , and then C(Λ : B → B′) assigns to v in

C(B)∗ ⊗ C(B′) “the sum of configurations with boundary conditions v.” You can’t take a
continuum limit, because you don’t know how to refine, say, a thing on the pair of pants. So
there one needs to refine what one means by the continuum limit.
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