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Thank you for the invitation. The idea here is to study at the same time algebra, homotopy
theory, and at the same time quantum field theory or CFT. Between the first two they do
not mix very well, so there are nice things that appear. Then there is a homotopy theory
of QFT, and also there are algebraic structures in physics, and the common point in this
discussion is operads or props. The experience I have had with mathematicians, they say
they don’t want to hear if they hear a new word. A physicist, when he hears a new name,
he wants to hear more and more about it. For a physicist he has vertex algebra, BV algebra,
Feynmann diagrams, for the mathematician, homotopy theory, algebra, and so on.

So now to begin. Let’s say we have a category of algebraic structure, for example, my toy
model, associative algebras. These don’t have nice homotopy properties. The idea is to model
this category by one object, an Operad. A capital O will denote actual Operads, lowercase
will include PROPs or properads or whatever.

So let’s introduce cofibrant, or projective, or quasifree resolution (replacement) Operad. In
the toy example we get the category of algebraic structures up to homotopy, so these are
homotopy algebras, and we’ll take the A∞ resolution from Stasheff, and so we have A∞
algebras. So the category of associative algebras sits inside the category of A∞ algebras.
I can do basically three things here. You can develop homotopy theory for the resolved
(homotopy) algebras, you can solve the transfer of structure, and finally you can study the
deformation theory of algebraic structure. For these three, I will describe cobar bar, the
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transfer theory has been done by Kadeshvilii, Merkulov, Kontsevich, Soibelmann, and the
deformation theory is straight out of Gerstenhaber.

[Aside: If you have two spaces which are homotopy equivalent, now the idea is, if you have
an associative algebra on Y , you would like to transfer it to X. You can do it in a naive
way. An associative algebra is a dg module and then you have µ : A⊗A → A which should
be associative, so that µ(µ(a, b), c) = µ(a, µ(b, c)) for all a, b, c. So I can write this as a tree.
With this picture, how can I define µ on X? It has to eat two elements of X. You go to Y ,
you can do the product, you can go back, and I will check the associativity of this product,
and you have the following tree: [picture], you would like that to be [picture].]

So now the paradigm, the toy model, is associative algebras and A∞ algebras. Okay, so this
is the definition of an associative algebra. Here comes the point, you want to do algebra and
homotopy theory at the same time, this category is too small for the homotopy theory to
hold, so what is an A∞ algebra?

So I will work with a field of characteristic zero and the underlying category of dg modules.
So what is an A∞ algebra on a dg-module (A, dA) is a collection of operations {µn : A⊗n →
A}n≥2 such that δµn = dA(µn)± µn(dA⊗n) =

∑
k+`=n+1 µ` ◦ µk, and I will say |µn| = n− 2

Take this as a definition. Now this is a binary product and a bunch of other things. Why
does this deserve the name of A∞ algebra?

The first equation says that dA is a derivation with respect to µ2. In n = 3 on the left hand
side you have [dA, µ3] which is the sum of all the trees with two vertices so that the number
is three, so you have the associator of µ2. So it’s not associative, but it’s associative up to
homotopy.

Then µ3 and µ2 satisfy another relation up to homotopy, and so you need µ4. You could
have some other definition. [If you have the transport theorem, any other one would be
equivalent.] This is unique up to isomorphism, but if you are looking for other resolutions,
we have them. If you ask for the same kind of relations, the answer is no. The quasifree
resolutions are unique up to quasiiso.

Now, what do you want to have? Well, we can do homotopy theory for A∞ algebras. If
you go back to the example of spaces, we want to know when maps are homotopic, so we
need to know the notion of maps. What is an A∞ algebra morphism A → B? You ask for
maps fn : A⊗n → B and such that a certain relation. This is unique in a certain sense.
These can be composed, why I will tell you later. You can define the notion of morphisms
between the two, and you can compare them, and there is the notion of A∞ homotopy.
We can compare these. How do we do this in a more or less explicit way. Now I need
to develop some machinery. Let me recall the bar and cobar construction, which go back
to Eilenberg-MacLane and Adams. You have the category of dg associative algebras, and
then the category of dg coassociative coalgebras. These are related by the functors Ω and
B, cobar and bar. How do people define the bar construction for an associative algebra?
Start from A and construct the cofree coassociative algebra T c(sA) on the suspension of A.
The underlying space is a tensor module, and the ∆ is the deconcatenation map. We want
the differential to be a coderivation, so there is a unique coderivation which extends, which
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is characterized by its image on the generators T c(sA) → sA. So we want to project on

(sA)⊗2 ∼= s2 ⊗A⊗2 s−1⊗µ→ sA.

Somehow we did something very particular. What is the shape, sorry, I forgot to say, this
derivation squares to zero because A is associative. So in general, what is a square zero
coderivation on T c(A). A coderivation on this cofree coalgebra is characterized by its image
on the cogenerators, which means that for (s⊗A)⊗n dn→ s⊗A for n ≥ 1. If d has degree −1
then all of these have degree −1. This is a set of maps µn : A⊗n→A of degree n − 2. What
does it mean that d2 = 0, which is true if and only if there is an A∞ algebra structure on A.

At the end of the third talk I’ll have four equivalent definitions. So here you see that we had
the bar construction from associative algebras to coalgebras. This extends to the category of
A∞ algebras. These then have something to do with coassociative coalgebras. I can now give
a reason or alternate definition for A∞ morphisms. This is a morphism of dg-coassociative
coalgebras B∞A → B∞B. With this definition you see that they can be composed. Then
A∞ algebras with this definition of morphisms form a category.

What is the purpose of this category. If you consider associative algebras, and you want
to do homotopy theory for them, you can put weak equivalences to be quasiisomorphisms,
fibrations to be epimorphisms, and you can prove that this puts a model category structure
on dgAs. What’s the purpose? When we do this homotopy theory, we want to understand the
homotopy category, H0(ass), and this is equivalent to the category of (ass, A∞ morphisms).
You use the homotopy relation between coalgebras. As Dennis said, these seem onely like
this coalgebra here, you have here cofree colgebras which live in dg coalgebras. What is
an A∞ algebra? A square zero derivation. A homotopy there defines the homotopy there.
[Handwaving and rapid talk]

So far we have understood the homotopy category on A∞ algebras.

So a model category structure, you have three special classes of morphisms, weak equivalences,
fibrations, and cofibrations satisfying several things. It allows you to study homotopy theory.

The bar construction preserves quasiisomorphisms. The cobar construction does not preserve
quasiisomorphisms, only between two connected coalgebras. You would like to define weak
equivalences so that we form a Quillen adjunction. You define instead weak equivalences
for coalgebras to be a map whose image under Ω gives a quasiisomorphism. Then weak
equivalences are quasiisomorphisms, but there are many more weak equivalences. Taking this
definition, you can show you have a model category structure on dg coassociative coalgebras.
This lets you understand the homotopy theory. A∞ algebras with weak maps, this is due to
L-H ([unintelligible]) which says that A∞ algebras are fibrant objects in the model category
of dg coalgebras.

So now I have two things to do, the transfer theorem and then deformation theory. What
is the transfer theorem. Let me start (it exists by abstract nonsense). Let me say I have R
a strong deformation retract of A with h, i, π, then it’s very easy to transfer. We’ll do the
same naive thing at the beginning. I need to define maps R⊗n → R. So Kontsevich and
Soibelmann said, take the sum over all planar trees with n inputs, first move into A with i,
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and now perform the indicated operations, and then you come back. If you check the degree
of this map, it doesn’t work, and so you label the internal edges by h. As an exercise, this
gives an A∞ algebra structure on R.

[If a homotopy is like a deformation, and if you use a “propagator,” this looks like the
Feynmann graph formalism].

So yes, and why this formula? One remark, it’s possible to transfer this here, and these maps
extend to an A∞ morphism, and the two algebras are really equivalent. So in particular, R
might be the homology of A. Working over the field, you can do this, and so any associative
algebra transfers to the homology, and there defines Massey products. If this is an associative
or A∞ structure, then you get the Massey products.

Why to we want these Massey products? You may say, here, on the left hand side you have
a chain complex where d = 0, as Gabriel said. Because of this, µ2 is strictly associative. So
if I take the formula I take at the very beginning, it works, why do I want to bring the whole
structure? This is in order to be able to reconstruct A in the homotopy category. The higher
products are to be able to contain the information, the homotopy class of A. You start from
H.(A) and, you take ΩBH.A, which is a dg algebra, this is called rectification. You have
quasiisos from H.A to both this and A, and so these are the same class in the homotopy
category. That’s one application of the Massey products, and you can do the same thing
with any Kozsul operad.

I finish with the deformation theory. The idea is to be able to represent the set of A∞ algebra
structures with solutions to a Maurer Cartan equation. So let A be a dg module. Consider

g :=
∏
n≥2

Hom((s⊗A)⊗n, s⊗A)

This is the product, not the sum. So you take the star product f ? g =
∑

f ◦i g, which is
preLie, meaning that the associator is right symmetric, so that (f ? g) ? h − f ? (g ? h), so
that when you take its bracket you get a Lie bracket. What is the Maurer Cartan equation
there? I can write ∂α + α ? α = ∂α + 1

2 [α, α] = 0. So the proposition, or exercise, since you
have an hour break, is that solutions in gA, correspond to A∞ algebra structures. This gives
a third equivalent definition of such structures, and now you can define deformation theory
for such algebras.

[Equivalence]

I will say that they are homotopy equivalent if there are two A∞ morphisms whose compo-
sition are homotopic to the identity.

Okay, so, we can twist, consider gα
A, where everything is the same except the differential:

(gA, [ , ], ∂ + [α, ]). Then the homology of this is the (contains the) obstruction to deform
the A∞ structure α. An honest algebra, associative algebra, this gives Hochschild homology,
but here you get everything at the same time.
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3 Bruno II

So far I did only what is in green on the board. To extend this I need a new tool, what do
we need? We need the notion of Operad, to algebraically model what happens on a certain
type of model. Manin in mathematics in metaphor, he said that this was the revolution
in algebra in the 20th century. The notion came from homotopy theory. In the fifties and
sixties, there were a lot of homotopies appearing. They needed a way to organize these.
So now the definition. I’m going to draw my favorite table. We would like to model cer-
tain types of relations. We’d like to compose them. With one input and output, you do
it in a ladder. Then you want many inputs, and then many of both. To model this I will
need a monoidal category, and in that a monoid. Finally we need modules over the monoid.
operations 1 : 1 n : 1
composition ◦ gluing in a two level tree gluing in a two level connected graph
monoidal category (V ect,⊗) (S-mod, ) S-bimod,�
monoid algebra operad P ◦ P → P , effective compositions properad
modules associative algebra Steenrod algebras
U(g)
k[∆]/∆2 Frobenius, involutive Lie bialgebra, TCFTs

For 1 : 1 you have Hom(A,A) and you compose them with concatenation. This happens
with vector spaces, and then you have a map P ⊗ P → P which is associative. a module is
an morphism of associative algebras P → Hom(A,A), so a structure is a map. You want
something that models all the different types of algebras, like associative, Lie, Gerstenhaber,
so on. So I want End(A), the endmorphisms from A⊗n → A. I compose these in a tree, like
take three maps f1, f2, f3 and plug into a 3 to 1 map g. The idea, we have operations, and
there are several things we can do. We can permute the inputs as well. We want to consider
an S-module, which is a collection {P (n)}n>0 where this is a right Sn module. You can act
by Sn on Endn(A). So P (n) stands for the operations with n inputs. So what’s the monoidal
structure? We have P ◦Q(n) which is⊕

k≤n

P (k)⊗Q(i1)⊗ · · ·Q(ik)

So first I have to induce a representation from
⊗

Si1×···×Sik
k[Sn] and then I want to take

the coinvariants. What is the relation to check for associativity, you have to check that if
you take three levels, it doesn’t matter which order to do it on. Then we pass to the monoid,
where we need two maps. The associativity of the map P ◦ P → P encodes the relations
satisfied by elements of P . I will give examples.

Two remarks. First, you have to be very careful. The first column is operations with
one input, this is a particular example of the second. There are two relationships between
associative algebras and operads. An associative algebra is an operad. But there is one
operad which models the category of associative algebras. There is one operad for which
modules over it are associative algebras.

The definition, what is an algebra over an operad. A P -algebra structure on A is a morphism
of operads P → End(A). It means that on P you have a vector space which encodes
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operations. For example, let P have k in arity n; in this example, forget the symmetric
group. What is my space of formal operations? I have one operation for any n. Let me
call that Ass. What does that mean? First, I have a concrete map mn : A⊗n → A. It’s a
morphism of operads. In Ass, the composition takes two levels of operations and is supposed
to give one operation. Everything is one dimensional and so I have no choice. This is really
the naive composition. Check that it’s associative. So this forms an operad. Now I’d like to
understand algebras over it. I can either do the composition inside P or I can look in my
algebra A. What does it mean? Let’s start with µ2. Then µ2(µ2(, ), ) should give µ3 But
if we start from the other guy µ2(, µ2(, ) it gives the same thing, which is also µ3, so µ2 is
associative. So here Ass algebras is exactly the category of associative algebras. How many
operations from A⊗n → A do you have? Forget the symmetry and you have just one. So
this map gives you the shape of the relations.

So [unintelligible]defined PROPs. Later May and Bordmann-Vogt introduced Operads which
were easier. But now we will move to props. Let’s now go A⊗n → A⊗m. It would be good
to model Frobenius bialgebras, involutive Lie bialgebras, TCFTs, also many other things. I
will try to be as lazy as I can. I don’t need the full structure of a PROP. I want n inputs
and m outputs. To be lazy, I’ll be looking only at connected parts because in most of the
examples this is freely generated on the connected part.

So we need this to be a bimodule, with a left Sm action and a strictly commuting Sn right
action. I need to put more things for the monoidal structure �, but we don’t need to see
the details. You just need to consider three-level connected graphs. Every operad thing is a
particular example of the properad thing.

So a properad is a monoid in a monoidal category. You have two compositions in a PROP.
It’s a “2 − monoid′′. So homotopy theory is much easier for properads than for PROPs.
For PROPs there is no bar or cobar, no Koszul duality. For conformal field theory you only
need connected parts, and for many examples you don’t need this. You generate the free
horizontal product on a properad. Since it is freely generated, if you take the free PROP
algebra generated by an algebra.

A P -algebra structure on A is a properad morphism P → End(A). Let me call Frob the
following. For any n, m, I consider the n, m corolla marked by g, for g > 0, for n, m ≥ 1. I
have to define the composition. It’s the trivial group action on both sides. This is supposed
to model a commutative operation. I mark the vertex by a nonnegative integer. When I
compose two of them, say, n to m marked by g and q to p by h, gluing along k edges, I get
n + q− k to m + p− k marked with g + h + k− 1, the most naive thing. So you do the same
thing, and a Frob algebra is a commutative Frobenius algebra. This has a binary product and
a binary coproduct on A, commutative and cocommutative, associative and coassociative.
Then you ask for the module relations usual for Frobenius algebras. The other way around,
you take a module with these, and allow all possible compositions, you get the guys from
Frob(m,n). Algebras here are commutative Frobenius algebras, with no traces and so on.

Now two remarks. First, you can go a little bit further, I have operads and properads for
algebras and bialgebras. If you want to model the action of something with several spaces
A1, . . . , Ak, you add colors on the input and output, which will lead to the notion of colored
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operad. Operad with a capital O is all of these different types [Ed: I typo’ed this earlier]

If the algebra is finite dimensional, then you have a trace. How do you encode that? Then
you add wheels, which are contraction operators. I encountered that in a very regular way.
The computer scientists have confluence, which corresponds to Kozsuality. Now I take five
or ten minutes to say what I will do with this.

Now we paid the price to do this, the idea is now to do homotopy theory on the level of Op-
erads. Once again we’d like to understand the homotopy category of properads themselves.
Now dg properads have a model category structure where weak equivalences are quasiiso-
morphisms and fibrations are epimorphisms. So then we can do homotopy theory on this
level. So this implies that transfer works for cofibrant properads. There is no formula here.
We know by abstract nonsense,

Proposition 1 Cofibrant properads are retracts of quasifree properads. Over characteristic
zero, any properad admits a quasifree (cofibrant) resolution.

Now I’ll finish by making explicit a quasifree resolution. I have to say what this word means.
So, now I will do it. A quasifree Operad has as its underlying space a free Operad on some
generators, and then a square zero derivation.

What is a free algebra? You put these guys one next to each other. The free operad, you do
the same thing, pile them on top of each other. Then you formally compose everything in
connected graphs with labels on the inputs and outputs, with elements labeled everywhere,
so it’s just a connected graph, take the sum over all connected graphs with flows and no
cycles. You compose with gluing. This satisfies the universal property of a free object. A
derivation satisfies, d of the composite of two operations, is the product of d on each one. If
you only allow graphs with one input and one output, you get the Liebnitz relation for an
algebra. So this is determined by its action on the generators. So on F (X) the data of d is
equivalent to a map X → F (X), so a sum of graphs. Now I can split this with respect to
a number of vertices, so I have d1, . . . , dn, which is maps dn : X → F (X)(n), graphs with n
vertices. The final point is, d2 = 0 means that these maps satisfy a structure. If you do the
sum

∑
dk ◦d` you get zero. I will stop here? It means that you have a square zero derivation,

these satisfy a certain relation. This is the kind of resolution you’re looking for, it says we
have a homotopy coproperad. When all of these are zero except d2 this is the Kozsul case.
Cofibrant resolution are retracts of quasifree. Any quasifree is too hard, so for now we will
consider only n = 2. Thank you.
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