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How many of you had to take a taxi this morning? If you are just arriving, welcome, please
register with our secretary, should we start?

1 Kitchloo, Loop Groups

Thank you, I’ve been having a great time, thanks for having me, the lectures have been very
clear, unfortunately I’m not going to be able to do that. It’s slightly technical.

A reference, Loop Groups by Pressley and Segal.

What are loop groups? Let me remind you of a compact Lie group. For example, let
K = U(n), the endomorphisms of a complex vector space that preserve the Hermitian inner
product. In general a compact Lie group is a compact subgroup of U(n). This is not uniquely
defined, but for what I’m doing today assume that this embedding is defined. Today assume
K is connected.

Definition 1 The smooth loop group LS(K) = C∞(S1,K). The group structure is pointwise
multiplication.

The algebraic loop group La(K) = {A(z) ∈ LS(K)|A(z) =
∑m
−m Aiz

i} where Ai ∈ End(Cn).

A remark, La(K) is a group because the inverse is the conjugate.

Remarks on the topology:
These are actually topological groups. On LS(K) the topology will be that of uniform
convergence of all derivatives. fk(z) → f(z) in LS(K) if and only if ds

dzs fk(z) → dsf(z)
dzs

uniformly on S1 for all s.

Now let me define the topology for the algebraic loop group. Let Lm
a K = {A(z) ∈ LaK|Ai =

0 if |i| > m}. Then Lm
a K can be given the induced topology from LK

S which makes it a
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compact subspace, and then give La(K) the direct limit topology. So T ⊂ LaK is closed if
and only if T ∩ Lm

a K is closed for all m.

Note that the obvious inclusion is continuous. So I just showed these to be topological groups
and showed their relation. Let me talk about Lie algebras. If I have a nice topological group,
the tangent space at the identity has a Lie algebra.

So LaK and LSK have corresponding Lie algebras. Let gk be the Lie algebra of K; then the
Lie algebra of LSK is C∞(S1, gk). I will discuss LaK next time. The bracket is the obvious
induced one. These each have corresponding exponential maps, which in the case of LSK is
a local homeomorphism. For LaK this is defined only on a dense set, the exponential will be
a power series, not a polynomial. But if you pick a nice element it will be truncated.

So, this is good, I am going as fast as I planned to go. Let me state a theorem here, the
important theorem in this situation.

Theorem 1 (Garland, Quillen, Ragunathan)
If K is semisimple (e.g., if π1(K) = 0) then the map LaK → LSK is dense and it is a
homotopy equivalence.

These are highly nontrivial statement. If K were a torus, a circle, the algebraic group is the
circle times powers. The diffeomorphisms are humongous. That it is a homotopy equivalence
is another powerful statement. We do this because the algebraic loop groups are easy to
study, but we want to study the smooth one, since they are homotopy equivalent we study
the algebraic one.

1.1 The Grassmann model for LaU(n)

Fix K = U(n).

Recall that LaU(n) ⊂ End(Cn)[z, z−1] ⊂ End(Cn[z, z−1]) where this last is just Cn ⊗
C[z, z−1].

So in particular LaU(n) can be thought of as operators on Cn[z, z−1].

Let’s add some structure, starting with an inner product.

We define an inner product on Cn[z, z−1] by claiming that ei ⊗ zj for i ≤ n, j ∈ Z are
orthonormal. Let H be defined as Cn[z, z−1] with H+ = Cn[z],H− = Cn[z−1].

Let me define more objects of interest.

Definition 2 Let Gr = {W ⊂ H|zγH+ ⊂ V ⊂ z−γH+} (W is a subspace).

I claim that Gr is homeomorphic to Z⊗BU. What I mean by this is that there is a canonical
model where this is true.
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Let me prove this here, a more or less rigorous proof modulo some easy details. Let Hk =
H/zkH+ = Cn[z, z−1]/zkCn[z]. So one has projection maps πk : Hk+1 � Hk.

Let Gr(m,Hk) = {W ⊂ Hk|dim W = m} ∼= BU(m).

So the way these are filters, the quotients are n-dimensional.

[There is an action of S1 here?] I will not need it but this is S1-equivariant.

Where were we? Like I said, the kernel of this surjection is n-dimensional, zkCn.

So we have induced maps π∗k : Gr(m,Hk)→ Gr(m+n, Hk+1) which correspond to BU(m) ↪→
BU(m + n).

We have these finite Grassmannians and the maps taking one to another. So we get a map
qk,mG(m,Hk) � Gr. This sends W → W. In one case it sits inside Gr(m,H/zrH+) and in
the other case in H.

It’s quite clear that this map is surjective and is a well-defined map. I will rearrange this to
make it slightly more appealling, we get

ϕ : qγ∈Z(qkgr(γ + kn, Hk))→ Gr

It is easy to see that ϕ factors through the identification induced by π∗k so it descends to a
map

qγ∈Z(qk(Gr(γ + kn) ∼ Gr(γ + (k + 1)n) ∼ · · · ))→ Gr

or
qγ∈Z(qk(BU(γ + kn) ∼ BU(γ + (k + 1)n) ∼ · · · ))→ Gr.

This gives ϕ : qγ(BU)→ Gr and completes the proof.

Note the map I : Gr → Z called the index is given by I(W ) = dim(W/zrH+) − γn. This
number is well defined, independent of γ.

Definition 3 Let L = {W ∈ Gr|zW ⊂W}.

This is the space of lattices.

Fact: LaU(n) acts on L . In fact it acts transitively! Moreover, H+ ∈ L and the stabilizer
of this group action on H+ is U(n) ⊂ LaU(n) as constant loops.

This gives us that, so we get an inclusion

LaU(n)/U(n) ∼= L ⊂ Gr = Z×BU.

Note that LaU(n) = ΩaUn o U(n) where ΩaU(n) = {A(z) ∈ LaU(n)|A(1) = id}.

That is we get an inclusion ΩaU(n) ⊂ Z×BU.
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1.2 A CW decompositon of ΩaU(n) = (L )

Recall Gr = {W ⊂ H|zγH+ ⊂W ⊂ z−γH+} and L = {W ∈ Gr|zW ⊂W}.

Filter H by subspaces Hp,i with p ∈ Z, 1 ≤ i ≤ n. So Hp,i = {〈e1z
k1 , e2z

k2 , . . . enzkn |kj ≥ p
for j ≤ i, kj > p for j > i〉} Note that Hp1,i1 ⊂ Hp2,i2 if (p1, i1) ≤ (p2, i2) in the lexicograph-
ical ordering.

So given, remember we want a CW decomposition for L . Given W ∈ L let W̄ be the
orthogonal complement of zW in W. I may as well think of W as H+ and zW as zH+

since I have that transitive action. Then dim W̄ = n. So W̄ has exactly n increasing steps
(p1, i1), . . . , (pn, in).

What I mean is that the intersection of one of these guys with W̄ will increase each time by
one, it will be zero for a while, then increase by one to n.

Let Wa = {W ∈ L |(p1, . . . , pn) = a} (it is a fixed multiindex. For example, if C[z]〈e1z
a1 , . . . , enzan〉 =

W ∈ Wa.

Fact, please don’t ask me the proof, Wa is an affine cell (homeomorphic to C?) of complex
dimension

d(a) = (
∑
i<j

|ai − aj |)−#{(i, j), i < j, ai > aj}

Note that I(x) =
∑n

i=1 ai for all x ∈ Wa, I : Gr → Z the index.

Consider L0 = I−1(0)∩L . So the previous board gives a CW decomposition of L0 with cells
only in even dimensions. Thus the cohomology is the same as the cochains. So the Poincaré
series of L0, that is

∑∞
0 ti dim(Hi(L0, Z)) is given by

∑
a,

P
ai=0 t2d(a) =

∏n−1
i=1 (1 − t2i)−1.

There is nothing mathematical here besides the combinatorics, that is not how I want to say
that.

So I am done, in a minute I’ll be completely done. So the Poincaré series of ΩaU(n) is∏n−1
i=1 (1 − t2i)−1. Recall ΩaU(n) ⊂ Z × BU as a subcomplex. The Poincaré series of BU is∏∞
i=1(1− t2i)−1. Since H∗(BU, Z) = Z[c1, c, . . .], |ci| = 2.

So ΩaU(n) ⊂ Z×BU is a (co)homology equivalence up to degree 2n− 2.

Theorem 2 (Bott periodicity)

ΩaU ∼= ΩU
∼→ Z×BU

This is because of the homology isomorphism and simple connectivity. Next time I’ll talk
about representations, so the reference will be Kac’s group.

[Can one get real Bott periodicity?]

Yes, by working it out for On.
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[Why doesn’t the multiindex have to be nondecreasing?]

If I don’t order them, I take a list of n of them. I could have ordered them, then d(a) has a
different formula.

Let’s go for some coffee.

2 Teleman, twisted K-theory

So right now, I’m reviewing my notes this morning, one option was to cover everything I
wanted and speed up massively, the other was to cross out some stuff, so I won’t discuss
twisted Chern characters.

So we duscussed models for BU. Recall lim Gr(n, 2n). with Gr(n, 2n)
β→ ΩnU(2n).

Theorem 3 Bott (Morse theory)
β induces an isomorphism on homology and homotopy through a range increasing with n.

What I did not mention was a general theory, in the abstract definition of BU, where U ∼=
ωBU For any topological group G you have G→ ΩBG which is a map SG→ BG. Define a
toutological bundle on S1 ∧ G by self-gluing the trivial bundle using the map Id : G → G.
Why does that give a homotopy equivalence?

G

  @
@@

@@
@@

@ Ω(BG)

%%JJJJJJJJJ

EG //

��

P.(BG)

��
BG // BG

So the space alternates between Z × BU and BU. So we can define a 2-periodic spectrum
with these spaces. We get K0(X) = [X, Z × BU ], K1(X) = [X, U ]. The group law can be
taken to be multiplication on U.

Proposition 1 If X is compact, [X, BU ] the set of “stable isomorphism classees” of virtual

vector bundles (of rank 0), a “stable isomorphism”’ V
s

congW if and only if V ⊕Cn ∼= W⊕Cn.
Virtual vector bundles, formal differences of such classes form a group under ⊕.

Fact: for a fixed n if X is compact, [X, Gr(n,∞)] ↔ isomorphism classes of n-dimensional
vector bundles.
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Over Gr1 you have the tautological bundle. p ∈ Gr(n,∞) is an n-plane, that’s the fiber of
the tautological bundle.

The fact follows from, on a compact space, every vuctor bundle is a direct summand af some
large trivial bundle.

Theorem 4 (Swan)
For X compact Hausdorff, projective modules, finitely generated, over C0(X) are in bijection
with finite rank vector bundles.

Bundles map to the module of continuous sections.

Note that if V is a subbundle of Cn you get a map X → Gr(n, N) by x→ Vx ⊂ CN and the
pullback of the tautological bundle is V.

To increase the rank, you add a trivial line to your plane and the space. At that point you
classify them up to stable isomorphism, not isomorphism.

Note that BU does not carry a finite dimensional tautological bundle, but it does carry a
“virtual bundle” which is the tautological bundle, the limit of n-dimensional bundles, minus
a trivial bundle of the same rank, (Cn on Gr(n, 2n)).

So or Gr(n, 2n) the tautological bundle is naturally V (n) ⊕ trivial − Cn ⊕ trivial, and every
map from compact X to BU will land in some finite Gr(n, 2n) and we can pull back a virtual
vector bundle.

Something with this theorem mest go wrong if X is not compact. From what I rememmber
you can add the identity which was the one-point compactification.

To proceed we should mention the Atiyah index map

ΩpolU(N)→ GCr(N∞, 2N∞).

On the left are the loops with finite Fourier expansion, and on the right, well, the 2N∞ is
the span of zkCN ) for k ∈ Z [unintelligible]is the subspaces sandwiched between z−pH− and
zqH− for some p, q where H− is the span for z ≤ 0.

The map takes a loop to the image of H−, the span of images of Fourier [unintelligible].

Note α◦ [unintelligible] embeds Gr(n, n) as Gr of n-dimensional subspaces between H− and
zH−, N = 2n.

Fact, Ωpol ∼ Ωcont. (Garland, Raghunatan).

The meaning of the maps BU → ΩU corresponds to S1 × BU → U. P1 × BU → BU is the
gluing map for a bundle on P1 ×BU.

Over Ωpol × P1 have a universal holomorphic bundle (Glue along equator using loop in ΩU,
δ-operator along P1 leads to an index bundle over [unintelligible]clrassified by α.
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The meaning of [unintelligible] is the Thom isomoprhism from [unintelligible] × BU →
P1 ×BU and α is “integration along P1” in K theory. Ande α ◦ [unintelligible] = Id.

To get things to work we change the model slightly, replacing C∞ with a Hilbert space. Recall
the norm-closure of finite rank operators on a Hilbert space are the compact operators, and
the Gredholm operators are “invertible up to compact operators” with finite dimensional
kernel and cokernel. They are bounded such that these facts are the same.

Grres(H ⊕ H) are subspaces such that the first projection is Fredholm and the second
projection is compact. It’s the closure of lim Gr(n, 2n). The space of matrices GLres =[

Fredholm Compact
Compact Fredholm

]
: H → H, bounded, invertible, we have U(H) the unitary group,

Uk = U(H)∧(Id+compact). A theeorem is U(H) is contractible, Uk ←↩ U(∞) is a homotopy
equivalence.

Fact. We have an Atiyah map ΩpolUk → Grres as before.

Fact. GLres is homotopy equivalent to Grres thus BU × Z. And GLres → Fred by the top
left corner is an equivalence. So s[unintelligible]Z × BU ∼= GLres

∼= Grres
∼= Fred which

takes the components detected by the dimension of the kernel minus that of the cokernel
(“index bundle”) to the tautological bundle.

Proposition 2 PUH = U(H)/U(1) is equivalent to K(Z, 2), that is CP∞.

The proof is contractibility of U(H) so U(H) = EU(1).

Remark, the multiplications are homotopy equivalent because PU(H) ∼ Ω(BPUH) ∼ ΩK(Z, 3) ∼
K(Z, 2) as a group. In the second place, π∗ is Z in degree three so this is in K(Z, 3).

Observe PU acts everywhere an Fred(H) PU(H) acts by conjugation, on Grres(H⊕H)PU(H⊕
H) acts on the left. On Uk(H) by conjugation. PU(H)

diag
↪→ P(U(H)×U(H)) ↪→ PU(H⊕H).

Theorem 5 Every projective Hilbert bundle PH over X defines a twisted version of K∗(X)
by τK∗ − π∗Γ(X, Fred(H)). A class in K0 is a Fredholm endomorphism of PH up to homo-
topy. Replace H with H ⊗ `2 if H is finite dimensional.

Proposition 3 projective Hilbert bundles up to isomorphism are classified by H3(X, Z) =
[X, K(Z, 3)].

Proposition 4 If τK0 contains a section of virtual dimension k then k (the characteristic
class of the bundle) is zero.

So the last thing that I’d like to do is to explain the operations and the morphisms. How
do you define addition, product, what structures are there? So I’ll take a moment to explain
that.
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So actually, I made good progress here, look at that, actually no, I’d like to say the thing
that will connect to what people will read in the literature.

The moral description of the twisting. CP∞×BU → BU. think this is lines and vector spaces
to vector spaces, so the multiplication is a tensor. Formally this map is defined by a bundle
over CP∞ × BU. Which one, This is PU × Fred → Fred. So [U ]F → UFU−1. So there’s a
phase ambiguity det �index bundle → index bundle is det over PU in correspondence with
U(H) ↪→ over PU.

Heuristic model for twisting and K-theory is that a PU bundle is a “one-cocycle ω with
values in lines.” So if tVj → X is a cover we want Lij → Vi ∩ Vj . The cocycle condition
means Lii is C and Lij = L−1

ji with Lij ⊗ Ljk ⊗ Lki ∼ C.

On a quadruple intersection

Lij ⊗ Ljk ⊗ Lk` //

��

Lij ⊗ Lj`

��
Lik ⊗ Lk` Li`

We want this to commute. A twisted class is a virtual vector bundle Ei in each Vi with
isomorphism Lij ⊗ Vj ← Vi on the overlap.

3 McClure, Operads

Let me remind you what was the end of the first lecture. We had

Theorem 6 Y has a grouplike action of an A∞ non-Σ operad if and only if Y is weakly
equivalent to ΩZ for some Z.

This was proven in a particular case by Stasheff. Then with connected Y this was Boardman-
Vogt, and finally in full generality with a different proof by May.

How do you find Z? If Y has a strictly associative multiplication, define BY to be the geo-
metric realization of the following space: Y × Y × Y
Y × Y
Y

So this is a special case, so, in this case with a simplicial object, here d0 is projection, the
last one dlast also projects away the last coordinate, and di multiplies the i and i+1 entries.
The other maps introduce degeneracies.

Then Y ∼= ΩBZ if Y is group complete.
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I think this simplicial object is the single most significant thing about simplicial sets, this
bar construction. The simplicial relations will only be satisfied up to homotopy if Y is not
strictly associative.

In the general case you can do it, but it’s harder. You can think of this as an A∞ simplicial
object and then use a Segal pushdown to make it actually simplicial. There are many other
ways of doing this.

I want to talk now about the Stasheff operad, K , it’s general features and what makes it
interesting.

It’s small and explicit. So K (k) is a polyhedron, which is nice because it’s finite dimensional.
Further BY has a simple description, you take (tK (k)× Y k)/ ∼, and see Stasheff’s paper
for more details.

There’s also an obstruction theory. There’s a step by step process to create an A∞-algebra
action on Y which involves only extending an action on the boundary to the interior. There
was a bunch of work on this showing some things about spectra.

The obstructions in this case are Hochschild homology groups, so you can calculate them.

So far I haven’t said anything about A∞-algebras, and I thought it would be a nice gesture
to say something. For this I need to talk about, well non-Σ operads in the category of chain
complexes Ch. The most common category to use for an operad other than spaces is chain
complexes. Replace the cartesian product with the tensor product in the category of chain
complexes. I’ll say a little about it. We want to have, we want to have, oh, you know, I was
talking about the advantages of the Stasheff operad, we use other things because sometimes
it’s nice to have things that are big and functorial.

So a chain operad will be P and I want a map P(k)⊗P(j1)⊗· · ·⊗P(jk)→P(j1+· · ·+jk)
satisfying the same things.

An A∞ chain non-Σ operad is one in which each chain complex P(k) has the homology of a
point. Then an A∞ algebra (that was my official topic, now they’ll reimburse my expenses),
is a chain complex with an action of a chain A∞ non-Σ operad. Analogously you can say an
A∞ space is a space with an action of an A∞ non-Σ algebra. This is good if you come upon
things that are not strictly associative in nature. You can get Ext and Tor and so on, you
have a bar construction.

Remark: the Stasheff operad is a cellular operad, it has a cellular decomposition compatible
with the operad structure, this is another reason the Stasheff operad is improtant. Tde
cellular chains of K are a small A∞ chain non-Σ operad.

All right, having said this much, let me point out that we kind of don’t need A∞ algebras at
all. This is the subject of rectification. There’s a functor taking spaces or chain complexes
or spectra or any model category with an A∞ action to weakly equivalent spaces and so on
with a strictly associative multiplication. So we can take this A∞ multiplication with higher
stuff going on to a strictly associative one.
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This shouldn’t be surprising, you’ve heard of the Moore loop space? The Moore loop space
of Z is strictly associative and homotopy equivalent to ΩZ. So why do we bother with A∞
things at all? Normally you get things from the context with information and questions.
That destroys a bunch of information. The rectification result is useful heuristically. It
means anything you can do for a strictly associative thing can be done for A∞ things as well.

Another name for operads would be non-non-Σ operads, the motivation would be that non-Σ
operads encode higher associativity information, but we’d also like to encode higher commu-
tativity. A very simple example is the two-loop space. π0 is commutative because it’s π2 of
the original space.

From the elementary point of view, a k-fold multiplication is commutative if you can permute
its inputs and get the same answer. For higher commutativity we want it to be homotopic
in some nice way. Before I give the definition, I’ll give an example. Let Y be any space. Let
O(k) = Maps(Y k, Y ) with the following structure

1. id ∈ O(1)

2. composition operations

3. Σk action of O(k) (induced by the action on Y k)

Exercise 1 Find two relationships between the Σk action and composition. These are in
May’s book.

This is called the endomorphism operad of Y, it plays an important role.

Definition 4 An operad O is a non-Σ oerad together with, for each k, an action of Σk on
O(k) satisfying those two relations that I didn’t write down

Definition 5 Let O be an operad and Y a space. An action of O on Y is an action of the
underlying non-Σ operad such that each map

O(k)× Y k //

''PPPPPPPPPPPP Y

O(k)× Y k/Σk

99sssssssssss

So it factors through.

Exercise 2 An action of O on Y as the same as an operad morphism of O to the endomor-
phism operad of Y.
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It’s natural to ask what happens when all the spaces are contractible.

O is E∞ if each O(k) is weakly equivalent to a point. E stands for everything, associativity
and commutativity, and this terminology is due to Boardman-Vogt.

Theorem 7 (Boardman-Vogt, May)
Y has a groupike action of an E∞ operad if and only if Y is an infinite loop space. That is

there exist Y1, Y2, . . . , with Y
wk∼= ΩY1, Y1

wk∼= Y2, . . .

This gets beginners confused: you cannot replace spaces with an E∞ action by weakly
equivalent strictly commutative spaces. There are lots of infinite loop spaces like BU which
are not products of Eilenberg-MacLane spaces. So there’s no rectification.

[The people back here want you to call that a theorem.]

Call it whatever you want in your notes, I’m not going to be checking.

Over the rationals, you can rectify commutativity, rational homotopy is taking the E∞
algebra of cochains and replacing it with a differential graded algebra.

An example of an E∞ operad is the linear isometries operad (Boardman-Vogt). There’s
actually a linear isometries PROP. It was Peter May who crystallized that operads were
important as a subidea of PROPs. You can’t write down the free algebra over a PROP like
you can over the algebra.

Let R∞ = ∪Rn, and then this has an inner product. Let I (k) be spaces of linear maps
(R∞)⊕k → R∞ respecting the inner product. Operad composition is ordinary composition
as a subset of the pieces of the endomorphism operad of R∞.

Exercise 3 I (k) is contractible, so I is an E∞ operad.

You might have noticed that I’ve given theorems about operad actions giving a structure, I
haven’t used those. Let O = ∪n≥1O(n), where the inclusions are by putting a 1 in the corner
with 0 in the other new places. We have BO which you can get as I did before.

Exercise 4 I acts on BO.

So BO is an infinite loop space. We know this, but we can replace O(n) with Top(n), and
then that’s an infinite loop space and you get something that you can’t get this from Bott.

There are lots of things you can do like this.

In the remaining fifteen minutes I’d like to talk about the little n-cubes, because I think that
fits with a lot of other things that have been talked about this week.

I’ll use 2 for specificity.
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In the little intervals operad, an element was a collection of intervals with nonoverlapping
interiors. A point in the little intervals operad C2(k) is a collection of k closed squares in the
unit square with sides parallel to the coordinate axes with nonoverlapping interiors which are
numbered (any way you like). There was a natural numbering for the little intervals operad.
If I had allowed a symmetric action that would have made it an operad, not non-Σ. This
space is not contractible but its homotopy type is very well understood. Lots is known about
this space.

To describe the composition, it’s like, you can, I’ll give a representation of it. Now C2 is
supposed to act on Ω2Z. For Cn you just take n-cubes. This should act on Ω2Z as follows,
this is all kind of also an exercise. Look at the element I drew on the board in C2(4). call it
x. Now x gives a map from (Ω2Z)4 → Ω2Z by (α1, α2, α3, α4), well, I think of an element of
Ω2(Z) as a map (I × I)/∂ → Z. I just put my αs into the squares in the picture, and I take
everything else to the basepoint. That sits inside of Maps((Ω2Z)k,Ω2Z).

Exercise 5 This family C2(k) is closed under multivariable componsition, describe the com-
position exactly.

Theorem 8 (Boardman-Vogt, May)
Y has a grouplike action of the little 2-cubes operad if and only if Y is weakly equivalent Ω2Z
for some Z.

This is true for n as well. But there is an open research problem, how do you tell if another
operad is weakly equivalent to Cn? that’s not known for 3 and above.

For A to be equivalent to B means that you have maps in a finite chain inducing isomorphisms
on homology, in operads on each space O(k).

In the last, I guess I’m out of time, I’ll stop.

Ask me in the discussion session how to find a Gerstenhaber structure on a twofold loop
space.

[How do you find Z?]

The only way known is a huge monadic bar construction. That’s related to the problem of
iterating the cobar construction.

4 Discussion

The question, recall, the topolog on LaK was lim−→Lm
a K where Lm

a K = {A(z) =
∑m

i=1 Aiz
i}

for Ai ∈ End(Cn).
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If K ⊂ U(n′) then consider

K
∆// U(n)× U(n′)

�� &&MMMMMMMMMM

U(n) U(n′)

The direct limits will be the same.

[Can you tell us more why we are interested in loop groups?]

The representation theory is close to that of semisimple groups. There are a lot of things that
you can do that yield many interesting formulas. Before Kac were the MacDonald identities,
combinatorial identities, which were special cases of the Kac character formula. There is the
whole physical aspect: the right kind of CFT with the right kind of symmetry, the loop group
and even the Virasora algebra will act on it.

[Why are topologists interested?]

The equivariant elliptic cohomology of a point with respect to a compact Lie group is closely
related to LG.

[Do loop groups have anything to do with 2-categories?]

I’m sure they do. There is a recent paper by Stevenson.

[Is a justification for why these are related based on K-theory?]

There’s something where he calculates the rational equivariant cohomology. There’s a model
for this cohomology, you just formally manipulate it, you can work with maximal tori and the
affine Weyl group, and rationally it’s canonically isomorphic with the characters of irreducible
representations of the loop group.

[Something about pairs of commuting elements of the group or loop group]

According to Hopkins, [unintelligible], BG are related to these things, this should have to do
with field theories as maps of tori into BG.

This is due to Witten, [unintelligible]holomorphic sections of line bundles, [unintelligible]commuting
holonomies, I think what was missing then, the level has something to do with it, it is a kind
of twisting, the different levels, that’s the new insight.

If you don’t twist you get nothing at level zero. Witten ’88 or something, hidden in there.

Matthew Ander, preprint, is the reference. I think it’s on his webpage

The other thing is if you localize, you get [unintelligible], and that’s the right answer.
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4.1 Teleman

[I want to ask, can you give us [unintelligible]?]

I want to say one thing before that, you have Mayer Vietoris for nK(S3) so H3 = Z 3 n so
0→n K0(S3)→n K0(D+)⊕n K0(D−)→n K0(S2)→n K1(S3)→ 0.

The disks we know we get Z2 and then Z ⊕ ZL−1 where the map to it is
[

1 1
0 0

]
. [un-

intelligible]if you trivialize over the two hemispheres, they are glued by a nontrivial map
PU → PU. The gluing S3 → P2 has degroo n. The trivialization on S2 is by D+ and the one
from D− differs by the action above. So what is the effect of the change of the PU -bundle on
K-theory? Well [X, PU ] = H2(X, Z) which are isomorphism classes of line bundles. So we
guess the change af trivialization is in correspondence with tensoring by the corresponding
index bundle.

So the new map nK0(D−) → K0(S2) is the old map ⊗L⊗n. This is (1 + (L − 1))⊗n =

1 + n(L− 1). So this is Z2

24 1 1
0 n

35
→ Z2.

This is now injecive with quotient ∼= Z/n so trivialize on S2 as in D+ and nK0(S3) =
0,n K1(S3) = Z/n.

Look at a real vector bundle V with W3 6= 0. So S(V ) is a projective bundle. Then S+ → S−

tells you that the Thom class does exist in twisted K theory W3K(DV, δDV ).

If the dimension of V is 3 then 1→ U(1)→ U(2)→ SO(3) = PU(2)→ 1. So the spin bundle
is then naturally C2. You can’t construct it as a bundle because of phase ambiguity, but you
can do [unintelligible]projectively. This leads to a P1-bundle used to define twisting.

[Give something nontrivial?]

The tensor product, behind it something will be nontrivial. You have the tensor product
inducing the ring structure on K-theory K0(X)×K0(X)→ K0(X). With twisting you get
P(H1), P(H2)→ projective Hilbert bundles. We can then define P(H1 ⊗H2).

So now if F1, F2 are Fredholm endomorphism representation classes in P1 P2K0 then

H1 ⊗H2
F1⊗1,1⊗F2→ H1 ⊗H2 ⊕H1 ⊗H2

1⊗F2,F1⊗1→ H1 ⊗H2

. This defines the multiplication P1K ⊗P2 K →P1+P2 K.

Observe that the class of P(H1 ⊗H2) is the sum in H3(X) of those of the factors.

Suppose that ther was a twisting by {±1} implemented by the Thom twists of line bundles.
Y n → OmegaY n+1 (this is the Z/2 action. Then we get twistings classified by H1(X, Z/2).
Let’s do it correctly.

14



Addition of Thom twistings
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real line bundles. To define the Thom twist for the total bundle Y n ∼→ ΩΩY n+2 where
these are Z/2 actions. We get a bundle of spectra equivalent to the addition of the Thom
twists. Now naive addition gives ΩY n+1 coupled to R1⊗R R2 which gives the wrong answer.
R1 ⊕R2 9 R1 ⊗R2 ⊕ R because W3 of the first part can be nonzero.

So W3(R1 ⊕R2) = δ(W1(R1)W1(R2) where δ : H2(X, mathbbZ/2)→ H3(X, Z).

Thbe twistings that we have are classified by H1(X, Z/2))×H3(X, Z) but addition is (a1, a3)+
(b1, b3) = (a1 + b1, a3 + b3 + δ(a, b)).

[You have not mentioned the twisted cohomology where [unintelligible]lives.]

There’s not a very easy [unintelligible], you have to work rationally. ch : K(X) ⊗ Q →
H0(X)⊗Q which is a ring isomorphism if X is a finite complex.

Here you get τ ch :τ K(X) →τ H∗(X) ⊗ R (graded mod 2). If X is a manifold, then this is
(Ω.(X), h+η∧), where this is the differential. [unintelligible][unintelligible]trace of operators.
I don’t know what kind you need, but it’s a doable process, [unintelligible]rational homotopy
theory, Sullivan’s minimal models.

[This cocycle is only defined up to cohomology.]

Up to noncanonical isomorphism, so it depends on if you care about isomorphism, for example
if you are in the Mayer Vietoris.

[What about the Thom isomorphism?]

It exists. Do the original construction, the mechanics are the same, but remember they are
projective now and then add the twisting.

You can use it to diefine f ! :τ
′

K∗(X) →τ K∗(Y ) between compact manifolds if you have
been given an isomorphism between τ ′ plus the Thom twist of TY − TX and f∗τ.

[This group law on H1 ⊗H3 must correspond somehow to RP∞.] The piece of twisting will
fiber over K(Z/2, 1) with fiber K(Z, 3). It comes from the bottom of BO I think. It comes
from the class of δ, it’s a pushout of an extension. That’s not a K-invariant. There is one at
K(Z, 4) fibering over K(Z/2, 2). In H5 of this guy. You expect to have this kind of extension.

Let’s thank Constantin.
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4.2 McClure

Can you give me a summary of all the operads, which ones are equivalent, et cetera.

For non-Σ A∞ operads, all of these are equivalent, you have the unlabelled little intervals
operad, the Stasheff operad. Of course any E∞ operad is one forgetting the Σ-action, such
as the linear isometries operad.

There’s one that comes from trees, I may not get this quite right, O(k) is the nerve of the
category of binary trees (two branches at each vertex) with k leaves and exactly one morphism
between each pair in each direction. The interesting thing about this one, I remember really
being struck, is it’s related to MacLane’s thing for monoidal categories. So it acts on the
realization of |NA | where this category is monoidal, this is MacLane’s coherence theorem. I
was struck by that, there’s a similar thing for the E∞.

We also have a cosimplicial one.

For E2, things that are weakly equivalent to the little 2-cubes, you have C2, the cactus operad
(which was like the framed one, so let’s call it the unframed one). Jeff and I do have a model
which is useful, McClure-Smith, isomorphic to the Kauffman model. He started from the
arc complex for the moduli space of Riemann surfaces, ours was related to the Hochschild
[unintelligible].

For Cn I don’t know any for n > 2. We have a model, McClure-Smith, this is all in the survey
paper.

For E∞ there’s a ton. Linear isometries, there’s an analog of the tree model for A∞, which
corresponds to the symmetric monoidal coherence theorem. This is at the heart of Segal’s
paper on [unintelligible].

There’s the Barratt-Eccles, where the kth space is EΣk. Jeff Smith’s thesis has a model which
is different. Another one is C∞, the colimit of the Cn, which is too horrible geometrically to
contemplate, then McClure-Smith, have I written my name down enough.

Then there’s the framed case where you have framed versions of all of these things.

The Lie∞ operad also exist, not on a space level. That’s an important example. A Lie∞
algebra was inspired by mathematical physics.

[The thing about Gerstenhaber.]

Theorem 9 If Y has an action of C2 then H∗Y is a Gerstenhaber algebra.

This is due to Cohen, parts are due to other people, Fred Cohen in his thesis. He created a
huge structure in his thesis. We start from the map C2(2)×Y ×Y → Y. Now Cn(2) ∼= Sn−1 so
this is S1 (Do this as an exercise. Shrink to get just two points. The k-th space is homotopy
equivalent to a certain configuration space. This gives a vector which I normalize to get an
element of S1. That’s a homotopy equivalence. In homology, what was I calling the action?
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I have the map φ, so in homology I get φ∗ : H∗(S1)⊗H∗Y ⊗H∗Y → H∗Y. Now H∗(S1) has
two generators ι0, ι1. Now φ(i0 ⊗ y1 ⊗ y2) is y1 ∪ y2 which is a disguised Pontryagin product.

φ(i1 ⊗ y1 ⊗ y2) is [y1, y2]. So the Jacobi identity is hard, and the Poisson compatibility.

[Say a word about the BV?] For that you need the framed little disks. Now I have disks
instead of cubes. I can use disks instead of cubes to define C2 if I want to. That’s homotopy
equivalent, take the inscribed square or whatever. Getzler pointed out that here you can
rotate. So you can do a semidirect product with S1. So you put a rotation coordinate on
each one. I won’t define the composition, it’s a little tricky but not hard.

So framed little disks is little disks, each labelled with an angle, let’s say. I don’t know a
standard name, we can call it F2. now C2 ⊂ F2. There is also a projection, which is not an
operad map.

Theorem 10 Getzler
If Y has an F2 action then H∗Y is a BV algebra

This is ∪, [ ],∆. The hard part is the relations, So ∆, well F2(1) is homotopy equivalent to S1

by moving the circle to the center. Then I have F2(1)×Y → Y. So H∗F2(1)⊗H∗Y → H∗Y.
So ι0 is the identity here and ι1 gives the ∆.

[Can you characterize spaces with F2 actions?]

That’s a good question, I think [unintelligible]did.

[If you have an action of the Stasheff operad you can get Z back, with some kind of bar
construction. Does that mean two operads can be equivalent but their bars are not?]

It just makes it easier to write down. Within one homotopy class you can have a bunch of
algebraic or geometric complexity, so that’s what happens. Trying to find Z is an interesting
property in a number of settings.

[You said something about A∞ simplicial sets. What’s a reference?]

The appendix in Segal’s original paper on Categories [unintelligible].

[Additional questions? Let’s thank the speaker.
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