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Please sign in on the signin sheet, so we can keep track of all the people who came. Another
thing, Chinese people getting money from MSRI go and see the secretary, upstairs and to
the right in the mathematics office. If you don’t have your reimbursement forms, just ask for
one. You’ll mail those to MSRI. Enjoy your week and I’ll see you around.

1 Uribe: Intro to topology

This is elementary to most of the people who are here. The idea is to give algebraic topology
from scratch, then we’ll do the Thom isomorphism, tomorrow K-theory, and then so on. I
advise you to check out the downtown area. For the people who don’t know, feel free to ask
questions.

I’m going to give results without proofs.

We have here a topological space X and I want to see how many holes it has, 1, 2, 3 dimen-
sional holes, and how many subvarieties I can put in it up to perturbation.

I’m going to do singular homology. Take the n-simplex, the n-dimensional triangle {(t0, . . . , tn) ∈
Rn+1|

∑
ti = 1, 0 ≤ ti}. So ∆0 is a point, ∆1 a segment, and so on. Then I want to include

vectors so that this is
∑
ti~vi. Then look at a singular n-simplex, a map σ : ∆n → X I want

to look at holes as built out of these maps. So let Cn(X) be the free abelian group generated
by singular n-simplices.

Let the boundary map δn : Cn(X) → Cn−1(X) be σ 7→
∑n
i=0(−1)iσ|[v0,...,v̂i,...,vn]. Then

δ2 = 0 and so I define Hn(X) = ker δn/imδn−1.

The restriction map is the composition with the inclusion ∆n−1 → ∆n.

H∗(pt) is easy to see to be concentrated in dimension 0. The Cn are all generated by the
unique maps ∆n → ∗ so they are all Z. So what happens with the boundary operator? If you
have an even dimension, they cancel, and you get a zero map. If it’s odd it’s the identity. So
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the complex is

Z id // Z 0 // Z id // Z 0 // Z // 0

Now if f : X → Y then f∗ : H∗(X) → H∗(Y ) and if g ∼= f we have f∗ = g∗. Further id∗ = id.

Now I need to discuss relative homology, homology for a pair. Let i : A→ X be an inclusion.
We define Cn(X,A) to make this sequence exact:

0 → C∗(A) →i∗ C∗(X) → C∗(X,A) → 0.

This will give a long exact sequence in homology:

. . .→ Hn(A) →i∗ Hn(X) → Hn(X,A) →∂ Hn−1(A) → . . .

These things in C∗(X,A) are simplices in X with boundaries in A. The new map ∂ is given
by taking the boundary as a simplex in A.

We also have excision. Say Z ⊂ A ⊂ X. Then Hn(X − Z,A − Z) → Hn(X,A) s an
isomorphism. There are restrictions on how Z sits in A.

Now Mayer-Vietoris gives the homology of A ∪B = X. There is a long exact sequence

→ Hn(A ∩B) → Hn(A)⊕Hn(B) → Hn(X) → Hn−1(A ∩B) →

This can be used to give the homology of the sphere H∗(Sn) = Z in dimensions 0 and n and
otherwise 0.

Take Bn the n-dimensional ball. Then its boundary is Sn−1. Then H∗(Bn, δBn) is the same
as H∗(Sn) just from the long exact sequences.

So we want to build another gadget to calculate the same invariants which is easy to work
with. We’ll do this by building a space in stages, attaching balls to skeletons of lower
dimension along the boundary.

X0 is a set of points, the 0-skeleton. Between points we put paths, between paths 2-balls,
and so on. So Xk = Xk+1 t Bkα/̃. Take φa : Sk−1 → Xk−1. Then x ∼ φa(x) for x ∈ δBn.
Then we say X = Xn for some n.

Then Cn is the free abelian group generated by the Bnα. The boundary map Cn(X) →
Cn−1(X) takes enα 7→ deg φna . So H∗(CCW∗ (X)) = HCW

∗ (X) A proposition is that HCW
∗ (X) ∼=

H∗(X).

Example 1 RPn is Sn/antipodes. So this can be built with one cell of each dimension,
attaching with the two sheeted cover, meaning that the complex is

0 → Z → . . .→ Z →2 Z →0 Z → 0

So H∗(RPn) is Z in dimension zero, and in n if n is odd, and Z/2Z in odd dimension less
than n, 0 otherwise.
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Now singular cohomology. Let Cn(X) = Hom(Cn(X),Z). Then I get a boundary δ :
Cn(X) → Cn+1(X). This takes F, a map Cn → Z to the map which takes σ 7→ F (δσ).

For RP3 we get that H0 = H3 = Z,H2 = Z/2Z,H1 = 0. So Hn(X,Z) ∼= Hn/Tn ⊕ Tn−1,
where T is the torsion.

This is good because we have a ring structure given by the cup product which is φ∪ψ(σ) =
(φ|σ[v0,...,v`])(ψσ[v`,...,v`+k]) for φ, ψ in C`(X,Z) and Ck(X,Z).

Now some examples. H∗(RPn,Z/2Z) = Z/2Z[α]/αn+1 = 0. H∗(CPn,Z) = Z[α]/αn+1 = 0.

Let M be a smooth manifold. An orientation is at every point a coordinate system so that
I can move it around smoothly. I do this with Hn(M,M − ∗). This is Hn(Bn, δBn) = Z.
I say this is orientable if I can choose a generator of this group in a coherent way. So
x 7→ µx(Hn(M,M − x)). I want to do this “smoothly on M” where this has some business
with sheafs and stalks to actually define it.

What is not orientable? RP2n, the mobius band, and so on. What is an oriented space? One
where I can choos this thing. If µ exists then it is oriented.

The cap product relates the homology and the cohomology.

∩ : Ck(X)× C`(X) → Ck−`(X). This takes σ ∩ ϕ to φ(σ|[v0,...,`])σ[`+1,...,k].

This induces a cap produc Hk(X) ×H`(X) → Hk−`(X). Now we can move on to Poincaré
duality.

Let M be an oriented compact n-manifold. What is a manifold? Take functions RN → R.
Take the preimage of a regular point (derivative nonzero). Intersect these, making sure
gradients are not dependent.

So suppose this manifold has fundamental class [M ]. Then D : Hk(M) → Hn−k(M) by
α 7→ [M ] ∩ α is an isomorphism. This is very nice.

Let’s see a simple example. Look at T 2 = S1 × S1. I am going to use deRham cohomology.
So I have dθ, dψ. Then [T 2] ∩ dθ = [S1

ψ]. Morally if you integrate along dθ you are left with
the ψ circle.

One last thnig. One can also think , if the manifold is smooth, the cup product can be
thought of as intersection of varieties. Please correct me if I’m wrong. Suppose I have two
manifolds. I have

Hk ×Hn−k //

��

Hn

��
Hk ×Hn−k

PD

OO

// H0

PD

OO

This is given by intersection, which should be transversal.
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2 Lupercia, Transversality Thom Isomorphism

I am going to sketch some ideas. You should check Milnor’s “Characteristic Classes” for
more on this.

I will start by reminding you what is transversality. We start with two smooth manifolds
Mn, Nm. This looks locally like Rn and varies smoothly as you move around it.

So start with f : M → N a smooth map. What does it mean for y t f for y ∈ N? Look at
d∗f : TxM → TyN where x is a preimage of y. Then you want it to be surjective. You can
also call y a regular value.

[Do you assume n < m?]

No, but that is a very good comment. If m < n then it’s the complement of the image.

This condition is important because what it’s telling me is that the tangent space at x
translates to the tangent space at y (?)

Exercise 1

M is compact, then the regular values are open in N.

Exercise 2

If m < n then y a regular value means f−1(y) = ∅.

Exercise 3

y is regular means that f−1(y) is a smooth manifold of dimension m− n.

Exercise 4

Make sense of the saddle picture.

Theorem 1 Brown-Sard
Let W ⊂ Rm be open and f : W → Rn be smooth. Then the regular values are everywhere
dense in Rn.

Exercise 5 Assume M has a countable basis. f : M → N is smooth implies the regular
values are everywhere dense.

Consider the second version of transversality. Let Y ⊂ N be a submanifold of dimension
n− k. Let f : M → N be as before. Then f t Y beans that ∀x ∈ f−1(Y ), the composition
TxM → TyN → TyN/TyY is surjuctive.

4



Exercise 6 f−1(Y ) ⊂M is a smooth m− k dimensional manifold.

I am going to give you the critical lemma, then state and prove that you can perturb either
the map or the submanifold just a little and get transversality.

Lemma 1 Let W ⊂ Rm be open, and f : W → Rk smooth. Let X ⊂ W be relatively
closed, and say f |X has 0 as a regular value, and that K ⊂ X is compact. Then there exists
g : W → Rk smooth which coincides with f outside a compact set, such that g|X∪K has 0 as
a regular value. And for all ε, |f(x)− g(x)| < ε for all x ∈W.

itproof. Partitions of unity imply that there exists λ : W → [0, 1] so that λ = 1 on a
neighborhood of K and 0 outside K ′ ⊃ K. Then g(x) = f(x)− λ(x)y

• 0 is a regular value along K, dxy = dxf − λ1(x)/y =x dxf.

• g(x) = g(k) on W −K ′

• |g(x)− f(x)| = |λ(x)||y| < ε

• X ∩K ′ is compact, |λ′|X∩K′ | = X ∩K ′ → [0, 1] so |λ′(x)y| < ε′ for small enough y so
∂gi∂xj = ∂fi/∂xj .

Exercise 7 Trans(M,Y,N) ⊂ C∞(M,N) are dense. Find what topology.

Here is the third version.

M
f // N

Y

j

>>}}}}}}}}

Now f t j if dxf(TxM) + dyj(TyY ) = TzN if f(x) = j(y) = z.

What are you doing? Knitting? My lecture is fascinating? This is the first time I have seen
knitting. Eating sushi, but knitting?

2.1 Poincaré Duality

I am not going to give a more general definition, that is in every book, I think Harry Potter
has it, but if Mn is compact smooth oriented with no boundary then Hi(Mn) ∼= Hm−i(M).
Take r and s and make them transversal. Suppose that r + s = m. Then generically r and
s intersect at points. You can get a number using the orientation, that’s the intersection
number.

Then let me sketch the proof. Take a Morse function. By this I mean f looks locally like
f(0) +

∑
aijxij +O(|x|3). Here aij = 1/2∂f/(∂xi∂Xj).
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Remember Morse Theory. Then you have the saddle picture. You have x the direction of
positive eigenvalues, y the direction of negative ones. These are the ascending and descending
manifolds. Generically, I have two disks of complementary dimension for the positive and
negative eigenvalues.

There is a beautiful argument to ensure that the value of the function at a critical point is
the index (number of negative eigenvalues). Then between the points of index i+1 and i you
get disks. Then you take the intesection numbers of the disks in this picture from preimages
of a point between them, and say δei =

∑
〈∂ei+1, ei〉ei.

Let C1 = {σ :critical points of index 1→ Z. Take the free abelian group on these.

Exercise 8 δ2 = 0.

〈ei+1, ei〉 = 〈ẽi+1, ∂ẽi〉. There are more algebraic proofs using homological algebra.

The spirit of these lectures will be to use smooth manifolds.

2.2 Thom Isomorphism

Suspensions.

Well, H̃i(X) = Hi(X, ∗).

Proposition 1 H̃i(ΣA) = H̃i−1(A)

A× [0, 1]/A× {1} = CA ∼= ∗. Then ΣA = CA/A× {0} = CA/A.

So what do you do? You consider the pair (CA,A) and take the sequence

→ Hi(CA) → Hi(CA,A) → Hi−1(A) → Hi−1(C,A) →

And so you get an isomorphism between the middle two of these, which eventually gives what
you want.

You can suspend multiple times.

Exercise 9 Compute Hi(Sn). Note that ΣnSk = Sk+n.

A vector bundle associates to every point of a space a vector space, with some local properties.
You can get the suspension from a particular equivalence on a trivial bundle, A × Rn/ ∼=
ΣnA.

If I do the fiberwise one-point compactification I will get a sphere bundle Sph(E). Now I
take the disk bundle D(E), the vectors of norm at most one in the vector space. There is
also the sphere bundle S(E) of norm one.
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Definition 1 T (ξ) = D(E)/S(E).

Notice that there is a map π : Sph(E) → T (ξ) by identifying points at infinity. Then the
Thom diagonal Takes Sph→ Sph× Sph→ A× T (ξ).

Then I do identifications and I get a map Tξ → A+ ∧Hξ, the Thom diagonal.

In cohomology it looks like Hp(A,R)⊗ H̃q(Tξ,R) → H̃p+q(Tξ,R).

Exercise 10 If the bundle xi is trivial then µ ∈ H̃q(Tξ,R) where µ is the suspension of the
identity.

Then Hp(A;R) is equivalent to Hp+q(Tξ,R). This is just the suspension isomorphism when
this is a trivial bundle.

We’re almost done.

Definition 2 An R-orientation for xi is a µ ∈ H̃n(Tξ,R) such that for all a ∈ A, i∗a(µ) ∈
H̃n(Sna ) for ia : Sna → Tξ.

Exercise 11 Apply the Serre spectral sequence to the fibration Sn → Sph(E). Show ∃µ
implies this collapses, so H∗(Sph(E), R)congH∗(A,R)⊗H∗(Sn, R).

Exercise 12 If there exists a section of ∞ then H∗(A,R) ∼= H∗(A,R)⊗H0(Sn, R).

Exercise 13 Prove the Thom isomorphism theorem.

3 Uribe: Semisimplicial spaces

Please correct me if I’m using the wrong names. What am I going to talk about is a com-
binatorial gadget that captures and organizes topological information of categories, groups
and some infinite dimensional spaces.

They will be constructed using simplices. You can build a circle with one point, by taking
an interval and a point, and identifying the boundary of the interval, both sides, with the
point. You can put two two simplices onto a circle with three points to make a sphere.

I am just joining along the boundary to get something of a higher dimension.

Say I have a finite group G. I want BG with π1(BG) = 0 and πi(BG) = 0 for i > 1.

So for each element of G I add a loop to a point. To create the relations, inside any relation
I put a cell. I get something eventually in the limit which is BG.
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So BG = EG/G where EG ∼= ∗. G acts freely on G. BZ2 = S∞/Z2 = RP∞, and BS1 =
S∞/S1 = CP∞.

Now let C be a category. A semisimplicial object is a contravariant functor Ord→ C . where
the objects of Ord are the natural numbers and Mor(Ord) are the order-preserving maps.

This gadget n is like the simplex ∆n. n→ m are generated by the maps as follows

• δi : (n− 1) → n which is injective and doesn’t contain i. These are the face maps of a
simplex.

• σi : n+ 1 → n, the unique surjective map which hits i twice. These are the degeneracy
maps.

You could alternately look at Λ : Ord → C . There are three arrows going down from A2 to
A1 and two going up. It’s easiest to do it as a contravariant functor.

So for me now, C will be the category either of sets or of topological spaces. They will be
called semisimplicial sets or spaces. I can associate to it a geometric realization from this
data. So A∗ yields the topological space |A∗|.

This realization is t∆n×An/ ∼ . The equivalence relation, if θ : n→ m then θ∗ : ∆n → ∆m.
We say (x,A(θ)y) ∼ (θ∗(x), y).

Now let C be a small category, with the objects and the morphisms topological spaces. Then
we can associate the nerve of the category NC . This is a semisimplicial thing.

NC0 are the objects, NC1 are morphisms, NCn are the composible n-tuples of morphisms.

So my face maps are σ1 · · ·σn 7→ σ1 · · · (σi ◦ σi+1 · · ·σn and the degeneracy maps are to
introduce copies of the identity morphism.

So we get C → NC∗ → |NC∗| = BC . By looking at what happens with a simple composition,
we see that nothing more than what we wanted happens.

Let G be a discrete group. Then there is a category which I will also call G. There is one
object and the morphisms are G. The nerve NGn is Gn. The realization is then BG.

So F : C → D can be checked to induce a continuous map BF between classifying spaces. If
F and H are related by a natural transformation of functors then BF and BH are homotopic.

Adg : G→ G is equivalent to id. Conjugating is homotopically equivalent to the identity.

One can construc some other categories from a finite group. You can define the following,
Ḡ has G as objects and G × G as morphisms. Then (g, h) is an arrow from g to h. This
maps to G by sending all objects to the single object of G. and (g, h) to gh−1. So Ḡ ∼ id so
BḠ ∼= ∗ → BG. This is like EG→ BG, but you have to work a little bit.

So A∗ a semisimplicial space. Top goes to chain complexes by taking X to C∗(X,R). Then
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gor An → An−1 you get C(An, R) and C(An−1, R). Then C∗(An) → C∗(An−1) takes σ to∑n
0 (−1)iCA(δi)σ.

The homology of this complex is the Hochschild homology HH(A∗, R).

Theorem 2 Burghelea
HH(A∗, R) ∼= H∗(|A∗|, R).

[Why did we do this?]
To compute homology.

I think Dennis will use this. For simplicial spaces (sets) there was one thing that always
troubles me. The arrows go in the wrong direction. I always thought that it should be
“co.” Why not cosimplicial? If that’s a simplicial space, what is a cosimplicial space? It’s
a covariant functor Z : ∆ → C . These also have a geometric realization, it’s a little more
complicated.

|Z∗| is the space of infinite tuples in
∏
Map(∆k, Zk) such that the following commutes:

∆k
fk // Zk

∆k−1

δi

OO

fk−1

// Zk−1

Z(δi)

OO

Theorem 3 (Jones, Siegel)
HH(C

∗(Z∗)) ∼= H∗(|Z∗|).

Now I want to construct the loop space. Construct the following semisimplicial space. λn(m)
are morphisms from m to n. This is a simplicial space. The face and degeneracy maps are
the natural ones.

Exercise 14 |λn∗ | ∼= ∆n

Why do all of this? Look at λ1(m). There are m + 2 of these. So what is happening
with the faces and degeneracies? Let Xλ1

be the cosimplicial space such that Xλ1
(n)

is Map(λ1(n), X). At the level n this is basically Xn+2. So you get δi(x0, . . . , xn+1) =
(x0, . . . , xi, xi, . . . , xn+1) and σi(x0, . . . , xn+1) = (x0, . . . , x̂i, . . . , xn+1). So the first and last
points are invariant here, like the beginning and endpoints of the path.

Now |Xλ1

∗ | ∼= X |λ1| which is just the path space. If I just take the subcosimplicial space where
the first and last are the same, everything goes through as before, so you get XS

∗ ⊂ Xλ1

∗ with
|XS

∗ | ∼= LX.

This may illuminate the theorem that HH(C∗(XS
∗ )) ∼= H∗(LX). You have X,X2, X3 and

you associate to these C∗(X)⊗1, C∗(X)⊗2, C∗(X)⊗3.Dualizing you getHom(C∗(X)⊗j , C∗(X)).
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If π1 = 0 then HH(C∗(XS), C∗(X)) ∼= H∗(LX). I don’t have time to say that Poincaré du-
ality gives you the product of Chas and Sullivan.

4 Discussion

I have X∗ a cosimplicial space and then I get C∗(X∗) But I can also look for XS , because
of the way it’s constructed, you can construct from C∗(X) the Hochshild homology of X.
The correct statement is H(X∗) ∼= HH(C∗(X)). Hochschild homology is of an algebra, not
a cosimplicial space.

Let’s discuss. I want to discuss something. How do you prove that |λn| ∼= ∆n. The only
object in the construction that survives is the identity map. Let k > n. I believe σ ∈ λn(k)
then . . .

[Basically you can recover homology through this, can you get K-theory simplicially?]

You have [X,Z×BV ], here you have a simplicial model for ΩV.

You can do it with derived categories. The category of categories (a principle of Groth-
iendieck) is nothing but a subcategory of the simplicial category of sets.

Let me say something that I forgot. This is a way to make a simplicial space for a manifold
using an open cover. Mi−1 = tj1,...ji ∩i Uji .

If things intersect you join them. It’s like gluing. This gives you something homotopically
equivalent to M.

If you form a category M with morphisms which are triples x, i, j with x ∈ Ui ∩ Uj and the
objects are pairs (x, i) with x ∈ Ui. So U1 = tUi,j and U0 = tUi. This is essentially the
information you need for a vector bundle.

A functor g : M → V ECT associates to (x, i) a vector space Ex,i and to (x, i, j) the
isomorphism Tx,i,j . You have a vector space over every point but there is nothing ensuring it
varies continuously. One way to resolve this is to take a smaller category with only one vector
space in each dimension. You can also do something fancy, with say Fredholm operators or
something else you might like better because of your particular perversions.

Felix, what didn’t you understand of my lecture? You weren’t there?

[Take the functors from C to itself given by the identity and by taking everything to the final
object.] So the identity and the constant map on BC are homotopic.]

Exercise 15 Consider the category J which has two objects 0 and 1 and one nonidentical
morphism 0 → 1. Then F ∼= G as functors C → B if H : C × J with H|C × 0 = F and
H|C × 1 = G.

C ∈ CAT, with natural transformations F → G. There is a 2-functor to Top with continuous

10



maps and homotopies.

The gadget XS is a cyclic space, it has an action of the circle. τi : XS
n → XS

n with (τi)n+1 =
id. The cyclic homology HC∗(XS) is isomorphic to H∗

S1(LX), equivariant cohomology of
the loop space H∗(LX × ES1).

[Tangent on a complex no one can remember precisely.]

So Λ → Top where Λ is a cyclic category. You want to map the points on the circle to the
points on the circle preserving the cyclic order now instead of an order.

[What about Quillen’s proof of transversality?]

I would butcher it. It is very ingenious, vory tight, it’s in Differential Topology, Guillemin
and Polluck.

The way I proved (or did not prove) the Thom isomorphism, you don’t need the Serre spectral
sequence. The proof in Milnor and Stasheff uses only the classical properties, excision and
Mayer-Vietoris. Most proofs copy the proof of Milnor. That’s a book you should read to do
this kind of stuff. String topology uses topology but the nice thing about it is that a lot of it
can be done with basic first year topology. A nice thing is that things about this come from
physics, most naturally the quantum structure of the world. If you have a space you can
associate to it an algebra. You have a space and a functor associates an algebra to its space.
So say X → C(X). These could be the complex valued continuous functions (or smooth or
something. You can add them, multiply by members of the ground field and multiply. This
is called an algebra. This is surprisingly fruitful. You can recover the space by studying the
algebra. This is surprisingly fruitful at least to me.

In physics we don’t just have a space, we have a physical system. You take a manifold plus a
structure, that can help something. So maybe a metric. Then this gives an algebra of some
sort. They have some additional structure. These can be Lie or Poisson or Gerstenhaber or
BV. What is most remarkable about string topology. Classical topology gives you the same
algebras as physics! The exclamation point is to connote our extreme surprise and liking of
this, this is a connection between two seemingly disparate things, classical algebraic topology
and the algebras of physics.

Today we torture you a bit with classical topology so you can appreciate the connection when
it comes. That’s the plan for the week.

[Can you give us a concrete example for how to calculate the cohomology of the loop space
by the Hochschild complex?]

Luc?

HH∗(C∗(X), C∗(X)) ∼= H∗(LX). So C∗(X) is a differential graded algebra, very big. In
many cases it will be formal, your space, so you can have a map C∗(X) → H∗(X) which
induces an isomorphism. YOu compute it on H∗ instead. Now take the sphere. Take
X = Sm, so we have the homology of the sphere is an exterior algebra on an element of
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degree n, xn. If you have A an augmented algebra, you have a complex C∗(A,A) which will
be A ⊗ T (ΣĀ). Then C∗(Hk(Sn),Hk(Sn)) = E(xn) ⊗ T (xn−1). In this case modulo two
the differential is zero. The differential in general, with odd sign, is a ⊗ [sa1 ⊗ · · · ⊗ sak] =
aa1 ⊗ · · · ⊗ ak ±

∑
a⊗ [a1 ⊗ · · · aiai+1 ⊗ · · · ak]± aka1[a2 ⊗ · · · ⊗ ak−1]. All the products in

the exterior algebra are zero. You will get two or zero, (1± 1)x⊗ xk−1. So the final result is
that H∗(LX,Z/2Z) ∼= Exn ⊗ T (Xn−1), where this is Hk(Sn)⊗Hk(ΩSn).

Thank you very much, we continue tomorrow.
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