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As a mathematician you can get respect and pay for going very deeply into your own world.
As a corollary of that, if someone asks you to help organize a workshop in honor of someone,
you want to. Then listening to all of the talks, you realize that this choice, of hyperbolic
geometry, you could have chosen any number of other subjects, it’s a really special thing.
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I’m going to talk about 2-generator hyperbolic three-manifolds. Some of you who were at
Cameron Gordon’s conference might notice this is the same topic. I do have new results but
I may not be able to talk about that today.

Definition 1 The rank of a group is the minimal number of generators.

How do we describe a 3-manifold such that the rank of the fundamental group is less than
or equal to g. Is there some topological prescription for producing these manifolds. The
analogous question for one and two dimensions is completely solved; in four or higher, any
group arises so possibly this is uninteresting. In three dimensions this may be a tractable
question.

Today I will be considering the compact case, but if one considers noncompact manifolds
with finitely generated fundamental group, then there’s a theorem of Scott and Shalen that
says the group is finitely presented, and, moreover, M is homotopy equivalent to a compact
three manifold. So to understand this question we can reduce to the compact case.

Definition 2 Heegard splitting of a compact manifold is a decomposition into two compres-
sion bodies.

In this case those can be handlebodies. So we say M = H1∪δH1∼δH2H2. The rank of π1(M) ≤
h(M), the Heegard genus for M closed. The fundamental group of either handlebody is a
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free group, so it can generate the group, with relations from the other.

In the general case, with compression bodies, if one side is a handlebody, then this inequality
still holds.

This is the only general method known for constructing three-manifolds with a restricted
rank. A natural question is, how much can rank π1(M) and h(M) differ, in the closed case?
What I conjecture is that

Conjecture 1 There exists some function N → N such that h(M) ≤ F (rkπ1(M)).

Boileau-Zieschang had that there exists infinitely many closed Seifert fibered spaces such that
the rank is the Heegard genus minus one. Then Shultens-Weidmann showed that there exist
graph manifolds Mi such that h(Mi)− rk(π1Mi) ≥ i. In this case h(Mi) is always at least a
constant times i. There are no known examples of hyperbolic three-manifolds for which the
rank and Heegard genus differ. Very little is known in general for hyperbolic manifolds.

Theorem 1 Adams
If M is a hyperbolic manifold of finite volume with π1(M) generated by two parabolic elements,
then M is a two-bridge link complement.

A simple example is the figure eight knot complement, whose fundamental group is generated

by the two parabolic elements 〈
[

1 1
0 1

]
,

[
1 0
ω 1

]
〉 with ω3 = 1.

When I glue two things together by a four braid, I get two generators and then one relator.
It’s also not hard to see that the rank, which is two, it’s also equal to the Heegard genus of
M. You can see a decomposition into a handlebody and a compression body right here.

I want to sketch why this is true.

The idea of the proof is that we take this two-bridge link and put an order π orbifold locus on
the link. So I get an orbifold, I drew a two-bridge link, but imagine there are two parabolic
generators. The orbifold is generated by taking the meridian and specifying that it has order
two. Then π1(O) is a dihedral group. Then by the orbifold theorem, you have to check that
this is irreducible, is a spherical orbifold, and its twofold branched cover is a cyclic group. It
will be a spherical orbifold with cyclic fundamental group so a lens space. There’s an elliptic
involution on the torus that extends over the solid torus. If I quotient by the involution,
I get a two-sphere with two π-orbifold loci. There’s a little geometry you have to do but
it’s basically the argument. This argument goes back to Boileau-Zimmerman. If it were an
infinite cyclic group you find it’s the trivial knot or link, or you might get a torus knot, there
are a bunch of exceptional cases I’m suppressing.

I also know about torus bundles, which come from taking T × I and identifying the top
and bottom by an element of the mapping class group. So ϕ∗ = A ∈ SL2Z. Let M be the
mapping torus of ϕ.
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Lemma 1 M is two-generator if and only if A is conjugate to
[

m 1
−1 0

]
or

[
1 m
0 1

]
.

Then the rank of π1(M) is h(M)

You can notice here that m is arbitrary so the trace can be arbitrary. In SL2Z, well, in SL2Q
everything is conjugate to this form, this is rational canonical form [??? How can that be,
you have trace and determinant related by D=T+1], but this is not everything over Z

Take this [graphical] element of the mapping class group, so a little neighborhood of this
gives a genus two handlebody. Then we take this, and we can generate our torus as well as
the mapping class element.

The way to show that if it’s not one of these, then the rank is at least three is, check
[unintelligible]. It should send one generator to anether so that these two guys would generate
the fundamental group of the torus. If I take a guy with a fixed point you take a neighborhood
and get a punctured torus bundle that is hyperbolic and the rank is the same as by Dehn
filling on the boundary, and also the Heegard genus.

So this is also true for punctured T 2 bundles.

These are generally Solv, but there are other Solvs which are the union of two twisted I-
bundles over a Klein bottle. This is probably a feasible case to consider.

The theorem I want to talk about in the remaining time is

Theorem 2 (Agol) Given ε > 0 there exist at most finitely many closed hyperbolic three-
manifolds with rank π1(M) = 2, inj(M) > ε, h(M) > 2.

If you fix rank two and a small epsilon, there are infinitely many with Heegard genus greater
than two. This is due to Namazi. It depends on some unpublished work of Tien.

These are created by taking genus two handlebodies and a map ϕ, and raise it to a high
enough power, a pseudo-Anosov element, and the geometry splits into two pieces looking
like Shockey groups, and the ending laminations, it starts to look almost like a fibered thing
fibered over the circle with monodromy ϕ.

The result of Tien is that you can get arbitrarily close to being hyperbolic as you glue
together. You need to be close in some integral sense, the trace of the Ricci curvature is close
to zero or something like that.

Theorem 3 (Souto)
Given ε > 0 there exists a g such that if M is hyperbolic, rank π1M = 3 and inj(M) > ε,
then h(M) ≤ g.

If M is infinite volume and rank π1M = 2 then we know π1M is free so M is the interior of
a handlebody (Jaco-Shalen plus tameness), which simplified the rank two case.
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An application:

Conjecture 2 Short geodesic conjecture
There exists a lower bound on the injectivity radius of arithmetic hyperbolic three-manifolds.

I don’t have time to go into the definition of arithmetic; in the noncompact case they’re all
commensurable with [unintelligible], like PSL2(Od) where Od is a ring of integers in Q[

√
d].

The short geodesic conjecture is a special case of Lehmer’s conjecture

Conjecture 3 If the monic polynomial p(x) has integral coefficients then M(p) = 1 or
M(p) ≥ 1.7 . . .

The measure M(p) is the product of the absolute value of the roots lying outside the unit
circle. This known lower bound is the Mahler measure of x10+x9−x7−x6−x5−x4−x3+x+1.

A corollary of these two theorems is, assuming the short geodesic conjecture, there exists
only finitely many arithmetic hyperbolic M with rank of π1(M) ≤ 3. This is a corollary of
Souto’s results in the rank three case, but uses the rank two. This uses Gelbart-Jacquet,
Jacquet-Langlands, and Vigneras. The theorems they prove translate into lower bounds on
[unintelligible]. It’s also based on a technique of Lackenby, to get an upper bound on the
Cheeger constant which is comparable to the first eigenvalue.

Now I just wanted to explain, I do have a generalization in the rank two case where I don’t
have the injectivity radius but I need other technical assumptions. Now I want to sketch the
argument of the rank two case.

Step one is to find a short generating set for π1M. This works if you take it mod ε which is
the Margulis constant. Then there exists a rank two graph Γ and a map of Γ into M such
that π1(Γ) maps onto π1(M) and M has a thick-thin decomposition, so the thin regions are
going to be Margulis tubes, solid tori, and the length of Γ intersected with the thick part is
uniformly bounded, less than some constant which doesn’t depend on the manifold. There
are a few options, but one of the generators will be very short.

The sketch of the the proof is, take a pair of generators, and if γ2 has short translation length
then we can take a Margulis tube around it. If this and γ1 are too far apart then they would
just generate a Shockey group. I could find a geodesic plane to bisect one from the other.
This plane will be taken to a disjoint geodesic plane and so on, so you can play ping-pong
if you like, but I want to take H3/Γ2 and then I’m taking an infinite volume solid torus,
take a melon-baller and scoop it out, and glue them together. It’s another way of seeing a
combination theorem. The axes can’t be too far apart. If they’re close together and one is
very long, you multiply the one by some power of the other, and shorten the carrier graph.

Now you have the carrier graph, with bounded length. If the injectivity radius is bounded
below, then we can find loops arbitrarily far away. Now I drill three loops very far away. You
can think of drilling them out and then putting in a pinched negatively curved metric, or do
a trick of Canary where these are orbifold loci.
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Then you take a cover corresponding to the image of π1(Γ) which says the image of {π1Γ} is
a free group.

Then tameness, Gabai talked about this on Monday, this branched cover is tame. This is
π1O ′ = π1Γ. The idea is , we’ve taken this nasty branched cover, it will be far away from
the carrier graph. It will be geometrically finite and have bounded area, a genus two surface
with bounded area. There’s a method to interpolate this through a sequence of bounded
surfaces until we get one that hits our carrier graph. When we project these back we get an
immersed thing of genus two that separates these. You promote the immersed surface to an
embedded one, and then you have a few more steps, it uses the techniques used for proving
tameness.

[If you have a three manifold, you can talk about the algebraic rank, and also the geometric
rank, the number of handles you need for a decomposition. If you take a four-manifold and
cross with an interval is the geometric rank of the four-manifold the same as the algebraic
rank?]

[Let’s thank Ian once more and meet again at 10:35]

2 Souto, volume of hyperbolic three-manifolds and dis-
tance in the pants complex

[It’s a pleasure to introduce Juan Souto.]

Thank you very much, happy birthday, so, mmm, I will start, M is a three manifold, ori-
entable, closed. Thurston’s hyperbolization conjecture asserts if M is irreducible (that means
S2 in M bound balls) and if π1(M) is of finite order and Z2 *
pi1(M) then M is hyperbolic, a quotient of H3 by Γ ⊂ PSL2C discrete and torsion free.

parts of this were done by Thurston, Perelman, and:

Theorem 4 (Mostow)
If M admits a hyperbolic metric then this metric is unique up to isometry.

Okay, so now it comes a little bit of political propaganda, the geometric invariants are then
topological invariants: volume, λi(M), and so on.

But given a topological description of M what can be said about the metric?

In Perelman’s approach one can hope that one starts with a metric that looks like being
hyperbolic, but one must be careful, but suppose, well, for example for all L and ε > 0
there exists M with two metrics g hyperbolic and g′ not hyperbolic, but ||Kg′ + 1||∞ <
ε, ||Kg′ + 1||10 < ε but (M, g) and (M, g′) are not L− bi− Lipschitz.

Political propaganda again, allows you to reduce the one kind of argument to another, the
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hyperbolization conjecture.

I want to consider M which are, consider M = H1∪H2 a Heegard splitting into handlebodies.
I want to say this is strongly irreducible, meaning that each D1 ⊂ H1 and D2 ⊂ H2 (properly
embedded and essential, which means removing them hurts a handle) then |δD1 ∩ δD2| ≥ 2.

Theorem 5 For all g there exists Lg so that for all M and a strongly irreducibl Heegard
splitting of genus g L−1

g δ(H1 ∪H2) ≤ vol(M) ≤ Lgδ(H1 ∪H2).

This δ, there are many choices for it, we’ll choose it for the theorem to hold. So let Σ = δHi

be the Heegard surface, and let P(Σ) be the pants complex, a graph with vertices pants
decompositions, and edges elementary moves. These are replacing a curve in the pants
decomposition with another that intersects it minimally. So P(Σ) is connected (Hatcher
Thurston) so this is what one uses to measure distance.

So Σ bounds a handlebody to the left and to the right, which gives me two pants de-
compositions. So δ(H1,H2) = min{dP(Σ)(P1, P2)|pi ∈ H (Hi)}. Now H (Hi) = {P ∈
P(Σ)|∃D1, . . . , Dg−1, with δDj ∈ P and Hi\∪Dk is [unintelligible]of solid tori}. One would
think that you just want every circle to bound a disk, but without a bound on the lower
injectivity radius you need these solid tori.

The upper bound is easy. Essentially, given a path of length ` in the pants complex joining
the two handlebody sets, a path of length, one obtains, there is an ideal triangulation of
M with six or four, what is it, 6` simplices. You consider the two handlebodies the same
and have the gluing map. [unintelligible][unintelligible]. And then the volume of M is
v3||M || ≤ 6δH1 ∪H2).

How does one get the lower bound? Somehow, it’s funny, in the notes of Thurston there’s a
picture showing that something is a Heegard splitting of a three manifold and that’s the last
time this appears.

I’m also going to assume for simplicity that for all disks the boundaries of the pairs of curves
bind the surface, that is, there are no other curves disjoint to these two.

Theorem 6 (Pitts-[unintelligible])
Σ is isotopic to a minimal surface

Associated to a Heegard surface you have a sweepout. I get a family St, for t in the middle
this is Σ and t at the end it is a graph. Given such a sweepout, one takes maximal area,
and then minimize over all sweepouts, then you get a sequence of surfaces. Onee has to be a
little bit careful, one has to modify the choice of the surface. The surfaces Sm will converge
to a minimal surface as measures (as [unintelligible]).

The fact that this convergence is this way, one doesn’t know about what this converges to,
but one has to, it’s, well, the theorem holds.
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So now you have M divided by a minimal surface Σ. There is a theorem of Alexander-
[unintelligible]that the two pieces, Ũ1 is a CAT(−1) space. So both handlebodies U1 and U2

behave almost like Sholtley groups.

So PΣ is the shortes pants decoposition on Σ. Then vol(U1) ≥ L−1
g dP(Σ)(PΣ,H (H1)).

Now if the injectivity radius is bounded below, we have vol([S1,Σ]) ≥ 1 and dP(P1, PΣ) ≤ Lg.
If the length of the compressible curves in δU is sufficiently large then I find S1.

[At this point I stopped taking notes.]

3 Shalen, Hyperbolic geometry and classical topology

I was reminded of one thing by Ron Stern saying he’d heard of John long before he met
him. I heard of him, Dennis Sullivan was giving lectures on a bunch of stuff, the work wasn’t
written up, they were trying to pin him down on details, Dennis said, “There’s a guy named
Morgan, talk to him, he knows how all these things are defined and fit together.”

We collaborated on hundreds of pages, and after a suitable cooling off period we get along
again.

It’s scary, really, the way you’ve kept alert, paid attention to all the talks.

[It’s what you heard about when you’re a graduate student, you just pay attention to one
phrase, like “what about the non-simply connected case”]

This question is again getting an explicit understanding of Mostow rigidity. So the topology
should determine the geometry, but what are the explicit connections between topological
and geometric invariants? They were addressing qualitative questions and we’re trying to
address quantitative questions.

It’s an old result, I don’t know whom to attribute it to, if you put an uppor bound on the
volume of M3 hyperbolic then this puts an upper bound on the Heegaard genus nad this
gives an upper bound on the rank of π1 and tus the rank of H1(M, Zp). The bounds you get
are absolutely terrible, the question is whether you can do anything more realistic.

The work is based on a theorem. part was proved by Anderson, Canary, Culler, S., but we
could only prove a weak version of it.

We needed the tameness conjecture, Agol; Calegari-Gabai. So the theorem I have in mind,
I’ll call it today

Theorem 7 The strong log(2k − 1) theorem
Suppose you have k elements xi in PSL2(C) and they freely generate a subgroup which is
discrete. Also assume that there are no parabolics, I don’t know why I’m putting this in.
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Then for any p ∈ H3, we have
k∑
1

1
1 + exp(di)

≤ 1
2

where di is the hyperbolic distance from p to its image under xi, d(p, xip).

It is assumed that the group is free here, because of this condition in order to apply it, you
need serious topological information about the manifold. Sometimes you can address this by
classical methods. That will be the general theme of the talk.

I want to say a few words about the proof of this, I won’t give a sketch of the proof but I
want to say something about the underlying philosophy. There are what is called Patterson-
Sullivan measures, Patterson considered them for Fuchsian groups and then Sullivan very
extensively for Kleinian groups. Let Γ be a Kleinian group, and then they constructed a
measure on the limit set Λ(Γ) ⊂ S2. It’s got some nice properties I’ll say in a bit; it’s
constructed as a weak limit of measures supported on an orbit in H3. Each measure in the
sequence is a sum over certain quantities on the orbit, so it’s over the group, which indexes
the orbit.

What Culler and I noticed, I really should have mentioned the corollary

Corollary 1 For some i it follows that di ≥ log(2k − 1).

We’d proven this for k = 2 under other hypotheses (not having the tameness conjecture).

In the case when Γ is free, we’d noticed, well, let’s call it F, it can have a decomposition,
the same one as in the Banach-Tarski paradox. You have Fx1 ∪ Fx̄1 ∪ . . . ∪ Fx̄k

∪ {1} where
these are the words beginning with these letters. So this decomposes the Patterson Sullivan
measure as a sum µ = µx1 + . . . + µx̄k

.

If I multiply Fx1 on the left by x̄1 then I get F −Fx̄1 . Basically what this says about µ is that
if you take the pullback of µx1 by x̄1 you get µ−µx̄1 . This also satisfies a transformation law
similar to the one for area. It can be interpreted, I won’t write down formulas, of a power,
the critical [unintelligible]of the conformal expansion, what Sullivan calls this.

The integral is a little mysterious, but the conformal expansion factor is explicitly defined as
a function of d1. So maybe by using some of these identities you get some information about
the size of di. If you look at the worst case, things work great. There the limit set is the
entire sphere at infinity, and now moving forward to the present, with the tameness theorem,
you get the strong ergodicity properties for the action of the group on the limit set, so the
mystery measure µ is nothing but the ordinary area measure, so the whole thing reduces to
a calculus problem and you can solve it.

This is not a sketch but a philosophical outline, I think, of the proof.

You can use this to study the geometry of hyperbolic manifolds, let me give you an example,
my way of thinking about Margulis tubes. Suppose you take, to be concrete, M3 a closed
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orientable hyperbolic 3-manifold, think of it as H̄3/Γ where Γ ∼= π1M, which we will assume
to have no rank two subgroup of finite index. Agol mentioned a theorem of Jaco and me,
also Tom Tucker (unpublished) which says that every rank two subgroup of Γ is free. You
consider in this case the log 3 displacement cylinders. Say X is a maximal cyclic subgroup
of π1(M) = Γ, then the log 3 displacement ZX are points p ∈ H3 such that d(p, xp) < log 3
for some x 6= 1 in X. The theorem says this is a cylinder

What follows from the log three theorem is that if you take two distinct maximal subgroups,
these cylinders ZX and ZX′ are disjoint. Otherwise you would [fast argument]

If these are disjoint then they cannot cover hyperbolic space, since space is connected. If
you take a point not in this union its image in the quotient is the center of a ball of radius
(log 3)/2. Then using sphere-packing estimates you can conclude, you can get a lower bound
for the volume of M, getting at least .92. If you work much harder, you can get, this was
Culler-Horsovsky-Shalen, and then Przeworski improved this, using Gabai-[unintelligible]-
Thurston. I think Andrew’s bound was bigger than one, 1.0 . . . I said I was going to relate
volume to topology. There’s a topological argument, Shalen-Wagreich, if π1M has a finite
index subgroup of rank two, then H1 with mod p coefficients has rank at most three. In
general that argument goes r to r +1. If the volume, in particular, is less than one, then you
can say H1(M, Zp) has rank at most three.

I want to make comments on this statement. One is that by working much much harder
one can strengthen this result. Mark and I gave a Dehn surgery argument, using a result
due to Agol-Dunfield, which in turn uses Perelman’s estimates, and what we proved was the
same statement, we also used Przeworski’s tube packing estimates, we got the same bound
on homology using only the assumption that the volume of M is less than 1.219, that the
rank of H1 is less than or equal to three for mod p coefficients. I think there’s very classical
kinds of conjectures about Heegaard genus which will play a major role.

Conjecture 4 For any closed hyperbolic three-manifold M, the Heegaard genus of M is equal
to the rank of π1M.

Conjecture 5 This I formulated at a conference last summer, the experts thought it was
interesting and plausible. If M3 closed and hyperbolic, orientable, and the Heegaard genus is
g, then any finite sheeted cover of M has Heegaard genus at least g − 1. It’s known that it
can go down, even under a two sheeted cover.

The previous conjecture would imply this for two-sheeted cover, but this would be for more
than two.

Jointly these would imply the Heegard genus version of what I wrote down a minute ago,
if the volume of M is less than 1.219 then the Heegaard genus of M would be less than or
equal to three.

I hope I remember to point out that these would imply Heegaard genus versions of something
else I’m talking about in a little while.
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Those are some instances of what you can do under the assumption that every two-generator
subgroup is free.

Another thing that was in the paper with Anderson, Canary, and Culler, is the following
result: if every subgroup of rank at most three in π1M is free, then H3 cannot be covered
by log 5 displacement cylinders defined by maximal cyclic subgroups of Γ. This is the same
definition as before. From this it follows that M contains a ball of this diameter. This gives
a much stronger lower bound on the volume, 3.08. This is much much harder to prove than
the corresponding two-free case. You might think naively that three of them would meet in
a point and then the three corresponding things would generate a cyclic subgroup, but that
might be of rank two, not rank three. You have to study the nerve of a covering, a two-
complex, and combine topological properties of the nerve with group theoretical information
about the lattice of free subgroups, there’s a quite involved combinatorial argument. Well,
that statement brings up an obvious problem, when can you say a subgroup of rank up to
three is free? Say that H1(M, Zp) has rank at least five for some p.

[How big is the largest disk in the thrice punctured sphere?] I wrote down five because that’s
what I need to show that every three-generator subgroup has infinite index. You can’t assume
that it’s free. Take the compact core of some cover, and that shows that it’s a handlebody
of genus two, or it has an incompressible boundary of genus less than two, so then it’s free.
But in the three case you can have an incompressible surface of genus two.

So in this case it’s either 3-free or π1(M) contains a genus two surface group. In the paper
we wrote about this, the paper I’m about to talk about is on the arXiv, it’s going to appear
in Transactions, I forget what it’s called. This statement is not in the paper, we only realized
it in this sense later thanks to Gabai, it’s a topological theorem,

Theorem 8 Suppose that M3 is closed, hyperbolic, orientable, and π1(M) contains a genus
two surface group. Then either H1(M ; Z2) has rank at most ten or M contains an incom-
pressible surface of genus two or three. This is a book of I-bundles with [unintelligible].

I can only say a few words about the proof, which is really classical topology with a vengeance.
This plus very deep results of Agol-Storm-Thurston implies

Theorem 9 Suppose M3 is hyperbolic, closed, orientable, and suppose that the volume is at
most 3.08. Then H1(M ; Z2) has rank at most ten.

I’ll indicate why this follows, and we can definitely improve ten to seven. Six seems to be
much harder than seven. There are some very fascinating questions about finite two-groups.
I won’t say anything lower than ten in the talk. Let me indicate how you would prove that.
For the proof, the mere fact that H1, assume the rank is at least eleven. Then, since it’s at
least five, either the volume is greater than 3.08 or π1(M) contains a genus two surface group.
Then the topological theorem says it’s rank at most ten, which we’ve assumed away, or it
contains an incompressible surface of genus either two or three. What Agol-Storm-Thurston
showed, in particular, is that either the volume of M is greater than 3.66, which is the volume
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of a regular ideal hyperbolic octahedron, or F is a “fibroid.” This is a generalization of being
a fiber over S1. This means you look at MF which is M split along F. To say that F is a
fibroid means that each component of MF is a book of I-bundles. Take a polyhedron in a
three manifold made up of simply closed curves and surfaces of negative Euler characteristics
attached along boundary by covering maps.

Using not much more than Mayer-Vietoris, you can show that if the, if, actually, the topo-
logical theorem should say, genus two or separating of genus three. So if it’s a fibroid with
the stated restrictions on genus, then you have a bound on the rank of H1, maybe π1 which
is ≤ 7.

I only have a couple of minutes to chat about the topological theorem. Apart from the
business of [unintelligible]it’s in the same region as Dan’s lemma. You can realize the surface
group in the group, and then homotope it into good position, pass to a covering, and keep
going. Classically it’s not hard to show this terminates, but a little harder for us to put things
in good position. So H1F maps onto H1M so upstairs there isn’t much homology. Then
it splits into cases. In one case you use Poincaré duality and in the other Gabai’s theorem
about immersed surfaces being representable by embedded ones.

Then [fast argument] and go down the tower, so that every stage you pass to a book of
I-bundles instead of an incompressible surface.

Sometimes this doesn’t work because you want to modify by cutting and pasting but the
manifold is a closed manifold mapped onto by the book of I-bundles. The machinery I
described earlier says that if you started out with a lot of homology then a sheeted cover will
have lots of homology, so you have a contradiction.

This is a vast simplification. You can sharpen it to seven but it’s much more technical to get
down to six.
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