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1 Dusa McDuff, homotopy properties of symplectomor-
phism groups

It’s a great pleasure to be here and welcome John into this club that none of us want to
belong to.

I want to talk about homotopy groups of symplectomorphism groups. This question is
motivated by some amazing results I’ll tell you about.

Some of the things that are known about symplectomorphism groups, well, Symp(CP2, ω) ∼=
PU(3) (homotopy equivalent). For CP2 blown up at a point. YOu have to be careful about
what you want,

∫
line

ωε = 1 and
∫

exceptional
ωε = ε for 0 < ε < 1 we have Symp(CP1#C̄P1

, ωε)
is U(3) for ε less than one half.

For Symp(S2×S2, ωλ = λσ1⊕σ2) When λ is one, its identity component is SO(3)×SO(3).
The rational homotopy is worked out above one. Between one and two, Anjos Granja worked
out that you have

SO(3) � � ∆ //

��

SO(3)× SO(3)

��
SO(3)× S1�� amalgamated free product // Gλ

How much of this structure remains above dimension four? This is harder there because
these results rely on low dimensional methods.

Reznikov showed B(PU(n+1))→ BSympCPn induces an injection on H∗( , Q) so a surjection
on H∗( , Q).
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The proof involved constructing characteristic classes on the Lie algebra of SympCPn. The
point is that this result,

Proposition 1 (Kedre, M.)
B(PU(n + 1))→ BDiff(CPn) (that act trivially on H∗) then this also induces an injection
on H∗( , Q).

The proof is to construct some characteristic classes on BDiffHCPn.

Start off with (M,a) which is c-symplectic. This is a ∈ H2 with an 6= 0 and M 2n dimen-
sional. Let me assume π1(M) = 0 for simplicity. If you have a bundle M // P

��
B

with

fiber M and the fundamental group of the base acting trivially on H∗(M, Q) then a has a
canonical extension ã ∈ H2(P, R) with [unintelligible] =

∫
M

ãn+1 = 0.

Given any extension b of a you have
∫

M
bn+1 = c ∈ H2(B) and then

∫
M

(b − π∗(c′))n+1 =
[At this point Dusa erased the board].

So you can get c̃k =
∫

M
ãn+k ∈ H2k(BDiffHM) for the M bundle over these diffeo-

morphsims. There are enough classes to pull back to the generators. This uses hardly
anything in the symplectic structure.

Look at the Leray Serre spectral sequence to do this. d2 is zero because there’s nothing in
H1. So d3(an+1) = 0 since an+1 = 0. This is d3(a)(n + 1)an. Multiplication by an gives an
isomorphism between parts of the spectral sequence, so d3 is zero below where you want it
to be.

I want to spend a little time now talking about symplectomorphism groups of blowup mani-
folds. First of all I want to present an idea that I saw in Kedra. We want to create elements in
π∗(Symp( ˜M,ωε)). The (M̃, ε) is a one point blowup. You remove an ε-ball and then collapse
the boundary, identifying the boundary of the ball with CPn−1. If ε is small enough, you can
do this. If ε is large other factors come into play.

Start off with ∆ ⊂M×M. Take the product form ω×ω. You can blow up along the diagonal
by some amount. Then you get P̃ sitting over M with fiber M̃. So you get a map from M
into BSymp(M̃, ωε).

We can first of all look at the exact sequence, you have Symp(M) → M by Φ → Φ(p).
and then you can put this into Symp(M,p) → Symp(M) → M → BSympU (M,p) ← φ :
dφp ∈ U(n) Then the group BSymp(M,p) is essentially the same as BSympU (M̃, Σ) →
BSymp(M̃ε). The question is what the image is. But ev∗(π2k) has finite image. You’d
somehow, if you pulled back, you’d get cohomology of infinite order, and yet it’s finite. This
is fairly understandable. You can say f∗(π1Symp(M)) is in the center. One of the later
maps, however, is not well understood except in the symplectic case. Something comes from
SEmb(Σ, M̃)/U which is often contractible for M4.
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So in M̃4 the exceptional divisor is a two-sphere and if [ω] is integral and ε = 1
N , then

[ωε] ∈ H2(M, 1
N Z). Then ω̃ε(Σ) is minimal. Then ModJ([Σ])/reparam is compact. So for

every a.c.s. K there exists an embedded S2 in the class [Σ]. This tells you this is contractible.
Kedra showed that if you start off with a K3 surface you start with something of finite rank
but this over here has infinite rank so you get a lot of stuff over here.

There are three propositions. One of them is about π1. The first one is that ker f∗ : π1M →
π1BDiffM2 is contained in the center of π,M. The best result would be that ker f∗ is
equal to im ev∗ : π1DiffM → π1(M). I think this kernel is contained in the image of the
evaluation map, I think you have to extend to smooth self-maps isotopic to the identity. I
think the kernel is contained in this group. It’s hard to find examples. There’s nothing about
symplectic manifolds here at all.

For π2 you get, you seem to need to use something. If you start off with (M,a) c-symplectic,
then there’s an injection of HS

2 (M, Q), of π2(M)⊗Q⊕Z→ π2BDiffM̃. Basically you have
an injection, and then you have extra elements, when I was doing the construction with the
diagonal, you use the symplectic blowup along the diagonal. I can look over S2 ×M and
then look inside at the graph of σ. I have a section of a product manifold. The choice of
unitary framing gives you a separate Z.

If you just apply this for CP2 with σ a point map, then there exists an element of π1Diff(CP2#CP2
)

that is not in π1Symp(CP2#CP2
, any form). You can try to do a similar thing for S2 × S2,

which has the antidiagonal in it, which you can collapse to get a singular orbifold Y, and
blow up along that to get S2 × S2. This gives you an element in the diffeomorphism group
not in the symplectic group, but it is a sum of two such, so it’s not particularly new.

Anyway, so there’s, I’d like to say a little bit about the proof in a minute. The last thing is,
what can you say in the higher groups. Here I seem to need to use the symplectic structure.

Proposition 2 If (M,ω) is symplectic with π1M = 0 then ther exists a homomorphism
H2k(M, R) → H2k(BSymp0(M̃, ωε)) whose kernel is contained in {γ ∈ H2k :

∫
γ

ak = 0
for all a ∈ H2(M)}. The proof uses Gromov Witten invariants so it requires the symplectic
structure.

You have a bundle with fiber M̃ and the exceptional divisors sit inside as a subbundle.
You can’t identify it using [unintelligible], but you can kind of do that with Gromov-Witten
invariants. So GWE

0,2 = 1. Take a K that is integrable near Σ. This gives lines in the
exceptional divisor. Take two copies of E which intersect the exceptional divisor. You know
that the Gromov Witten invariant is one because it’s one line through two points in this
curve. If you can find some E here, a cycle Z ⊂ Q̃ so that Z ∩ fiber is E. In each fiber there
is at least one J-holomorphic curve. That has evaluation maps into Q̃. That’s a cycle that’s
basically like a section. It’s a class with the dimension of the base whose image lies above.
That’s a homological way of detecting this cycle.

Since the two-cycles have this canonical extension, if you start with a class that is dectectable
with this method, you get something above where ãk doesn’t vanish, but if it were a boundary
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it would not vanish.

You might get by with pure homology. The cycles could be anything as long as they have
the right intersection property. I don’t quite know the status in the general case.

When I started this, I thought you’d need the symplectic structure. As always, you start off
with S2 →M and then you have M × S2 over S2 with the graph section, along which we’ll
blow up. We can always look at a + π∗(area form). So we can choose this nondegenerate,
and also locally symplectic near the section. We can blow up along this section, and we can
calculate the volume P̃ , Ω̃ε. It is absolutely not the volume of a product. That would be
vol(M̃ε)× the area of the base. You can just calculate and find that it can’t be that, unless
it’s the trivial section.

That’s basically all I have to say. Something about the role of the different elements.

2 Dennis

So this lecture, its first part is dedicated to John Morgan, I want to convince him that infinity
structures are interesting. A while back we had similar interests in mathematics. I would
have a picture of a certain algebraic topology thing, and have a hard lemma, and he proved
the lemma because I wouldn’t, and published it, making it available. Anyway, that was great,
John, thank you.

So, ∞ versions of usual structures. I want to give examples. A vague definition is, the
usual constraints that describe the structure are relaxed and replaced a potentially infinite
hierarchy of deformations or homotopies. This could be in various contexts. The hierarchy
is something like a resolution of the the constraints.

There’s nothing wrong with this mothematically, so, do you like it yet? Later, there are a
couple examples of this whose names are familiar, Lie∞, A∞, later I’ll discuss Lie∞ and
∞-action, and I’ll describe it as an algebraic analogue of a G-action on spaces, which I will
now describe.

This will be thi first example. Take the group G = Z2. I want the infinity version of an
action of Z2. Take two copies of a space X and an isomorphism σ : X → X. Over two points
in X you construct the unit interval, formally you take the mapping cone of σ, which gives
you a bundle over the interval, and then you perform σ again giving you a bundle over the
circle. If this were an action of Z2 this would extend over the disk, the monodromy would be
trivial, so extend over the disk. On the boundary, it is symmetric, now add another copy, so
you get a bundle over the 2-sphere, and then fill that, and continue thusly. If you keep going
to infinity you get a contractible space, so you get a bundle over a contractible space with
an actual involution, so we have fiber X and base RP∞.

The ∞ − G-action on X is a bundle with fiber X over BG. So RP∞ = BZ2 . This loses
information, if you have an actual action you can form an associated bundle. So the Borel
construction is the infinity version of the actual G-action. Suppose G were a free group Z,
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it would be like a bundle over a circle, and for Z ? Z is a bundle over the figure eight, so it’s
the same in the ∞ case and in the usual case. One can think about this.

This resonates with the idea of R-modules and free or projective resolutions of them, because,
when you have a discrete group, you take the group ring, acting trivially on the Z module and
that corresponds to the cells of BG. More generally, if you had a resolution of module, you
have a complex which is isomorphic, a resolution is just a free complex (projective complex)
isomorphic to your object. You replaced your object with a free one where you can do
homotopy. Do you like it yet?

[You’re heading in my direction.]

Let’s go back to the infinity version of a Lie algebra. By the end I want to relate this to
symplectic topology, how moduli spaces get compactified. Maybe you have a Lie algebra,
you have the bracket map

??
??

??
?

•
�������

and you can make a picrture of Jacobi:

1

??
??

??
?

• •

2

�������
3

�������

with two others, the sum of this and the cyclic permutations of it are zero.

So you’re now going to have more operations, three, four, five to one:

??
??

??
?

•
�������

??
??

??
?

•
�������

�������������

00
00

00
00

00
00

0

??
??

??
?

•
�������

�������������

and so on.
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I also want a one to one.Then you are going to have unfolding equations among the operations.
If you have a certain selection of graphs of a certain type, then you could have some kind of
unfolding equation. This is generalized unfolding. This is quadratic because there’s only one
composition. So you can also unfold with the one-to one, like if I were unfolding the three
to one, I could get terms like

•

;;
;;

;;
;;

&ar@−[r] • ��������

and

??
??

??
?

• •
�������

I should have said at the begining that the one to one is δ and unfolding it gives

• •

is zero so δ2 = 0. Then the unfolding of the three to one m3 gives [δ,m3] = Jacobi.

I haven’t finished showing that this is a resolution, but there’s a theorem that it is, Ginzburg
and Kapranov. So if I move δ over into the structure of the space as a differential, then
you’ve destroyed, except for δ this is a free structure. Every relation uses δ. There are no
internal relations among these objects, all the relations have to do with δ. Now, this leads to,
this has an important consequence, which is the following, suppose I have (V, d) and another
complex (W,d), Suppose you have an ordinary chain map that commutes with d and is an
isomorphism on homology. Then you can transport such a structure. Think of it, if you’re
over a field, let’s work over Q. You define the operations inductively, you go over, bracket,
and come back. Up to homotopy, they will satisfy the appropriate equations to transport the
structure. This is the key property we gain, that we have this transportive structure through
very rough maps.

Now. An example of this, there’s a very small complex, take the homology of this complex,
with differential zero, then the bracket becomes an actual bracket, but then you get all
these higher order tensors. I’m trying to pull out, squeeze out the juice and get something
invariant. These are like correlation operators, you might say. They are not individually
well-defined. The higher terms transform, the way if you change variables in a multivariable
power series nonlinearly. The thing from before gives a d2 = 0 on ∧cV ∗{−1} and extend
them to derivations. These are all extended to be coderivations on the coalgebra ∧cV {−1}.
This has a nice slick d2 = 0 and in the dual language, the commutative algebra, you have a
derivation on the functions on V, it’s like an infinitesimal [unintelligible]on V, it’s a formal
manifold. These things is what we were using in 1970. These were the objects of rational
homotopy theory. Most of what I’ve been saying was known then but not understood in
this way. So one of the new things that, well, what is sort of new is the perspective that
such an object is an ∞ version of a Lie algebra. This is tantamount to showing that if you
look at the space of trees with n inputs and one output and you think of this as a complex
where you have lengths on these edges and as lengths go to zero you collapse to a local
stratum, then the homology of this complex for each n is concentrated in the top degree,
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the trivalent degree. Make a boundary operator by collapsing edges. A cell is labelled by a
tree. There’s an orientation, and an induced one. When you collapse two edges, you get two
terms, but in different orders so they cancel. You put brackets in all possible places and then
reduce modulo the Jacobi, this resolves the Lie object. This is Ginzberg-Kapranov, and it’s
a nontrivial theorem. I’m keeping my eye open for an easy proof.

I just wanted to mention, now you can define the∞ version of a Lie∞-algebra on a differential
graded algebra (F, d). This will be F ⊗̃(V +, d) and then d̃(1 ⊗ −−) = (1 ⊗ d − −) and
d̃(− − ⊗1) = d − ⊗1 + A. For each monomial it will give a derivation of the differential
algebra. This is like Ak

ij . So you get four terms, and you get dA + 1
2 [A,A] = 0. This is in

defree one totally. It’s like a connection. It interacts with d through this equation. This
is actually the algebraic analogue, and we knew this in the 1970s, this is like BG and then
this is like a fibration over BG with fiber F and this is the twisting cochain. It looks like a
connection. If you had an actual action you’d have this but at the infinitessimal level.

The only thing that wasn’t understood about this in the 1970s was this conceptual under-
standing that this was a resolution of a Lie algebra.

So now I want to mention that, let’s do this same process with, instead of trees, let’s do it
with a number of inputs and a number of outputs. So we would have all of the n to one, and
one to n’s and then we can get Jacobi and coJacobi by unfolding each of those. We would
have a Lie and coLie algebra, you also have the last tree with four things, two inputs and two
outputs. You get five terms, and if you have a vector space with bracket, cobracket, and this
five term relation, this is the Drinfeld compatibility condition and defines a Lie bialgebra.
The next stage, there are analogues of these other steps. Gan showed that if you take a
complex of trees then the homology is concentrated in one degree and it’s a Lie bialgebra.
If you have (V, d) then you have an operation for every “star-shaped” tree, then you have
a free thing whose homology is the things of a Lie bialgebra. We can again transport this
structure, you move down to homology, and you can move it across.

In some joint work with Moira Chas, this kind of structure, in string topology, you look at
the free loop space of a manifold, this would only be for a manifold, it has a circle action, and
then you can form the homotopy theoretical quotient, using the ∞ version of the S1-action,
and then you can take homology or just work at the chain level. The equivariant chains
on LM has the structure of an ∞-Lie bialgebra. You hav contact homology in symplectic
topology, manifolds with contact boundary. You look at genus zero curves running from the
negative to positive boundary, rigid ones, and then count them to give the matrix coefficients
of these operators. This structure, if you look in the one dimensional moduli space, you get
δX = X ·X and then later [unintelligible] = 0. If you can get rid of some constants you can
get a ∞ Lie bialgebra. I’m working now on the correct way to deal with these constants. Of
course, ultimately you want to interpret all of the moduli spaces, the whole structure. Then
there’s this interesting conjecture, I first heard it some years ago from Eliashberg, when you
look at symplectic field theory at level two. Level one is this infinity discussion with only one
output, level two is described in a different formalism, you can change it into this formalism if
you play around with it, then the conjecture is that when you apply this to T ∗M, you should
get the same ∞ Lie bialgebra. The one structure uses transversality and classical topology
while the other uses PDEs. So the bad news is that my structure is just a very special case
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of this other structure, but the good news is that it’s probably easier to compute.

It’s still not understood at the chain level how to construct Poincaré duality, that’s where
these graphs with no extra structures at the vertices. Now draw graphs locally in the plane,
The inputs and outputs can be deployed in any manner. If you just do one output, and you
unfold that, this leads exactly to the theory of A∞ algebras. Since the other one exactly
replicates homotopy theory in topology, this one replicates a noncommutative version, if you
can imagine that. If you look at relative contact homology, with boundary on Lagrangian
submanifolds there’s an analogous construction, there’s some work in progress with Michael
Sullivan, but in the classical cases of knots and Legendrian knots, there’s a pretty good
understanding of this according to my expert here. Again, this structure exists on both
sides, on the string side, now you have the manifold with submanifolds, and arcs between
submanifolds, and you get structures there that seem to fit this yoga, and the structures on
the other side fit too, you could imagine a similar connection, there’s some work by Lenny
Ng there. Michael has interpreted his work in terms of string topology operations. When
you do this in a setting where you’re really doing topology, it seems like maybe you’re doing
operations of string topology.

[If you do these graphs with Ciemann surfaces do you get [unintelligible]? Des it give infor-
mation about the homology of Deligne Mumford moduli space?] One knows that the Deligne
Mumford compactification of a disk with points on the boundary is exactly the A∞. If I
look at closed strings in moduli space, but the way I get a Lie bialgebra is by going through
moduli space. String topology will give operations on the cells of moduli space. When you
compactify there are two issues. First you have to decompose into compositions, then you
have to show that the singularity can develop. It starts with joint work with Moira Chas,
but it’s not all that. You get a Lie bialgebra out of it as the top stratum.

3 Witten

Thank you. I’m really happy to be here to help celebrate John’s birthday. A few years ago
we were studying some things, I wish that for your birthday I could have given you a more
precise connection.

Let me know in the back if I write too small or speak too softly.

I’ll be talking about Geometric Langlands. This began with number fields. But geometers
have constructed analogues in the hopes of more intuition for why it’s true. So for a curve over
a finite field, or, what I’ll talk about today, over a complex Riemann surface. Why would I as
a physicist be working on it? There are hints it has to do with duality in Gauge theory. One
hint comes from the statement of the Langlands program. The Langlands correspondence
relates Hom(π1(C),L G) which is minimal energy stuff. The right hand side involves what are
called automorphic forms of G, a geometric analogue, which are closely related to a current
algebra, or Kac-Moody (affine Lie) algebras on a surface C. So it has to do with conformal
field theory and Kac-Moody algebras, WZW-models. Both involve something recognizable
in gauge theory. I would have spent a lot of time on this point in years past.
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I’ve mentioned two Lie groups LG and G. The relation in the simply laced case is from
interchanging roots and weights. So U(n) goes to itself, SU(n) goes to PSU(n), E8 goes to
itself. Every other Lie group has some difficulty. SO(2n + 1) goes to Sp(n) and G2 goes to
itself.

That correspondence arises in two areas of wisdom: one is the Langlands program (1970) and
the second is quantum gauge theory, which goes back to 1976, Goddard [unintelligible]Olive
and [unintelligible]-Olive on four dimensional gauge theory. They considered gauge theory
with gauge group G so that the charges are in representations of G. In the strong force this
is in SU(3) and that’s where the quarks live, in rpresentations. And then the magnetic
charges are in representations of another group. That was LG; I first heard this from Atiyah
in 1977. I won’t explain today what we did, it would take us too far afield. It’s been a
tantalizing puzzle that this arises in two places. There are numerous other reasons to expect
a connection, but I don’t have time to talk about them right now.

So in the first paper they reintroduced the dual group, with some interpretation. The second
paper I mentioned, for a gauge theory with gauge group G and “coupling constant” e they
proposed an equivalent description via a dial theory where the gauge group is LG and
the Le = 2πh̄c

e . You can set c to one but don’t put h̄ to zero without talking about it first.
(The constant is 1

4eh̄

∫
TrF ∧∗F ). This would exchange electric and magnetic. The magnetic

charges in the classical limit are solved by PDEs, and they write books about this. Being able
to [unintelligible]is what you would do if you studied gauge theory quantum mechanically,
not classically.

Subsequent work made it clear, by around 1981, and here there was Olive-W., and Osborn,
it was clear that the right case would be the maximally supersymmetric case of N = 4
supersymmetry. Now, N = 4 supersymmetry is the maximal possible in dimension 4 and
is uniquely determined by the choice of a Lie group, which we will think of as simple, and
a complexified form of e. The M-O considered only that L2 norm of the curvature, but the
second Chern class of the bundle

∫
Tr F ∧F should also be considered, multiplied by θ/16π2.

There are a lot more supersymmetric terms. I won’t explain that today.

Now, M-O assumed θ was zoro, and you should combine e and θ to got τ = θ
2π + 4πi

e2 . This
is defined to be in the upper half plane. Then there is an elementary symmetry, τ → τ + 1.
We only care about the action mod frm−eπ Then the integrality of the Chern class means
we only care about θ mod 2π. So M-O conjecture was that τ goes to −1/τ. This is SL2(Z)
so another hint of Langlands. Why is N = 4 so important? There’s a lot of stuff that goes
into a high degree of supersymmetry. I can write a table.

Hodge theory is a suprsymmetric theory, where S is a one-manifold, X is whatever, and Φ :

S → X.

Hodge Theory Number of supersymmetries Maximal dimension of classical lift
R generic manifold d, d∗ H = dd∗ + d∗d 3
C K ahler 4 ∂, ∂̄, ∂∗, ∂̄∗ 4
H hyperK ahler 8 Sp(2) ∼= SO(5) 6
O there is a theory for each G. 16 Q1, . . . , Q16 10

It stops there, I won’t lecture next time about a theory with 32 supercharges.
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You might ask, can you replace S by Sd which is a d-manifold and find a suitable Lagrangian
so that if you specialize it so that it will reduce to this. What is the maximum dimension, you
may ask, to which a particular Hodge theory may be lifted, classically? It’s two more than
the dimensions of R, C, H, O because those dimensions are the signatures of the Lorentzian
metric on that size of space.

What group acts on the cohomology of a K ahler manifold? SL(2) ∼ SO(3). So for the six
case we have SO(5). In the octonionic case we have SO(9) on what I had better not call the
cohomology of an octonionic manifold. But, even on the harmonic forms you have it. The
SO(2) action is the degree of a harmonic form. I’m missing something on the K ahler case
having to do with spinors in four dimensions.

Now, if you ask quantum mechanically, in the octonionic case, there are three answers. It’s
four for quatum mechanical gauge theory, an exotic conformal field theory where it’s six, and
with string it’s ten. We only need the gauge theory level for the rest of this talk. For three
we could go to Σ models. If there’s an n-dimensional version of the Langlands program it
won’t be found by this method because this will only go to ten.

So, exchanging G and LG is nice, but what in the story of electric-magnetic duality is closer
to the Langlands program? I’m going to describe the duality between electric and magnetic
charges. This story goes back to around 1979 or 1980. The first part on the electric side is in
any dimension, but then we’ll have fun in four dimensions. I’m writing it as M4, and we’re
doing gauge theory. We have S a one-manifold in M4. We take the holonomy of the connection
around the loop S, taking its trace in a representation R of G, that is, TrR Hol(A,S) or
as physicists write it wR(s) = TrRPexp

∫
S

ASµdxµ. So this is
∫

(DA . . .)exp(I) · wR(s).
Physicists had to calculate the average values of an expectation value for a large loop in
space. In the theory of strong interactions people did lots of computer evaluations. This
decays exponentially with the area of the loop.

That’s the Wilson loop operator. If there’s duality it will turn the Wilson loop operator into
something else. Now, really in four dimensions, we’ll do something else, something of a very
different kind. This was an order operator, a quantization of something classical. A disorder
operator is giving a recipe which should be followed. Classically it looks totally different from
the order case but quantum mechanically you get something with the same properties. In the
order case we didn’t carry out the same path integral, we added an extra factor. Here you
carry out a path integral but change the space of fields. Before A was a connection on a G
bundle over M4. Here it’s a connection on a G-bundle over (M4−S) and it has a singularity
along S. I want to talk about what kind of singularities this might have in codimension three.
I’m going to draw a three manifold with a bad point with a singularity, take a normal slice
to S. It will be a conical singularity. By this I mean near the singular point the gauge field
will be invariant under scaling. So the local behavior of A near p is invariant under scaling.
That means the gauge field will be a pullback from an S2. In fact it’s a pullback of a solution
of the Yang Mills equations on S2.

The Yang Mills equations are complicated in higher dimensions but in two dimensions they
can be solved simply. If G = U(1) then F = dA is the curvature. The Yang Mills equations
say d(∗F ) = 0 so ∗F is constant, and it is given by the Chern class. So take a basic solution,
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I’ll call it A0, which is the connection on a line bundle over S2 whose first Chern class is 1.
Then you can multiply by an integer n, that is take the nth power of the line bundle. For
any G the solutions of Yang Mills on S2 are ρ(A0) where ρ : U(1)→ G. So in one direction
this is trivial. It’s slightly harder but still simple to find such a ρ.

I’m going a little too slow.

[No.]

Okay, so the Wilson operators are classified by R a representation of G, which is determined
by a highest weight w : T → U(1). We only care about ρ up to trace, so this is like caring
only up to ρ : U(1)→ T.

Then the Langlands interchanges Wilson and ’tHooft, which is this disorder side but can’t
be written down by a formula. For the Wilson you do the path integral over the space of
connections with an extra parameter.

You do the integral over the space of connections with a singularity and you describe what
happens on the singularity.

Dualities in many cases, even in Abelian versions or the Ising model, replace operators with
formulas with ones with recipes, order operators with disorder operators.

The Wilson operators are obvious classical objects. The ’tHooft operators are less obvious
but turn into the geometric Hecke operators of the geometric Langlands program.

I’m going to have to cut a lot of corners. Say we have a Riemann surface C. Imagine things
are independent of time. So our three manifold is C × I. So C is the Riemann surface on
which we’re doing the Langlands program and I is an interval. Now A is a connection on a
bundle E →W. We can restrict to Cy = C×{y} and then we get a bundle Ey → Cy. Ey has
an automatic holomorphic structure with D̄ given by dZ̄( ∂

∂z + A(y)z̄). This gives a one real
dimensional family of holomorphic C-bundles Ey → C. What if you get a bad point, where
you have a ’tHooft operator? Well, you’ll jump by what a geometric Langlands person would
call a Hecke operator of type ρ.

I will say one thing that is more precise. I said this as if you had any family of connections.
I could narrow this down by asking the connection to obey some equations. Some natural
ones in four dimensions are the instanton equations, and in three dimensions there are close
cousins, F = ∗Dφ, the Bogmolny equation. Then you find out that Ey is constant away from
singularities. It’s locally constant, jumps at the ’tHooft operations.

If we omitted the projections of the bad point to C we would not see this, if we omit the bad
point from the Riemann surface. That’s why the ’tHooft is constant on the complement of a
point in C. That’s how they set it up in geometric Langlands.

I should give you a hint of how to go from all of this to the Langlands program. First you
have to twist it to make it a topological field theory. N = 2 super Yang Mills in dimension
four has one twist and gives Donaldson theory. N = 4 super Yang Mills has three twists and
two are similar to Donaldson. the other twist is not, and gives geometric Langlands. This is
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1995 (Marcus). As for how, the details are too long to explain. Take M4 to be Σ×C, where
C is where we do geometric Langlands, and make a reduction to an effective two dimensional
world.

Here you get a two dimensional theory which is a sigma model with target MH(G, C) the
moduli space of Higgs G-bundles over C. The electric magnetic duality turns into mirror sym-
metry. You show that the 0-brane is an electric eigenbrane and so the dual brane corresponds
to [unintelligible]sheaves.

[Is the twisted geometric procedure, could you say something about what it is?]

If it’s R4, you have SO(4) acting, and you take a diagonal embedding of SO(4) into the
product of the two groups, and you can generalize to an arbitrary four manifold. You get
three choices, one of which is with the geometric Langlands program.

[What are the other two?]

They have to do with counting solutions to PDEs, they’re qualitatively similar to Donaldson
invariants and Seiberg-Witten invariants say they contain the same information but there
are other interesting properties.

[If the third twist leads to four-manifold invariants?]

I would guess they wouldn’t be very interestiong even if you could do it?

[[unintelligible]]

For the moment it’s generated new things to do with boundary conformal field theory, rather
than new ways to construct them.
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