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1 Eliashberg, DEs of Symplectic Field Theory

When I was in Russia, I knew Morgan as just a name on the covers of books, like Milnor,
Poincaré. My title involves differential equations. I’m not really an expert in integrable
systems. I’m thinking about this in the hopes that there’s an expert in this area that will
explain what I’m talking about.

The appearance of integrable systems in relation to GW theory is nothing new, but I think
the symplectic field theory part is new.

CP2 has n points, we want to count how many rational curves d pass through these n points,
call this Nn,d. Then you can make a function f(t, z) =

∑
Nn,dt

nzd. I will explain how this
function appears as a solution to a DE in symplectic field theory. Let’s do the following
procedure. I’m just talking here about genus zero.

So consider the space E of, formal loop space in C2, so two functions, U(x) = (u0(x), u2(x))
for x ∈ S1. These are formal, I don’t discuss any convergence. I assume

∫ 2π

0
uj(x)dx = 0. So

I think u0 =
∑
pk0e

ikx + qk0e
−ikx. I want to think about this as a symplectic space, with

the p, q canonical coordinates. I think of the inner product with matrix
[

0 1
1 0

]
. Then

the symplectic form is
∑∞

k=0
1
kdPkγ ∧ dqkγ̄ for γ = 0, 2. So we have the bracket {dU, dV } =

1
2π

∫ 2π

0
〈dU, dV ′〉dx. Consider Hamiltonian flow H(U) = 1

2π int
2π
0 (u2

0
2 ?eu2−ix)dx. Then u0 =

i(eu2−ix)x and u2 = i(u0)x. Then ü2 = −(eu2−ix)xx.

Consider flow and take a certain Lagrangian submanifold, the zero section. Flow the zero
section to time t and you get Lt, a Lagrangian submanifold. In general this might not be
graphical but in formal power series everything is graphical. I get a function ft(q) defined by
pk2 = k ∂ft

∂qk0
and so on. Take a q1 0 = z and all other q equal to zero. Consider the value at

this point. This value will be some function ϕ(t, z), and that will be the function mentioned
before.
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The goal of my lecture is to give a hint of an explanation of this.

I could do a change of notation, instead of t I write t4 and instead of z I write zet2 . Then I add
a constant term t20t4

2 . These correspond to the different constraints, t0 no constraint, the t2
divisor constraint, and the other one [unintelligible]. Now I could repeat what I said before,
except I would plug in in q1 0 = zet2 . In the Hamiltonian Jacobi equations the constant is
determined, and the constant I have given is correct. Now you can say, do E3. Then you

have like (u0, u2, u4). The inner product matrix is like

 0 1
1

1 0

 . So you now look at

1
2π

∫ 2π

0

∂ϕ

∂t4
(t0 + u0, u2, u4, e

−ix)dx = H

Then you play the same game as before and you get the answer for CP3. So the answer
for the point was t30/6 which becomes t20/2 by differentiating, then you add the u0 and get
1
2π

∫ 2π

0
(t0+u0)

2

2 dx.

Let me start with some of the explanation for higher genus. You consider the space of mero-
morphic functions on Riemann surfaces. So for Sg you consider a divisor D = (d1, . . . , dn)
of total degree zero. Then JD

g ⊂ Mg,|D| is the space of Riemann surfaces with divisors such
that D is rationally equivalent to zero. We have the canonical C∗ = S1 bundle. The mero-
morphic function will be determined uniquely by a complex number, but I’ll be ignoring the
R component so it’s S1.

Now what you observe is the following, the compactification of the total space ¯̃JD
g,n. The

normal way you compactify, the more nodes, the higher the codimension. What I want to
think of is that the meromorphic functions splits, the poles in one direction, the zeros in the
other. They have matching conditions in their poles and zeroes. The codimension is still
one, you cannot [unintelligible]any node. It’s codimension one, no matter how many nodes.
If I fix a meromorphic function, I have a canonical map to C. I have to match them. You
might have a rotation. I can only multiply the whole meromorphic function, not separately
at each pole.

So you get some, if you denote by the union of all these J̄ . There is an operation of gluing
on these, if I denote this by ◦, so δJ = J ◦ J. This may be similar to what Dennis will say.
He thinks about the moduli space itself. Here you have some kind of different algebra.

Now you have the marked points. I can consider the evaluation map. If you take JD
g,n. I can

associate ψ classes, the degrees of the Chern class of the canonical line bundle over the marked
point. Then you can pull back the homology of S1, get ψk

i · 1 and ψk
j · θ. Then you take this

moduli space and integrate these classes and get an analogue of Gromov Witten potential,
getting H. If I introduce tk for the ψ crasses and τ variables so

∑
tkψ

k · 1+
∑
τkψ

k · θ. Then
H(t, τ), I say a pole of multiplicity k is pk and a zero is qk. So H(t, τ, q, p, h̄).

So a pole of mulitplicity four and zeroes of multiplicity 2, 2, 1 is p4q
2
2q1. So the integral of

this thing over the moduli space is zero. The algebra of gluing is the same as the algebra
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of differential operators. So think qk, pk generate an algebra with the relation [qk, pk =]kh̄.
This gives pk = kh̄ ∂

∂ik
. So operators are

∑
qiq[p], [unintelligible], D1 ⊕D2.

You have this function H and all variables are graded. The t and τ are graded by the
homology classes they represented. All my moduli space are odd dimensional because I
quotient by R. So H is odd but the only odd variable is τ. Hence, if I write the expansion I
get

∑
τiHi +o(τ). So if you write H ◦H = 0 this means

∑
τiτj [Hi,Hj ]. So you get this a sign

of a quantum integrable systems. An infinite system of commuting differential operators.

[The higher terms correspond to an L∞ version?]

I have no idea. I don’t think anybody considers such problems in algebraic geometry.

So now, what does it have to do with what I was explaining at the beginning? Suppose
now I have a Riemann surface with some punctures, and now I consider the GW-invariant
of this one,C. So I consider maps of Riemann surfaces into it, I’m trying to get relative
GW-invariants. So then I can write down the same way as before a generating function for
this,

f(S, p), where S is similar to τ. There are no zeros, only poles. If you take ∂ef

∂si
= ∂H

∂τi
|τi=0e

f .
So start with a solution without constraint and solve an equation of evolution. As always
with this kind of quantum formalism, this specializes to classical mechanics and you instead
of the commuting q, p I should get something whose Poisson bracket is k and instead of
[unintelligible]I get Hamilton Jacobi which is what I get before. That was the semi-classical
version of this.

Now if, why did I do this computation of the generating function? I wanted something for a
closed manifold. What if I did this for CP1? That’s why I need a gluing formula.

So, what is an SFT? It’s a functor from a category GeomSFT to AlgSFT . So in Geom there
are odd dimensional manifolds with extra structure and symplectic cobordisms. Then on
the other side I get (W,H), a Weyl algebra and an element H with H ◦ H = 0. This has
coefficients in a polynomial ring. This has a representation as differential algebra of a “Fock”
space. Then because H2 = 0 we can take homology. If you have a cobordism you have two
ends and with every end you associate its own Weyl algebra, so you get W+ and W− You
have q+ and q− variables and p+, p−. So you have f(q−, p+) Then this thing is like, well, p+

is like a fifferentiall operator, apply this to ϕ(q+) and then evaluate at q+ = 0. No this gives
a function ϕ̂(q−) which commutes with H and gives a chain map.

This is just one strategy. There is a gluing formula that comes from [unintelligible]. Another
important part is the evolution equation coming from something. The variable t come from
a cohomology class or a differential form. If you have Θ on the manifold, then θ = Θ|δW

Then F (θ) and H(θ) define evolution equations.

I think I should stop.

[Can you write the evolution equation?]
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Θ ; T, θ ; t. So
∂eFθ(T,q)

∂T
= ĤeF (T,q)

where
Hθ(t)

∂H

∂T
|t=0 = Ĥ.

2 Khovanov

[Note. This talk was functionally the same as the Khovanov talk given two weeks earlier]

I need to start by talking about bimodules and Hochschild homology. So fix an algebra R
over a field k and we have M an R-bimodule. Depict this as M in a box with lines from the
top and bottom signifying the left and right action. You can tensor bimodules by sticking
them together pictorially.

A

M

A

N

A

R just as a bimodule over itself is just a line. since R⊗R M = M.

So eventually this will be a derived tensor product. If M is a right R-module and N is a
left R-module then the usually tensor product M ⊗N is an Abelian group, but the derived
tensor product exists, M⊗̂RN is: take a projective resolution Pi of bimodules projective on
the right of M, tensor every term with N, and at this point you can either take homology
or just think in the derived category. Later they will all be projective on the left and on the
right, so we won’t have to do this.

Now we can close things off, attach the lines coming out of the top and bottom and connecting
them to one another by looking at M/[M,R], symmetrizing by setting the left and right
actions equal to one another. These are the R-coinvariants of M. The quotient is only a
vector space. The quotient functor is right exact and subobject functors are left exact, so
we can do another derived functor. We can take a resolution of A by projectives. That’s
because MR = M ⊗R⊗Rop R

So we take the derived tensor product so we choose a resolution of M, or better, R, and
then for any bimodule we can do the same thing. we convert R into a complex of projective
R ⊗ Rop-modules, and you get what we call the Hochschild homology of M ; HH(M) =
H(M ⊗R⊗Rop R̃).

4



Any module has the biresolution. To be thrifty we can take a smaller resolution. Let me note
that this interpretation of the closure respects the composition of the bimodules. That is,
HH(M⊗̇N) ∼= HH(N⊗̇M). There’s the mysterious picture in the middle where it becomes
W.

M

N

⇐⇒ [d]// [d]oo

N W

⇐⇒ N

M

So say r = Q[x]. Then this is 0 → Q[x] ⊗ Q[x] → Q[x] ⊗ Q[x] → Q[x] → 0. The differential
here first takes 1⊗ 1 to 1⊗ x− x⊗ 1, and the next one is multiplication.

When you tensor you get 0 →M →M → 0 with the map m 7→ mx−xm. So HH0(M) = MR

and HH1(M) = MR, the coinvariants and invariants. This is a coincidence. Usually this
would not be so nice, MR is defined as HH0(M) but this will not always be HH1(M).

What about for R = Q[x1, . . . , xn]? We can tensor together the last resolutions. We can take
R⊗R→ R⊗R→ 0 where 1⊗ 1 goes to xi⊗ 1− 1⊗xi, and tensor n copies of this together.
So we get 2n copies of R⊗R in a complex. So for HH we need to tensor with M giving 2n

copies of M taking m→ xim−mxi. In this case it will be HH0(M) = MR, the coinvariants,
and all the way up to HHn(M) = MR the invariants.

Now let Ri ⊂ R be the subring of polynomials invariant under the permutiation of xi and
xi+1. As an Ri-module, this is free of rank 2, with R = Ri · 1⊕Rixi.

We can write R = H∗
G(G/B) and then Ri = H∗

G(G/Pi) where G = GL(n,C) and B is Borel.

If R and M are graded then HH(M) is bigraded. So take Bi = R ⊗Ri R, this is projective
as a left and as a right R-module. We’ll keep track of grading, giving each xi degree two. I’ll
explain why two and not one later. So for instance Bi ⊗Bi is R⊗Ri

R⊗Ri
R = Bi ⊕Bi{2}.

So this is 2 · 2 = 2 + 2.

There is a bimodule map Bi → R taking a ⊗ b to ab. This is a complex of bimodules,
0 → Bi → R → 0. There’s another like 0 → R → B → 0 which takes 1 to (xi − xi+1)⊗ 1 +
1⊗ 1⊗ (xi − xi+1). Just shift the degree of Bi down by two to make the complex differential
have degree zero.

Take the simplest braids σi in the braid group Brn; this is generated by σi which interchanges
i and i+1. Assign the two complexes I’ve just generated to σ±1

i . So what is F (σi)⊗F (σ−1
i )?

This is Bi ⊗ R → Bi ⊗ Bi{−2} ⊕ R → R ⊗ B{−2}. I wanted to choose the grading of my
modules so that R is always in degree zero.
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Notice that everything is over R so we get a simplification:

0 → Bi → Bi{−2} ⊕Bi ⊕R→ Bi{−2} → 0

There is a differential which we didn’t write down. If you want to write down what ∂ is, you
find out it decomposes into 0 → Bi →1→ Bi → 0,
0 → Bi{−2} →1 Bi{−2} → 0 and 0 → R → 0. In the homotopy category, complexes of
graded R-bimodules F (σi) ⊗ F (σ−1

i ) ∼= R. So tensoring two complexes of the generating
braid and its inverse together yields the complex of the trivial braid.

Theorem 1 F (σi) gives rise to a braid group action on this (homotopy) category C . This
means g → F (g) and F (gh) ∼= F (g)F (h) and F (1) = Id. Eventually we want natural equiv-
alences.

We want F (σi)⊗F (σj) ∼= F (σj)⊗F (σi) trivially, and F (σi)⊗F (σi+1)⊗F (σi) ∼= F (σi+1)⊗
F (σi)⊗ F (σi+1).

We’ve gotten to braids, but we want to get to links. To do this we take the closure of a braid.
So σ 7→ σ̂. So closure, remember the beginning of the lecture, should correspond to taking the
Hochschild homology. So starting with σ we take HHF (σ). This has → F j(σ) → F j+1(σ) →
where Fj is a direct sum of tensor products af Bi. This is additionally graded and the
differential preserves the grading. If you start with a graded ring, the Hochschild homology
is bigraded instead of being merely graded.

I will get a bigraded vector space HH(F j(σ)) → HH(F j+1(σ)) →, with each term bigraded.
The differential preserves the bigrading. We get a complex of bigraded vector spaces. So
now we can take homology again since HH(∂)2 = 0 since HH is functorial. So H(σ) =
H(HH(F (σ)),HH(σ)).

Why do this?

Theorem 2 H(σ) is triply graded, depends only on σ̂ and has Euler characteristic equal to
the HOMFLY polynomial of links. This is a modification of Rozansky, Khovanov

The HOMFLY is uniquely determined by the conditions λP (L+)−λP (L−)−(q−q−1)P (L0) =
0 and the value of P (unknot). For instance, the polynomial of the two component unlink is
λ−λ−1

q−q−1 . This should be expanded as a power series.

For example, σ is the trivial braid. Then F (σ) is R and H(L) = HH(R) = R⊗∧(y1, . . . , yn).

You can get a braid group action for any Weyl group but it will only pass to links for this
case.

Ideally you want this to be a functor. You want, for a completely legitimate link homology
from link cobordisms to some algebraic category. The objects will be oriented links and then
morphisms isotopy classes of surfaces with these links as boundary in R3 × I. If you restrict
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to trivial cobordisms between trivial links, then you can get a two dimensional TQFT so we
would need the H of the unknot to be a Frobenius algebra. It’s a commutative associative
algebra and coalgebra with a unit and a counit. Any Frobenius algebra is finite dimensional.
But H(unknot) is Q[x] ⊗ ∧(y) which is infinite dimensional. But we want to reduce this to
a finite dimensional thing by getting rid of this, that is the goal.

I still have five minutes so let me say in conclusion, going back to bimodules, you encounter
arbitrary tensor products of Bi. But this decomposes into

⊕
w∈Sn

Bnw
w , and the interpretation

is Bw = H∗
G(IC(ŌW )). Here OW ⊂ G/B ×G/B.

[You were saying link homology should be a functor, what if it’s concordances?]

How do you prove it? You need to use the braid representation of the link so it’s impossible
to say anything about cobordisms.

7


