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It’s nice to be back here again, especially for this happy occasion. I have something to say
about the prize, I don’t really like the “Lifetime Achievement” thing. But Dennis told me it
was the achievement so far. That’s the Dennis I know.

I want to talk about quantum algebraic fibrations.

I will start with a metaphor. Quantum theory is typically obtained by quantization of a
classical object. To get a quantum thing you do something called quantization, whatever
that is.

But we believe the classical to be a result of the quantum setting. In a certain sense I always
think of, what is the mathematical analogue for this. If I put the quantum mathematics
in this picture, a good classical math would be the result of a quantization. That’s my
metaphor, my assertion.

So first I’ll introduce the notion of something I call dequantization of a dgA. Here what I
mean by a dgA, that would be a graded space C with d and · and d a derivation of the
product. I will only assume associativity. The grading will be Z-grading. This is over k. I
will define the notion of dequantization. One of the salient features is the derivation of the
product, d(a · b) = (da) · b+(−1)aa ·db and d2 = 0. We can take cohomology and the product
descends to H. So on the homology we have a minimal A∞ structure, a collection of the
higher Massey products.

Now I will define an “anti”-dgA. Suppose C is graded, you have an operator called K of
degree one and a product. We have the Abelian group structure and a product · over k. I
assume no associativity or other restraints. So we have Ci ⊗ Cj → Ci+j and K2 = 0. If I
assume additional properties, I get a dGA.

This is good dirt to plant things in.

We want to sort of compare, let’s define ν2 : Ci ⊗ Cj → Ci+j+1. Say ν2(a, b) = K(a · b) −
(Ka) · b− a(Kb), with the appropriate signs.
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Now K is a derivation of µ2 without using any other properties: K(ν2(a, b)) = ν2(Ka, b) ±
ν2(a,Kb).

So if ν2(ν2(a, b), c) − ν2(a, ν2(b, c)) = 0 you would call this associative, but it is only homo-
topy associative, you have that this difference is K(ν3(a, b.c)) + ν3(Ka, b, c) + ν3(a,Kb, c) +
ν3(a, b, Kc) where ν3(a, b, c) = ν2(a, b · c)− ν2(a, b) · c.

There are other choices you can make for ν3 but in the associative world, where we’re going,
they are homotopic.

The statement is, if we have (C,K, ·), then this induces an A∞ structure (C, νi) with νn :
C⊗n → C which all have degree one.

We have νm(a1, . . . , am) = νm−1(a1, . . . , am−1am)− νm−1(a1, . . . , am−1) · am.

A morphism will be f1, f2 which send C → C ′ and C ⊗C → C ′ along with the properties f1

is a morphism of complexes, forgetting the product, both are linear over k, and f1(a · b) =
f1(a) ·′ f1(b) + f2(a, b). The f2 is not necessary.

I will make another stantement, theorem, lemma. If we have (C, νi) and (C ′, ν′i) then the
morphisms here induce morphisms of the A∞ structures.

If you consider the left hand site, taking K ′ of it. Because f1 commutes with K I get
f1(K(a, b)) = f1((Ka)b) + f1(a(Kb)) + f1(ν2(a, b)) = K ′f1(a) ·′ f1(b) + f1(a) ·′ K ′f1(b) +
f2(Ka, b) + f2(a,Kb). On the RHS it is ν′2(f1(a), f1(b)) + K ′f2(a, b) plus other turms to
cancel the beginning of the left hand side.

So then I get the first relations. The rest is the boring part and I just skip it.

It’s also possible to get an L∞ structure out of this.

[Suppose this chain map is a quasiisomorphism. Does that agree with the structure coming
over via dot?]

Obstructions of obstructions vanish. Associativity of the A∞ structure is nice, it’s the devi-
ation from having structure. You can get an L∞ structure. You can have a noncommutative
version.

Now a third definition. Before I do this, I only want to talk about the K where the dot
product is associative. There are various other choices for the homotopy structure, but if dot
is associative they are homotopy equivalent.

So we can talk about a filtered KGA over k[[h̄]]. This is a KGA over C,K, · with additional
properties. νn is divisible by h̄n−1.

First of all K2 = 0. Then K(ab)− (Ka)b− a(Kb) = h̄µ2(a, b). When you define the further
µ they have additional h̄.

Now things will get interesting. A corollary of this guy is that µ1 = K, µi, define a usual A∞
structure.
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In a certain sense, it’s clear that what this picture says, the K being a derivation of the
product is a violation of h̄. So if you kill h̄ you get a differential graded alegbra. So this is a
quantization of a dgA. I can get, at the homology level, µ2 is K-closed, not exact. This is a
little bit more structure.

Choosing this definition of quantization has some physical meaning.

A morphism of filtered KGAs should preserve the filtration. It’s like f1 and f2 as before but
f2 ≡ 0 mod (h̄n−1).

Let gn be defined by h̄n−1gn = fn. So g1(ab) = g1(a) ·′ g1(b) + h̄g2(a, b).

Then (gi) induce an A∞ morphism of this new guy. From now on I want to live in the
world of filtered associative dgA. In certain senses you see this is sort of a quantization of
morphisms.

Those gn can be expanded in terms of h̄.

Now I can define a dequantization.

If I think that homology with the underlying product depends only on the class, in this case
that doesn’t hold, it depends on the representative.

Now let me define dequantization. First I want to regard a dgA as a filtered KGA over k[[h̄]].

From this I think there’s an unambiguous way of extending (C,K = d, ·)k[[h̄]]. Then the
dequantization of a dgA is a filtered KGA C ′ over k[[h̄]] together with a quasiisomorphism
(C,K = d, ·) → (C ′,K ′, ·′).

I will answer the question, a physical answer. I call this dequantization. Initially we have a
classical object. There is a way of quantizing these, you find a filtered KGA which gives this
in the classical limit.

But if I know every function completely, I know this dgA as a result of something else. I didn’t
tell you how to do that. You started with a quantum field theory and this is the perturbation
around that. Any quasiisomorphism will do. The quasiisomorphism as a KGA is the same
as for the A∞ structure. You have to be careful about this, it has a quasi-isomorphism in it.

When you do the Feynmann algorithm, you have a classical construction, it’s the perturbative
expansion of the real quantum theory around a classical solution. This gives a complete
descripiton of all correlation functions. In certain other senses, I sort of regard this as a
minimal model of a quantum object.

I need to describe how to get to the ordinary object to the quantum object.

It’s easy to say they are quasiisomorphic, but it’s hard to construct them. It’s easy to say,
“let’s invert these” but that’s not really easy. You get a quasiisomorphism sometimes and
you don’t know what the thing is. Dennis’ minimal model comes with a quasiisomorphism
and freeness. It means you can do your computation freely and constructs the quasiisomo-
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morphism.

I think we should take a break. Let’s break until five minutes to four. That was very good,
all understandable.

[Break]

Okay, let’s start again. Maybe the language is incorrect.
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