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[Maybe we should begin, whoever wants to join us later should...]

This talk is about quiver representations.

We start with a simple question. Given a vector space, what are all the configurations
in which two subspaces can sit inside it? Two configurations are the same if there is an
automorphism of the parent space taking the two vector spaces and their intersection to the
two vector spaces and their intersection.

We’re talking about finite dimension, so if I choose a basis for the intersection, I can extend
it on each side and then to the whole space, so if these four numbers are the same, we can
say these are isomorphic.

So as a picture we can write this V1
// V V2

oo . So now what if I have three or four
subspaces? That is why we are interested in quivers.

A quiver is just a connected graph. More formally, Q = {Q0, Q1}, with two maps t : Q1 → Q0

and h : Q1 → Q0.

A representation of a quiver is as follows: fix a background field k. Assume that this is
algebraically closed and characteristic zero. Put a finite dimensional vector space in each
vertex and a linear map corresponding to each arrow. V is a representation of Q if {V (x)|x ∈
Q0} are vector spaces and V (a) : V (ta) → V (ha) is a map.

All these definitions are very simple. There’s nothing fancy going on.

Now we want to define morphisms between representations of quivers.

Let’s look at an example. Say I have the following two quivers:

V1
f // V2

g
))

h

55 V3
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W1
f ′

// W2

g′

**

h′
44 W3

Then a morphism will be a collection of maps Vi → Wi making the diagram commute. In
general, Morphism(V,W ) = {Φ(x) : V (x) → W (x)} so that

V (ta)
V (a) //

Φ(ta)

��

V (ha)

Φ(ha)

��
W (ta)

W (a) // W (ha)

commutes.

A subrepresentation is as follows: let V be a representation of Q; then W is a subrepre-
sentation of V if W (x) ⊂ V (x) and W (a) : W (ta) → W (ha) is the restriction of V (a). A
representation always has two subrepresentations: itself, and the zero representation where
W (x) = 0 and the maps are zero.

If a representation of Q does not have any other subrepresentations, it is called simple or
irreducible.

Let me give an example.

// //

What are all the irreducible representations of this quiver? You cannot have dimension
greater than one, but after further thought you find that the only irreducible representations
are

k // 0 // 0

0 // k // 0

0 // 0 // k

This is true for any quiver which does not have a cycle, k in any location.

So given a morphism between two quiver representations, we can take the kernel, and both
the kernel and quotient are well-defined.

The direct sum of two representations, we can guess what that is. Take the direct sum of
each vector space and the corresponding map. That’s a categorical biproduct. If you can’t
break up a representation into a nontrivial direct sum then it is indecomposable. Obviously,
irreducible implies indecomposable. However, the following are reducible but indecompos-
able.
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k
1 // k // 0

0 // k
1 // k

k
1 // k

1 // k

For the first case, one can only break this up into two pieces one way, but then the map in
the quiver representation direct sum would be zero.

So this makes an Abelian category. Now given a quiver Q you can consider Repk(Q), which
is now Abelian. The zero morphism is the zero representation.

Given a representation you can break up into indecomposable representations. Is this unique?

Given an Abelian category, if every object can be written as a finite direct sum of indecom-
posable objects and Mor(A,A) is a local ring, then this decomposition is unique.

This is true for this category, so we know that everything can be written uniquely as a direct
sum of indecomposables.

What about a quiver that looks like a circle, with an arrow pointing to itself? This is a
vector space V and a map f to itself. This map can be put in Jordan normal form, since
k is algebraically closed. A representation will be indecomposable if it has only one Jordan
block. So in this case we have infinitely many, since we can choose any λi in the field and
any size for the block. So we parameterize this by N and k. In particular this is infinitely
many. However, I have at most a finite number of dimensions of parameters. So this is called
tame type.

Now let’s consider all quivers with finitely many indecomposables. Such quivers are called
finite type.

Now we ask three questions:

1. Which quivers are finite type?

2. Given a finite type quiver, how many indecomposable representations do you have?

3. Find all the indecomposables.

These are the three questions. We have a complete answer for all of these questions.

Theorem 1 Gabriel’s Theorem

1. Let Q̂ be Q as an undirected graph. A connected quiver Q is finite type if and only if
Q̂ is one of the following:
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(a) An : · · ·
(b) Dn : · · ·

(c) E6 :

(d) E7 :

(e) E8 :

2. Given a finite type quiver, there is a one to one correspondence between positive roots
and indecomposable representations.

So An has n(n + 1)/2; Dn has n2 − n, E6 has 36, E7 63 and E8 120.

As an example, let’s look at D4.
There are four indecomposables like this:

k // 0 0oo

0

OO

There are three like
k

1 // k 0oo

0

OO

There are three like
k

1 // k k
1

oo

0

OO

Then there are these:

k
1 // k k

1
oo

k

1

OO k // k2 koo

k

1

OO
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The maps in this last are embeddings so that any two are linearly independent.

Let’s do the example of
k2 // k3 k2oo

k2

OO

with embeddings along pairs of a basis triple.

This breaks up into

k
1 // k k

1
oo

0

OO ⊕ k
1 // k 0oo

0

1

OO ⊕ 0 // k k
1

oo

k

1

OO .

I’ll talk about the second part next time.

Let’s do one direction. Let Q be a finite type quiver. We can take the dimension of each vector
space in each vertex; I can always find α ∈ NQ0 where α(x) = dim V (x). Then we define the
Euler form on RQ0 ; This is defined as 〈α, β =

∑
x∈Q0

α(x)β(x)−
∑

a∈Q1
α(ta)β(ha).

For an example consider 1 // 2 // 3 and // 99 %% .

So 〈e2, e3〉 = 0−
∑

e2(2)e3(3) = −1.

Now define (α, β) = 〈α, β〉+ 〈β, α〉. Then (ei, ej) = 2δij −#edgesij .

So in the second case (e2, e3) = 〈e2, e3〉+ 〈e3, e2〉 = −2 + 0 = −2.

We’re almost there. Consider these quivers:

1 2 3

1 2 3

4

�������
5

>>>>>>>

Then the matrices for the Euler forms of these quivers are respectivelly

 2 −1 0
−1 2 −2
0 −1 2

 ,


2 −1 0 0 0
−1 2 −1 −1 −1
0 −1 2 0 0
0 −1 0 2 0
0 −1 0 0 2


The first matrix is positive definite (the Cartan matrix of the root system) and the second
one isn’t.
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So a general remark: if I have Rn and positive definite (, ) with {v1, . . . , vn} linearly inde-
pendent, (vi, vj) ≤ 0 for i 6= j and 4(vi,vj)

2

(vi,vi)(vj ,vj)
then the corresponding graph is one of those

mentioned, An, Dn, E6, E7, or E8.

Let ei, 1 ≤ i ≤ n be the vertices of finite type Q We want to show that

1. The Euler form is positive definite

2. (ei, ej) is −{#edges i ⇐⇒ j}

3. 4(vi,vj)
2

(vi,vi)(vj ,vj)
= (ei, ej)2 = 0 or 1.

The only hard part is to show that the form is positive definite; everything else is easy.

I won’t show everything, just the idea.

Actually, let me do something else. Fix a dimension vector α. Then Rep(Q,α) is nothing
but choosing a linear map so is

⊕
x∈Q1

Hom(kα(tx), kα(hx)).

Now consider GL(α) =
∏

a∈Q0
GL(α(a)). Now GL(α) acts on Rep(Q, α) so I can break it into

disjoint orbits. We know that this group has only finitely many indecomposables, because
their isomorphism classes are preserved by a change of basis.

Then Dim(Rep(Q, α)) =
∑

a∈Q1
α(ta)α(ha) and Dim(GL(α)) =

∑
x∈Q0

[α(x)]2.

Now for α ∈ NQ0 we have 〈α, α〉 = dim GL(α)− dim Rep(Q,α).

The dimension of the orbit is the dimension of the group minus the dimension of the stabilizer.

Now, for β ∈ K we can consider
∏

βI ∈ GL(α). This acts trivially so we know that we have
〈α, α〉 > 0. Then we extend to Z and then R to show positive definiteness.

If you have finitely many orbits, one of the orbits has to have dimension the same dimension
as the space, since you can’t cover a manifold with smaller-dimensional manifold. That’s why
the proof fails if you don’t assume your quiver is finite type. It also gives you an estimate on
the number of degrees of freedom you have in your representation.

Let’s look at An. Here Φ = {ei − ej} for i 6= j, 1 ≤ i, j ≤ n + 1} and Φ+ = {ei − ej |j > i}.

Then the indecomposable representations of An look like

0 0 0 k
1

k k 0 0

and this yields the correspondence.

We meet next time in two weeks, on April first.
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