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The references I guess are Prasolov, Sossinksi, and Kassel.

Maybe we should start by announcing the next week’s talk. Next week is Gabriel Drummond-
Cole, an introduction to the Khovanov invariants. This is closely related to things we will
discuss today, but Khovanov’s work is the next step after the Jones polynomial.

I promised examples, so we’re going to discuss the Jones polynomial, and every coefficient in
the Taylor expansion is a finite type invariant.

We want to assign an isotopy invariant to links which is a polynomial.

Definition 1 The Jones polynomial invariant V is a function V : isotopy classes of links →
Z[q−1/2, q1/2]. If we’re just talking about knots this will be in Z[q−1, q]; this will be true when-
ever we have an odd number of components. It satisfies
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2. V (L t Unknot) = −(q−1/2 + q1/2)V (L)

3. V (Unknot) = 1.

Let’s look at the trefoil as an example.

[Can you motivate this?]

You start with, wanting to construct a polynomial invariant. Maybe it’ll make sense by the
end. You can use what’s called the Kauffman bracket.
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So as an example we calculate V for the trefoil. We’ll expand with respect to one crossing.
You get q−1V (T ′)− qV (T ) = q1/2− q−1/2V (H2), where T ′ is the unknot and H2 is the Hopf
link.

We’re going to do what we did again. So for H2, we get q−1V (H ′
2) − qV (H2) = (q−1/2 −

q−1/2)V (Unknot), where H ′
2 is the two component unlink. So here we can say this is

q−1(q1/2−q−1/2)−qV (H2) = q1/2−q−1/2, which yields V (H2) = q−3/2−q−1/2+q−5/2−q−3/2,
i.e., −q−1/2 − q−5/2. So we get q−1 − qV (T ) = (q1/2 − q−1/2)(−q−1/2 − q−5/2), so we get
V (T ) = q−1 + q−3 − q−4.

This will be good enough to distinguish between the two trefoils, but it’s not that great
because it won’t separate knots for us.

What’s the connection between this and finite type knots? Look at our skein relation. If we
make a substitution, q = ex, then we expand ex as a Taylor series, we get a Taylor series
for V and the statement that connects with finite type invariants is, if we write V (K)(x) =∑

Vm(K)xm, the statement is that Vm(K) is a finite type invariant. How are we going to
prove this? By looking at the skein relation. Let me remind you, we defined the extension
to singular knots, and this looks like the left hand side. So the first thing to do is sub in
the Taylor expansion of ex = q. So we get e−xV+ − exV− = (ex/2 − e−x/2)V0. So we get
here (1− x + x2/2 + · · · )V+ − (1 + x + x2/2 + · · · )V+ = ((1 + x/2 + (x/2)2/2 + · · · )− (1−
x/2 + (x/2)2/2 + · · · )V0. So the side on the right looks like (x + · · · )V0. On the other side it
looks like V+ − V− + x(stuff). So we can move this over to the other side and we get that
V+ − V− = x(stuff).

What this says is that every time we add a singular point we pick up an x, so that the mth
time we do this it will be divisible by xm. If we evaluate V on a knot with more than m
singular crossings, then it is divisible by at least xm+1. That means that V on a knot with
more than m singular crossings has its m coefficient equal to zero.

There’s an analogue of the Jones polynomial, more general, which is the Homfly polynomial.
Instead of the relation, we had q−1V+ − qV− = (q1/2 − q−1/2)V0, you do the same thing but
put in −N/2 for the −1, and N/2 for the 1, then all of these are also finite type invariants.

So, where are we? Scott asked why we even have a polynomial like this. I’ll try to give you
an idea why we should have something like this.

So draw a knot as a sequence of morphisms in a category whose objects are tensor products of
V indexed by 0-dimensional subsets of the line and cobordisms in R2×I are morphisms. Then
cups and caps interchange between k and V ⊗ V, vertical lines are identities, and crossings
are maps between V ⊗ V and itself. You end up with a map from k to itself. We want this
to give a knot invariant. The scalar is your invariant. We need this to satisfy Reidemeister
moves. We’ll take C2 as our V, and think of it as a representation of sl(2), and we want our
maps to be sl(2) invariant, which gives us restrictions.

So if V is C2 we will take ∪(1) = e1 ⊗ e2 − e2 ⊗ e1,∩ as the unique bilinear sl(2) invariant
thing. This gives ∩(e2 ⊗ e1) = 1. We’ll take R(x⊗ y) = y ⊗ x.
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So does this actually give a knot invariant? One thing to check is that it satisfies the
Reidemeister moves. For Reidemeister 0 we get ei → ei⊗e1⊗e2−ei⊗e2⊗e1 → δi,1e1+δi,2e2.

For time reasons, you can check that it satisfies the other Reidemeister moves. The second
one is easy, it’s an invertibility argument. The third one comes from the fact that R satisfies
the Yang Baxter equation. So what invariant is this going to give? When you change your
crossings, the value of the invariant is not going to be affected.

So we want R : V ⊗ V → V ⊗ V with R2 6= id and (R⊗ id)(id⊗R)(R⊗ id) = (id⊗R)(R⊗
id)(id⊗R). So we slightly change what we have here for our maps. “Deform” R by q. It may
be sloppy terminology. We want ∪(1) = e1 ⊗ e2 − q−1e2 ⊗ e1. We will have ∩(e1 ⊗ e2) = −q
and ∩(e2 ⊗ e1) = 1. The intereseting part is that R, as a matrix with respect to ei ⊗ ej with
the dictionary ordering, is

q1/2

q1/2

q−1/2 q−1/2(q − q−1)
q−1/2


times the original flip. You can check the Reidemeister moves. The third one comes from
the Yang Baxter equations. At this point we don’t have a knot invariant because it doesn’t
satisfy the first Reidemeister move. It depends on framing.

There is a full solution to the Yang Baxter equation in some small degree, but this is really
the wrong question, it is like asking whether there is a classification of the Jacobi identity
solutions to classify Lie algebras.

This associates to a knot an invariant. The output is a Laurent polynomial in q1/2. The
ground ring is Laurent polynomials. We can check that this satisfies the definining relations.
We can split V ⊗ V into C ⊕ C3. So the three entries in the skein relation have to have a
linear relation since sl(2) invariant maps from V ⊗ V to itself are two dimensional. That is
exactly the relation for the Jones polynomial after suitable rescaling.

Another thing to note is that for sl(n) this gives the Homfly. The magical q stuff comes from
looking at the quantum group Uqsl(2). These are invariant maps for this quantum groups.
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