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We will begin then. Let me start by reminding you what we did last time. Last time I
discussed Uqsl2, the q-deformation of sl2, whatever this is, it is something where you have
this relation [e, f ] = qh−q−h

q−q−1 , [h, e] = 2e ⇐⇒ qhe = q2eqh, [h, f ] = −2f ⇐⇒ · · · , and we
have representations Vn, and a representation with highest weight n is generated by v0 up
through vn, with the action of e and f given by evi = [i + 1]vi+1 and fvj = [n− j + 1]vj+1

with [n] = qn−q−n

q−q−1 .

So V1 = C2, with ev− = v+, fv+ = v−, hv± = ±v±.

We also defined the tensor product of representations. The action of the tensor product is
given by the formulae
∆e = e⊗ qh + 1⊗ e,
∆f = f ⊗ 1 + q−h ⊗ f,
∆h = h⊗ 1 + 1⊗ h.

We discussed how to do V1 ⊗ V1. We discussed in general how Vn ⊗ Vm = ⊕ck
nmVk, and the

cnm are not dependent on q. To see the embedding explicitly, on the other hand, you’ll get
a lot of coefficients. They are close to the usual sl2 but your binomial coefficients

(
a
b

)
should

be replaced with the q-analogue defined as [a]!
[b]![a−b]! , where [n]! =

∏n
i=1[i]. You also have to

put in appropriate places various powers of q.

At this moment you might think the story reduces to taking the usual representation theory
and replacing usual numbers with q-numbers.

The big difference is that the factors are not symmetric. You might think that by a minor
change of variables you could get rid of this, but you can’t.

So take V = C2, and consider V ∗. I said last time you can define a structure of a representation
on it, by requiring that V ∗⊗V → C be a morphism of representations. You want ∆(e)(v∗⊗
v) = 0, since e acts by 0, and similarly for f and h. If you write these explicitly it gives the
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action in the dual space. If you write it in the dual basis for the basis given before, you get
hv∗+ = −v∗+, hv∗− = v∗−, so you might expect that everything will just be reversed. You get
ev∗+ = −qv∗−, fv∗− = −q−1v∗+.

There is also the canonical map C → V ⊗ V ∗, which is also a map of Uqsl2-modules. You
have to be careful about the order.

Now suppose that I took the same dual space, and instead of requiring that these commute
with the action, instead I required that V ⊗∗V → C commute with the action. Here ∗V is
V ∗ as vector spaces. For a classical Lie algebra permutation of factors does not preserve the
action.

Again I will skip ahead. For h nothing changes, which is to be expected, but ev∗+ = −q−1v∗−
and fv∗− = −qv∗+. I don’t want to do the computations so let me leave it as an easy exercise.
If I use these formulas, then the map C → ∗V ⊗ V is a map of Uqsl2-modules. So we can
define the action on the dual space in two ways. The actions do not coincide. We have the
left dual and the right dual. But they are isomorphic, just not as naively as one might hope.
Instead take v∗+ to q−1v∗+ and v∗− → qv∗−. For example you need to check the commutativity
of the square

v∗+ //

e

��

q−1v∗+

e

��
−q−1v∗− // −v∗−

You can write this uniformly as v → qhv.

As a corollary, let’s talk about quantum dimension.

One way to define dimension of a vector space is that dim V = tr idV . So the identity
operator, if this is seen in V ⊗ V ∗, is the image of the unit C → V ⊗ V ∗, and the trace is the
map in the other direction.

In representations of Uqsl2 I can do C → V ⊗ V ∗ but I need to get from there to V ⊗∗V in
order to get back to C. So we move via 1⊗ q−h. So this takes 1→ v+⊗ v∗+ + v−⊗ v∗−, which
goes to v+ ⊗ qv∗+ + v− ⊗ q−1v∗−, which goes to q + q−1 = [2].

For any irreducible, which has dimension n + 1, the q-analogue has dimension [n + 1].

Now let me talk about the most famous corollary of this. Start now with any two represen-
tations V and W. I can consider V ⊗W and also W ⊗V. As vector spaces there is a canonical
isomorphism between them, where you just permute the factors. Normally people wouldn’t
distinguish between them. If I consider, however, each as representations of Uqsl2, then this
permutation is not a morphism.

This is because P (e(v⊗w)) 6= eP (v⊗w). But these are qhw⊗ev+ew⊗v and ew⊗qhv+w⊗ev.

These two expressions don’t match, so this is not a morphism. So these are not obviously
isomorphic. On the other hand, if I take these to be irreducible, then each breaks up into
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irreducibles with the appropriate dimensions, so they are isomorphic. Is there a way of
constructing a natural isomorphism? The answer is yes, and this something is the famous
R-matrix. Let me write a theorem.

Theorem 1 Drinfeld
There is a unique element R = q

h⊗h
2 (q + c1e⊗ f + . . . + cnen ⊗ fn + . . .) in the appropriate

completion of Uqsl2⊗Uqsl2 (well-defined in any finite dimensional representation without the
completion) such that R

√

V,W = PR : V ⊗W →W ⊗ V is a morphism of Uqsl2-modules.

Namely, cn = q
n(n−1)

2 (q−q−1)n

[n]! .

How do you prove this theorem? Once you know what you’re looking for, it’s not very hard.
Drinfeld’s proof uses the quantum double, which is too hard, but if you know what you’re
looking for, well, you write things like

P (e⊗ qh + 1⊗ e)PR = R(−e⊗ qh + 1⊗ e),

or
(qh ⊗ e + e⊗ 1)R = R(e⊗ qh + 1⊗ e).

You get some relations on c1, and do some calculations, and this is what you get.

As an example, for V = W = V1, then we get R = q
h⊗h

2 (1 + (q − q−1)e ⊗ f). The terms
after these involve e2 and f2, which act by zero. Then R

√
acts as the following: v+ ⊗ v+ 7→

q1/2v+ ⊗ v+

v+ ⊗ v− 7→ q−1/2v− ⊗ v+

v− ⊗ v+ 7→ q−1/2v+ ⊗ v− + q−1/2(q − q−1)v− ⊗ v+

v− ⊗ v− 7→ q1/2v− ⊗ v−

In the limit where q goes to 1, the cn go to 0 because of the q − q−1, so the R
√

goes to the
permutation matrix. This has the form, as a four by four matrix,

q1/2


1

0 q−1

q−1 q−1(q − q−1)
1


One thing to see is that (R

√
)2 is not the identity. Recall that V1⊗V1 splits into C⊕V2, this

last being spanned by v+ ⊗ v+, v− ⊗ v−, and v− ⊗ v+ + q−1v+ ⊗ v−. The one dimensional
space is spanned by v+⊗ v−− q−1v−⊗ v+. So (R

√
)2 gives constants on each of these spaces.

If you believe it acts by a constant, then it acts by q on the V2 piece. For C,

R
√

(v+ ⊗ v− − q−1v− ⊗ v+) = q−1/2v− ⊗ v+ − q−1(q−1/2v+ ⊗ v− + q−1/2(q − q−1)v− ⊗ v+))

= −q−3/2v +⊗v− + (q−1/2 − q−1/2 + q−5/2)v− ⊗ v+
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= −q−3/2(v+ ⊗ v− − q−1v− ⊗ v+).

The eigenvalue for (R
√

)2 has eigenvalue q−3.

Again you have a rather rich structure. The tensor product is weakly symmetric, since the
isomorphism is nontrivial. Now let me answer Gabriel’s question, why I don’t kill q1/2 by
multiplying by the appropriate power. Suppose I have the tensor product of three represen-
tations, and I want to interchange V1 with the tensor product of V2 and V3.

V1 ⊗ V2 ⊗ V3
//

��

(V2 ⊗ V3)⊗ V1

V2 ⊗ V1 ⊗ V3

66mmmmmmmmmmmm

This diagram is usually called the hexagon equation because I am implicitly using the asso-
ciativity of the tensor product. This is a rather natural thing to require, and for quantum
groups as deformations like this, that this holds but I don’t want to multiply by a q factor.

There could be a different R matrix as long as it did not have the same form in the completion.
I would rather focus on this question later. If you do it properly as a power series over log q,
there is only one, but that’s a much deeper result.

As a corollary, you get the Yang Baxter equation. I will do the diagram.

V1 ⊗ V3 ⊗ V2
// V3 ⊗ V1 ⊗ V2

((QQQQQQQQQQQQ

V1 ⊗ V2 ⊗ V3

((QQQQQQQQQQQQ

66mmmmmmmmmmmm
V3 ⊗ V2 ⊗ V1

V2 ⊗ V1 ⊗ V3
// V2 ⊗ V3 ⊗ V1

66mmmmmmmmmmmm

The theorem is that these commute.

I said that this is a corollary. Let me show how you get from the theorem to the corollary,
in the language of diagrams. For the R-matrix, you have this property. If you have an
operator from V to V which you follow by the R-matrix, then you can move it past, i.e.,
R
√

(φ⊗ id) = (id⊗ φ)R
√

. Why is this? Since φ commutes with e, f, h, which make up R, it
commutes with R. Then it moves through P in the desired way, as everything does.

In abstract nonsense, R
√

is a functorial isomorphism.
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???

???

???

??? ����������������
???

???

Is the left hand side, and I can bunch together to get

X

@@@@

@@@@

Then this is
X

@@@@

@@@@

which is

???

??? ����������������
???

???

�������
???

???

Written R
√

i R
√

i+1R
√

i = R
√

i+1R
√

i R
√

i+1, this is the braid relation. This defines a representation
of the braid group. From there it is relatively straightforward to get invariants of knots.

Let me explain one last thing. It is good that we don’t have (R
√

)2 = 1 from this point of
view; if you had this equal to one, you could unlink your braids and you would only remember
the end points.
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