Physics Seminar April 1, 2005 Tanveer Prince

Gabriel C. Drummond-Cole

April 15, 2005

Last time, let me remind you of Gabriel's theorem.

- 1. A quiver Q is finite type if and only if its underlying graph \hat{Q} has type A_n , D_n , E_6 , E_7 , or E_8 . This means it has finitely many indecomposable representations.
- 2. If Q is of finite type, then there is a bijection between positive roots of the corresponding Lie algebra and indecomposable representations.

In particular this says how many representations it has. So for A_n this is $\frac{n(n+1)}{2}$; for D_n it is $n^2 - n$.

But this is stronger because it gives a bijection. For an indecomposable representation, you can just take the dimension vector. To go the other way is a little more tricky.

So let's go on. We'll start with a definition and some notation. We start with a Coxeter functor.

Definition 1 Say $x \in Q_0$, the vertices of the quiver Q. We can construct the quiver $S_x(Q)$, which is the same quiver but with all arrows incident on x reversed.

Now let $x \in Q_0$ be a sink. Define C_x^+ , a functor from representations of Q to representations of $S_x(Q)$.

So say I have a sink x, I want to show how to define the functor. The vertex x, instead of being enriched with the same vector space V(x), is enriched by the kernel of the map $V_1 \oplus \cdots \oplus V_k \to V(x)$ with the maps the projections.

If I have a source x I can define C_x^- similarly by replacing V(x) with $coker(V(x) \to V_1 \oplus \cdots \oplus V_k)$.

One more definition. Consider the simple representation where you have k in one place and zero elsewhere. This is represented by the symbol ϵ_x , where x is the vertex. We denote the corresponding reflection by S_x . This is defined to be $S_x(\beta) = \beta - (\epsilon_x, \beta)\epsilon_x$, where (,) is the symmetric Euler form so $(\epsilon_x, \beta) = \langle \epsilon_x, \beta \rangle + \langle \beta, \epsilon_x \rangle$.

Theorem 1 Let Q be a quiver of finite type and V an indecomposable representation of Q. Say x is a sink. Then one of the following is true:

- 1. $V = E_x$, and C_x^+V is a representation of S_xQ which is 0.
- 2. C_x^+V is indecomposable and the dimension vector of C_x^+V will be S_x applied to the original dimension vector. Alsoo $C_x^-C_x^+V \sim V$.

These representations are not equivalent, but there is a nice correspondence between the indecomposables one and the other.

Before I prove this one, let me write down some corollaries. I can number my vertices so that arrows go in increasing order.

Then 1 is a source and n is a sink. Then $C_n^- \circ \cdots \circ C_2^- \circ C_1^-$ is a functor from Rep(Q) to $Rep(S_n \cdots S_2 S_1 Q) = Rep(Q)$. Similarly, $C_1^+ \cdots C_{n-1}^+ C_n^+$ is a functor from Rep(Q) to itself. Denote these by C^- and C^+ with corresponding reflections c^- and c^+ or just c.

Corollary 1 V is an indecomposable representation then $C^+V = 0$ or is indecomposable with dimension vector $d_{C^+(V)} = c^+(d_V)$.

Lemma 1 Let Q be a quiver where $\hat{Q} \in \{A_n, D_n, E_6, E_7, E_8\}$ and α a dimension vector. Then $c^k \alpha$ is a negative vector.

So c has finite order m. Then consider $\beta = \sum_{0}^{m-1} c^{i} \alpha$. Then $c\beta = \beta$, so that $\beta = 0$. This is because $\langle \alpha, c\beta \rangle = -\langle \beta, \alpha \rangle$. So if $c\beta = \beta$ then $(\beta, \beta) = 2\langle \beta, \beta \rangle = \langle \beta, \beta \rangle + \langle \beta, c\beta \rangle = 0$.

So next, keep the same assumptions and let V be an indecomposable representation of the quiver. I need to show that d_V is a positive root. From the corollary we have that $d_{(C^+)^kV} = c^k d_V$. Then there exists a k for which this is a negative vector. So some power of it must give zero.

So consider $W=(C^+)^{k-1}V$. We know that $C^+(W)=0$. But this is $C_1^+\cdots C_n^+W$. So then at some point I will get E_l for some l. Then $W=C_n^-\cdots C_{l+1}^-E_l$. Then $V=(C^-)^{k-1}C_n^-\cdots C_{l+1}^-E_l$ so that $d_V=(c^-)^{k-1}s_n\cdots s_{l+1}\epsilon_l$. This makes this root positive.

This is one direction. Now we start with a positive root and want to show that it is a dimension vector. I'll go over an example.

[What is going on is, we want to get all indecomposables. We only know of the E_i to start. So we apply reflections to get more, but we can only use the reflections when these are sinks or sources.]

Now for the other direction we start with a positive root α . From the lemma we can choose a minimal k such that $c^{k+1}\alpha$ is negative. Consider $\beta = c^k\alpha$. So then $s_1 \cdots s_n\beta$ is negative. Now s_i permutes positive roots except for ϵ_i . So then $s_{l+1} \cdots s_n\beta = \epsilon_l$, so $\beta = s_n \cdots s_{l+1}\epsilon_l$. Then $C_n^- \cdots C_{l+1}^- E_l$ is an indecomposable with dimension vector β ; then $(C^-)^k C_n^- \cdots C_{l+1}^- E_l$ is an indecomposable with dimension vector α .

Consider the indecomposable

$$k \xrightarrow{1} k \xrightarrow{1} k$$

with corresponding dimension vector $e_1 - e_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

How do we go the other way? We have

$$s_1 \alpha = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \left[\left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle + \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle \right] \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

So
$$s_2 s_1 \alpha = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \epsilon_3.$$

Now s_1A_3 looks like

$$0 \longleftarrow k \longrightarrow k$$

while $s_2 s_1 A_3$ is

$$0 \longrightarrow 0 \longleftarrow k$$

Now if I apply C_2^+ I get

$$0 \stackrel{\longleftarrow}{\longleftarrow} k \stackrel{\longrightarrow}{\longrightarrow} k$$

and then C_1^+ to get

$$k \longleftrightarrow k \longrightarrow k$$

Let's look at a trickier example,

with dimension vector
$$\alpha = e_2 + e_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}$$
 and $s_3 s_2 s_1 \alpha = \alpha$ and $s_4 s_3 s_2 s_1 \alpha = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

Finally you get $s_3s_2s_1s_4s_3s_2s_1\alpha=\begin{pmatrix}0\\0\\0\\1\end{pmatrix}$ so that $\alpha=s_1s_2s_3s_4s_1s_2s_3\epsilon_4$.

So you can start with E_4 in the quiver

$$0 \longleftrightarrow k \longrightarrow 0$$

$$\downarrow$$

$$0$$

and apply C_3^+ to get

$$0 \longleftarrow k \longleftarrow k$$

and then C_2^+ yields

$$0 \longleftarrow k \longleftarrow_{1} k$$

and then C_1^+ :

$$k \xrightarrow{1} k \xleftarrow{1} k$$

Here it gets a little tricky because I have a kernel. At the end I get

Why does the Coxeter functor applied to an indecomposable give either 0 or an indecomposable?

The idea is as follows. Say $x \in Q_0$ is a sink. Then I have $C_x^+ : Rep(Q) \to Rep(S_xQ)$. I can also go in the other direction with C_x^- .

First we'll construct a natural transformation i_x from $C_x^-C_x^+$ to the identity. In a similar way we construct a functor p_x from the identity to $C_x^+C_x^-$. Then the proof depends on some characteristics of these natural transformations.

 $C_x^-C_x^+$ at x is the cokernel of the projection from the kernel of the map into V(x). This is the quotient of the sum $\oplus V_i$ by the kernel, which is the original space. This is pure linear algebra.

There are some properties of these two natural transformations.

- 1. If i_x is an isomorphism then $d_{C^+xV} = s_x d_V$ and similarly for the other one.
- 2. If $V = C_x^- W$ then i_x is an isomorphism.
- 3. if $x \in Q_0$ is a sink then $V = C_x^- C_x^+ \oplus \tilde{V}$, the cokernel of i_x .

The proof of all of this is not hard. Let me skip most of it. Let V be an indecomposable representation. If $V = E_x$ then $C_x^+V = 0$. If V is not this, then we will show that C_x^+V is indecomposable.

Since V is indecomposable, either $V = \tilde{V}$ or $V = C_x^- C_x^+ V$. If $V = \tilde{V}$ then $V = E_x$ because it's concentrated at x. Otherwise $V = C_x^- C_x^+ V$. We want to show that $C_x^+ V$ is indecomposable. Say it can be written $W_1 \oplus W_2$. Then C_x^- preserves the direct sum so this is $C_x^- W_1 \oplus C_x^- W_2$. Since V is indecomposable, now one of these has to be zero. Then apply C_x^+ to that piece to get $C_x^+ C_x^- W_2 = 0$. But we have p_x an isomorphism from the identity to $C_x^+ C_x^-$. This implies $W_2 = 0$, so that $C_x^+ V$ is indecomposable, as desired.

[Next week Justin will be talking about ...]

I have an article about this at sawon/borel_weil.ps.gz

This is the most important thing about geometric representations. He'll be talking about projective spaces.

This allows you to calculate cohomology groups of vector bundles etc.