Physics Seminar
 April 1, 2005
 Tanveer Prince

Gabriel C. Drummond-Cole

April 15, 2005

Last time, let me remind you of Gabriel's theorem.

1. A quiver Q is finite type if and only if its underlying graph \hat{Q} has type $A_{n}, D_{n}, E_{6}, E_{7}$, or E_{8}. This means it has finitely many indecomposable representations.
2. If Q is of finite type, then there is a bijection between positive roots of the corresponding Lie algebra and indecomposable representations.

In particular this says how many representations it has. So for A_{n} this is $\frac{n(n+1)}{2}$; for D_{n} it is $n^{2}-n$.

But this is stronger because it gives a bijection. For an indecomposable representation, you can just take the dimension vector. To go the other way is a little more tricky.

So let's go on. We'll start with a definition and some notation. We start with a Coxeter functor.

Definition 1 Say $x \in Q_{0}$, the vertices of the quiver Q. We can construct the quiver $S_{x}(Q)$, which is the same quiver but with all arrows incident on x reversed.

Now let $x \in Q_{0}$ be a sink. Define C_{x}^{+}, a functor from representations of Q to representations of $S_{x}(Q)$.

So say I have a sink x, I want to show how to define the functor. The vertex x, instead of being enriched with the same vector space $V(x)$, is enriched by the kernel of the map $V_{1} \oplus \cdots \oplus V_{k} \rightarrow V(x)$ with the maps the projections.

If I have a source x I can define C_{x}^{-}similarly by replacing $V(x)$ with $\operatorname{coker}\left(V(x) \rightarrow V_{1} \oplus\right.$ $\left.\cdots \oplus V_{k}\right)$.

One more definition. Consider the simple representation where you have k in one place and zero elsewhere. This is represented by the symbol ϵ_{x}, where x is the vertex. We denote the corresponding reflection by S_{x}. This is defined to be $\left.S_{x}(\beta)=\beta-\left(\epsilon_{x}, \beta\right) \epsilon_{x}\right)$, where (,) is the symmetric Euler form so $\left(\epsilon_{x}, \beta\right)=\left\langle\epsilon_{x}, \beta\right\rangle+\left\langle\beta, \epsilon_{x}\right\rangle$.

Theorem 1 Let Q be a quiver of finite type and V an indecomposable representation of Q. Say x is a sink. Then one of the following is true:

1. $V=E_{x}$, and $C_{x}^{+} V$ is a representation of $S_{x} Q$ which is 0.
2. $C_{x}^{+} V$ is indecomposable and the dimension vector of $C_{x}^{+} V$ will be S_{x} applied to the original dimension vector. Alsoo $C_{x}^{-} C_{x}^{+} V \sim V$.

These representations are not equivalent, but there is a nice correspondence between the indecomposables one and the other.

Before I prove this one, let me write down some corollaries. I can number my vertices so that arrows go in increasing order.

Then 1 is a source and n is a sink. Then $C_{n}^{-} \circ \cdots \circ C_{2}^{-} \circ C_{1}^{-}$is a functor from $\operatorname{Rep}(Q)$ to $\operatorname{Rep}\left(S_{n} \cdots S_{2} S_{1} Q\right)=\operatorname{Rep}(Q)$. Similarly, $C_{1}^{+} \cdots C_{n-1}^{+} C_{n}^{+}$is a functor from $\operatorname{Rep}(Q)$ to itself. Denote these by C^{-}and C^{+}with corresponding reflections c^{-}and c^{+}or just c.

Corollary $1 V$ is an indecomposable representation then $C^{+} V=0$ or is indecomposable with dimension vector $d_{C^{+}(V)}=c^{+}\left(d_{V}\right)$.

Lemma 1 Let Q be a quiver where $\hat{Q} \in\left\{A_{n}, D_{n}, E_{6}, E_{7}, E_{8}\right\}$ and α a dimension vector. Then $c^{k} \alpha$ is a negative vector.

So c has finite order m. Then consider $\beta=\sum_{0}^{m-1} c^{i} \alpha$. Then $c \beta=\beta$, so that $\beta=0$. This is because $\langle\alpha, c \beta\rangle=-\langle\beta, \alpha\rangle$. So if $c \beta=\beta$ then $(\beta, \beta)=2\langle\beta, \beta\rangle=\langle\beta, \beta\rangle+\langle\beta, c \beta\rangle=0$.

So next, keep the same assumptions and let V be an indecomposable representation of the quiver. I need to show that d_{V} is a positive root. From the corollary we have that $d_{\left(C^{+}\right)^{k} V}=$ $c^{k} d_{V}$. Then there exists a k for which this is a negative vector. So some power of it must give zero.

So consider $W=\left(C^{+}\right)^{k-1} V$. We know that $C^{+}(W)=0$. But this is $C_{1}^{+} \cdots C_{n}^{+} W$. So then at some point I will get E_{l} for some l. Then $W=C_{n}^{-} \cdots C_{l+1}^{-} E_{l}$. Then $V=\left(C^{-}\right)^{k-1} C_{n}^{-} \cdots C_{l+1}^{-} E_{l}$ so that $d_{V}=\left(c^{-}\right)^{k-1} s_{n} \cdots s_{l+1} \epsilon_{l}$. This makes this root positive.

This is one direction. Now we start with a positive root and want to show that it is a dimension vector. I'll go over an example.
[What is going on is, we want to get all indecomposables. We only know of the E_{i} to start. So we apply reflections to get more, but we can only use the reflections when these are sinks or sources.]

Now for the other direction we start with a positive root α. From the lemma we can choose a minimal k such that $c^{k+1} \alpha$ is negative. Consider $\beta=c^{k} \alpha$. So then $s_{1} \cdots s_{n} \beta$ is negative. Now s_{i} permutes positive roots except for ϵ_{i}. So then $s_{l+1} \cdots s_{n} \beta=\epsilon_{l}$, so $\beta=s_{n} \cdots s_{l+1} \epsilon_{l}$. Then $C_{n}^{-} \cdots C_{l+1}^{-} E_{l}$ is an indecomposable with dimenstion vector β; then $\left(C^{-}\right)^{k} C_{n}^{-} \cdots C_{l+1}^{-} E_{l}$ is an indeocomposable with dimension vector α.

Consider the indecomposable

$$
k \xrightarrow{1} k \xrightarrow{1} k
$$

with corresponding dimension vector $e_{1}-e_{4}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
How do we go the other way? We have

$$
s_{1} \alpha=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left[\left\langle\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle+\left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\rangle\right]\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

So $s_{2} s_{1} \alpha=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\epsilon_{3}$.
Now $s_{1} A_{3}$ looks like

$$
0 \longleftarrow k \longrightarrow k
$$

while $s_{2} s_{1} A_{3}$ is

$$
0 \longrightarrow 0 \ll k
$$

Now if I apply C_{2}^{+}I get

$$
0<{ }_{1} k \longrightarrow k
$$

and then C_{1}^{+}to get

$$
k \longleftarrow k \longrightarrow k
$$

Let's look at a trickier example,

with dimension vector $\alpha=e_{2}+e_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right)$ and $s_{3} s_{2} s_{1} \alpha=\alpha$ and $s_{4} s_{3} s_{2} s_{1} \alpha=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.
Finally you get $s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{1} \alpha=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$ so that $\alpha=s_{1} s_{2} s_{3} s_{4} s_{1} s_{2} s_{3} \epsilon_{4}$.
So you can start with E_{4} in the quiver

and apply C_{3}^{+}to get

and then C_{2}^{+}yields

and then C_{1}^{+}:

Here it gets a little tricky because I have a kernel. At the end I get

Why does the Coxeter functor applied to an indecomposable give either 0 or an indecomposable?

The idea is as follows. Say $x \in Q_{0}$ is a sink. Then I have $C_{x}^{+}: \operatorname{Rep}(Q) \rightarrow \operatorname{Rep}\left(S_{x} Q\right)$. I can also go in the other direction with C_{x}^{-}.

First we'll construct a natural transformation i_{x} from $C_{x}^{-} C_{x}^{+}$to the identity. In a similar way we construct a functor p_{x} from the identity to $C_{x}^{+} C_{x}^{-}$. Then the proof depends on some characteristics of these natural transformations.
$C_{x}^{-} C_{x}^{+}$at x is the cokernel of the projection from the kernel of the map into $V(x)$. This is the quotient of the sum $\oplus V_{i}$ by the kernel, which is the original space. This is pure linear algebra.

There are some properties of these two natural transformations.

1. If i_{x} is an isomorphism then $d_{C^{+} x V}=s_{x} d_{V}$ and similarly for the other one.
2. If $V=C_{x}^{-} W$ then i_{x} is an isomorphism.
3. if $x \in Q_{0}$ is a sink then $V=C_{x}^{-} C_{x}^{+} \oplus \tilde{V}$, the cokernel of i_{x}.

The proof of all of this is not hard. Let me skip most of it. Let V be an indecomposable representation. If $V=E_{x}$ then $C_{x}^{+} V=0$. If V is not this, then we will show that $C_{x}^{+} V$ is indecomposable.

Since V is indecomposable, either $V=\tilde{V}$ or $V=C_{x}^{-} C_{x}^{+} V$. If $V=\tilde{V}$ then $V=E_{x}$ because it's concentrated at x. Otherwise $V=C_{x}^{-} C_{x}^{+} V$. We want to show that $C_{x}^{+} V$ is indecomposable. Say it can be written $W_{1} \oplus W_{2}$. Then C_{x}^{-}preserves the direct sum so this is $C_{x}^{-} W_{1} \oplus C_{x}^{-} W_{2}$. Since V is indecomposable, now one of these has to be zero. Then apply C_{x}^{+}to that piece to get $C_{x}^{+} C_{x}^{-} W_{2}=0$. But we have p_{x} an isomorphism from the identity to $C_{x}^{+} C_{x}^{-}$. This implies $W_{2}=0$, so that $C_{x}^{+} V$ is indecomposable, as desired.
[Next week Justin will be talking about ...]
I have an article about this at sawon/borel_weil.ps.gz
This is the most important thing about geometric representations. He'll be talking about projective spaces.

This allows you to calculate cohomology groups of vector bundles etc.

