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Last time, let me remind you of Gabriel’s theorem.

1. A quiver Q is finite type if and only if its underlying graph Q̂ has type An, Dn, E6, E7,
or E8. This means it has finitely many indecomposable representations.

2. If Q is of finite type, then there is a bijection between positive roots of the corresponding
Lie algebra and indecomposable representations.

In particular this says how many representations it has. So for An this is n(n+1)
2 ; for Dn it

is n2 − n.

But this is stronger because it gives a bijection. For an indecomposable representation, you
can just take the dimension vector. To go the other way is a little more tricky.

So let’s go on. We’ll start with a definition and some notation. We start with a Coxeter
functor.

Definition 1 Say x ∈ Q0, the vertices of the quiver Q. We can construct the quiver Sx(Q),
which is the same quiver but with all arrows incident on x reversed.

Now let x ∈ Q0 be a sink. Define C+
x , a functor from representations of Q to representations

of Sx(Q).

So say I have a sink x, I want to show how to define the functor. The vertex x, instead
of being enriched with the same vector space V (x), is enriched by the kernel of the map
V1 ⊕ · · · ⊕ Vk → V (x) with the maps the projections.

If I have a source x I can define C−x similarly by replacing V (x) with coker(V (x) → V1 ⊕
· · · ⊕ Vk).
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One more definition. Consider the simple representation where you have k in one place and
zero elsewhere. This is represented by the symbol εx, where x is the vertex. We denote the
corresponding reflection by Sx. This is defined to be Sx(β) = β− (εx, β)εx), where (, ) is the
symmetric Euler form so (εx, β) = 〈εx, β〉+ 〈β, εx〉.

Theorem 1 Let Q be a quiver of finite type and V an indecomposable representation of Q.
Say x is a sink. Then one of the following is true:

1. V = Ex, and C+
x V is a representation of SxQ which is 0.

2. C+
x V is indecomposable and the dimension vector of C+

x V will be Sx applied to the
original dimension vector. Alsoo C−x C+

x V ∼ V.

These representations are not equivalent, but there is a nice correspondence between the
indecomposables one and the other.

Before I prove this one, let me write down some corollaries. I can number my vertices so that
arrows go in increasing order.

Then 1 is a source and n is a sink. Then C−n ◦ · · · ◦ C−2 ◦ C−1 is a functor from Rep(Q) to
Rep(Sn · · ·S2S1Q) = Rep(Q). Similarly, C+

1 · · ·C+
n−1C

+
n is a functor from Rep(Q) to itself.

Denote these by C− and C+ with corresponding reflections c− and c+ or just c.

Corollary 1 V is an indecomposable representation then C+V = 0 or is indecomposable
with dimension vector dC+(V ) = c+(dV ).

Lemma 1 Let Q be a quiver where Q̂ ∈ {An, Dn, E6, E7, E8} and α a dimension vector.
Then ckα is a negative vector.

So c has finite order m. Then consider β =
∑m−1

0 ciα. Then cβ = β, so that β = 0. This is
because 〈α, cβ〉 = −〈β, α〉. So if cβ = β then (β, β) = 2〈β, β〉 = 〈β, β〉+ 〈β, cβ〉 = 0.

So next, keep the same assumptions and let V be an indecomposable representation of the
quiver. I need to show that dV is a positive root. From the corollary we have that d(C+)kV =
ckdV . Then there exists a k for which this is a negative vector. So some power of it must
give zero.

So consider W = (C+)k−1V. We know that C+(W ) = 0. But this is C+
1 · · ·C+

n W. So then at
some point I will get El for some l. Then W = C−n · · ·C−l+1El. Then V = (C−)k−1C−n · · ·C−l+1El

so that dV = (c−)k−1sn · · · sl+1εl. This makes this root positive.

This is one direction. Now we start with a positive root and want to show that it is a
dimension vector. I’ll go over an example.
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[What is going on is, we want to get all indecomposables. We only know of the Ei to start.
So we apply reflections to get more, but we can only use the reflections when these are sinks
or sources.]

Now for the other direction we start with a positive root α. From the lemma we can choose a
minimal k such that ck+1α is negative. Consider β = ckα. So then s1 · · · snβ is negative. Now
si permutes positive roots except for εi. So then sl+1 · · · snβ = εl, so β = sn · · · sl+1εl. Then
C−n · · ·C−l+1El is an indecomposable with dimenstion vector β; then (C−)kC−n · · ·C−l+1El is
an indeocomposable with dimension vector α.

Consider the indecomposable

k
1 // k

1 // k

with corresponding dimension vector e1 − e4 =

 1
1
1

 .

How do we go the other way? We have

s1α =

 1
1
1

−

〈 1
1
1

 ,

 1
0
0

〉
+

〈 1
0
0

 ,

 1
1
1

〉 1
0
0

 =

 0
1
1

 .

So s2s1α =

 0
0
1

 = ε3.

Now s1A3 looks like
0 koo // k

while s2s1A3 is
0 // 0 koo

Now if I apply C+
2 I get

0 k //
1

oo k

and then C+
1 to get

k koo // k

Let’s look at a trickier example,

k // k2 koo

k

OO
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with dimension vector α = e2 + e1 =


1
1
1
2

 and s3s2s1α = α and s4s3s2s1α =


1
1
1
1

 .

Finally you get s3s2s1s4s3s2s1α =


0
0
0
1

 so that α = s1s2s3s4s1s2s3ε4.

So you can start with E4 in the quiver

0 k //oo

��

0

0

and apply C+
3 to get

0 koo

��

k
1

oo

0

and then C+
2 yields

0 koo k
1

oo

k

1

OO

and then C+
1 :

k
1 // k k

1
oo

k

1

OO

Here it gets a little tricky because I have a kernel. At the end I get

{(β, γ)|β + γ = 0} // R = {(α, β, γ)|α + βγ = 0} {(α, β)|α + β = 0}oo

{(α, γ)|α + γ = 0}

OO

Why does the Coxeter functor applied to an indecomposable give either 0 or an indecompos-
able?

The idea is as follows. Say x ∈ Q0 is a sink. Then I have C+
x : Rep(Q) → Rep(SxQ). I can

also go in the other direction with C−x .
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First we’ll construct a natural transformation ix from C−x C+
x to the identity. In a similar

way we construct a functor px from the identity to C+
x C−x . Then the proof depends on some

characteristics of these natural transformations.

C−x C+
x at x is the cokernel of the projection from the kernel of the map into V (x). This is

the quotient of the sum ⊕Vi by the kernel, which is the original space. This is pure linear
algebra.

There are some properties of these two natural transformations.

1. If ix is an isomorphism then dC+xV = sxdV and similarly for the other one.

2. If V = C−x W then ix is an isomorphism.

3. if x ∈ Q0 is a sink then V = C−x C+
x ⊕ Ṽ , the cokernel of ix.

The proof of all of this is not hard. Let me skip most of it. Let V be an indecomposable
representation. If V = Ex then C+

x V = 0. If V is not this, then we will show that C+
x V is

indecomposable.

Since V is indecomposable, either V = Ṽ or V = C−x C+
x V. If V = Ṽ then V = Ex because it’s

concentrated at x. Otherwise V = C−x C+
x V. We want to show that C+

x V is indecomposable.
Say it can be written W1⊕W2. Then C−x preserves the direct sum so this is C−x W1⊕C−x W2.
Since V is indecomposable, now one of these has to be zero. Then apply C+

x to that piece to
get C+

x C−x W2 = 0. But we have px an isomorphism from the identity to C+
x C−x . This implies

W2 = 0, so that C+
x V is indecomposable, as desired.

[Next week Justin will be talking about ...]

I have an article about this at s̃awon/borel weil.ps.gz

This is the most important thing about geometric representations. He’ll be talking about
projective spaces.

This allows you to calculate cohomology groups of vector bundles etc.
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