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Okay. Meanwhile, let me make a picture that I will use later.

[It is some vertical and diagonal lines.]

The picture is not a great success. You might guess what it is supposed to be. We were
discussing affine root systems and affine Lie algebras. Today we will talk only about root
systems.

ĥ∗ = h∗ ⊕ CΛ0 ⊕ Cδ. We have R̂ = R̂re ∪ R̂im where these are α + nδ for α ∈ R and n ∈ Z
and nδ for n ∈ Z\{0}.

There is a reflection again sα̂ : ĥ∗ → ĥ∗ by the usual, λ̂ 7→ λ̂− 2(λ̂,α̂)
(α̂,α̂) α̂.

Last time we did sl(2); today we’ll work in general. If α̂ = α+nδ and λ̂ = λ+ kΛ0 +aδ then
(λ̂, α̂) = (α, λ) + nk. Then

sα̂ : λ̂ 7→ λ̂− 2(λ̂, α̂)
(α, α)

(α+nδ) = (λ− 2(α, λ)
α, α

α− 2
(α, α)

nkα)+kΛ0 +(a− 2(α, λ)
α, α

n− 2
α, α

nk)δ

= sα(λ)− nkα
√

+ kΛ0 + (a− (λ, α
√

)n− (α
√

, α
√

)
2

nk)δ,

where 2α
(α,α) = α

√
.

Note that this preserves ĥ∗k = h∗ ⊕ Cδ + kΛ0, the level.

As a special case, ĥ∗0 = h∗ ⊕ Cδ and sα̂ sends λ + aδ 7→ sα(λ) + (a− (λ, α
√

)n)δ.

The other case ignores the δ part. Say we have ĥ∗k/Cδ ∼= h∗ (as a set). Then sα : λ + k∆0

mod δ 7→ sα(λ)− nkα
√

+ kΛ0.

So in the first case it is the composition of the usual reflection and a shear; in the second the
reflection and a translation. This is not a linear but affine action.
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It would be interesting to try to seperate the reflection from the translations, or isolate the
shear. It’s not actually that difficult to do this.

Let me define for α ∈ R, τα
√ = sα ◦ s−α+δ. The point is that except for δ this would give

the same reflection. The composition should then be the identity in the finite part.

It doesn’t take long to do the computation in full generality, so let me just do it.

It maps

λ̂ 7→ (λ + kα
√

) + kΛ0 + (a− (λ, α
√

)− (α
√

, α
√

)
2

k)δ.

If I look at the level zero space ĥ∗0 I get (λ + aδ) 7→ λ + (a− (λ, α
√

))δ, a pure shear.

In the other case I get λ + kΛ0 mod δ 7→ λ + kα
√

+ kΛ0 mod δ.

I did not actually do the calculation myself, but I think you can do it easily.

Let me now define τµ : ĥ∗ → ĥ∗ by sµ ◦ s−µ+δ.

Now I can form the main theorem.

Theorem 1 1. τµ1+µ2 = τmu1τµ2 .

2. Ŵ = W n τ(Q
√

), where Ŵ is the affine Weyl group and Q
√

is the lattice generated by
αsurd

Proof.

1. Explicit computation

2. Obviously, we can check that τ(Q
√

) ⊂ Ŵ . This is because we can write µ = n1α
√

1 +· · · ,
and then τµ = τ

α
√

1
◦ τ

α
√

1
◦ · · · .

It is also obvious that W ⊂ Ŵ . It remains to show two things. First we must show
that everything in Ŵ can be written as a product of the two of these, second we must
show it uniquely.

It suffices to show that the generators can be written in this form. sα+nδ = sα ◦ τ±nα
√ .

We know that the generators can be written wτµ where w ∈ W and τµ ∈ τ(Q
√

); then
the claim is that you can write a product of these like this. You write (w1τµ1)(w2τµ2) =
w1w2(w−1

2 τµ1w2)τµ2 , and this in the middle is τw−1
2 (µ1)

.

I leave it to you to check that if w1τµ1 = w2τµ2 .

So this is a funny thing, it contains this big abelian subgroup, this lattice. Let me show what
it looks like in the case of sl(2) and maybe sl(3), and let me concentrate on the special case,
only worried about how the whole thing acts on the space. Then it has a very nice geometric
interpretation.
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The action of Ŵ on (ĥ∗k)R/Rδ ∼= h∗R in particular has easy geometric meaning.

Let me write s−α+nδ : λ → sα(λ) + nkα
√

and τα
√ : λ → λ + kα

√
.

The s−α+nδ, I claim, is still a reflection.

What is s2
−α+nδ? It is s2

α(λ + sα(nkα
√

) + nkα
√

and I am left with λ since sα acts on α
√

by
negating it.

So what is fixed by s−α+nδ? I need λ − (λ, α
√

) + nkα
√

= λ, and moving things around I
get (λ, α) = nk. So the group, the special part of the action of this group is generated by
reflections through the hyperplane generated by this. The formulas work in full generality; I
worked over R so that these are honest “orthogonal reflections.”

In other words the action of Ŵ in this vector space is generated by reflections with respect
to Hα,nk. What do we get for sl(2)? There we have only one positive root so we have a one
dimensional real space.

Example 1 ŝl(2) for k = 1. I have a line marked by multiples of α/2, since (α/2, α) = 1. The
hyperplanes are just points, so my affine Weyl group (its action) is generated by reflections
through these points. What is the group generated by these? It’s a semidirect product of
the usual Weyl group (Z/2) and translations. The translation length is twice the difference
between the reflection points, namely α.

What will it be for sl(3)? I’ve drawn (poorly) the hyperplanes and roots for sl(3); using a
computer I can draw it perfectly. It’s reflections around affine hyperplanes orthogonal to the
roots and with affine coefficient an integer multiple of half the length of a root.

The picture or the one for sl(2) brings up questions, like what is the fundamental domain? It
is not exactly obvious but you can see it is half the length, the distance from one axis point
to the next. If you change k you just rescale. For sl(3) it is one of the little triangles. It is
obvious you can get there but slightly less obvious that it is the fundamental domain. If you
have a chain of triangles you pass through, you pull back across things you cross twice, you
get that it is the identity. The point is that it is exactly the same as for the normal Weyl
group.

Definition 1 A Weyl alcove is a connected component of h∗R − ∪Hα,nk

I don’t know who came up with the terminology, to go from chamber to alcove. The theorem
is

Theorem 2 The affine Weyl group acts simply transitively on the set of Weyl alcoves.

This exactly means that each alcove is the fundamental domain for the action of the affine
Weyl group. Transitivity is obvious, simplicity is a little more effort, but it generally follows
the finite dimensional case.
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The important thing is that unlike the finite case, here every alcove is bounded, but you have
infinitely many of them. This presents some unusual corollaries.

If you remember, for finite dimensional Lie representations, these are classified by positive
roots. You might expect it to be classified by weights in positive alcoves. But Weyl alcoves
are always bounded so there are only finitely many weights. So you might expect only finitely
many representations. There are no finite dimensional representations. The question is, what
is the analog of a finite dimensional representation here.

This whole theory is so nice that we might hope for some analog of it for affine Lie algebras.
The question is, what kind of representation are we looking for? Of course we can, and we’ll
do it in about a week. The theory will be different.

Next time I’ll continue with simple roots and generators of the Lie algebra.
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