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Sorry I’m late. Okay, so, anyone keeps track of lecture numbers? So, let me remind you
what we are doing. We’re studying affine Lie algebra ĝ = g⊗ C[t, t−1]⊕ Ck ⊕ Cd. We have
[xtn, ytm] = [x, y]tm+n +nδn,−m(x, y)k. d is the grading operator so it acts on tm by m. From
now on I will have g a simple algebra, and (, ) is normalized by (α, α) = 2 for long roots.

The main result last time was ĝ = ĥ ⊕ (⊕α̂∈R̂
ˆlagα̂) where R̂ = R̂re ∪ R̂im and R̂re =

{α + nδ, α ∈ R,n ∈ Z}.

I should have said ĥ = h⊕ Ck ⊕ Cd and ĥ∗ = h∗ ⊕ Cλ0 ⊕ Cδ.

So we have ĝα+nδ = gαtn, and then R̂im = {nδ, n 6= 0} so that ˆlagnδ = htn.

The case we discussed was ŝl(2) where you have

...
...

...

f [1] h[1] e[1] δ

OO

f [1] h[1] e[1] h∗ //

f [1] h[1] e[1]

...
...

...

Note: R̂ generates a subspace of codimension one in ĥ∗, in that all have zero coefficient in
front of λ0. This is the adjoint representation so the central element acts by zero.
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The second point is that (, )|h∗⊕Cδ is degenerate with kernel Cδ.

It is positive semidefinite on h∗R⊕Rδ. It is positive definite on the left summand. This makes
life a whole lot different from the finite dimensional case.

Now I’m going to try to develop the same standard theory. We studied the properties of the
root system, including symmetries, generating sets, and then move to matrices or Dynkin
diagrams.

The first thing would be to see whether the set of roots is invariant under some set of
reflections. I’ll imitate what we did in the finite dimensional case. Whenever you have a root
α, you can find an sl(2) triple corresponding to it. Let’s see if we can do the same thing here.

Lemma 1 Let α̂ = α + nδ ∈ R̂re. Then

1. (α̂, α̂) 6= 0.

2. Choose eα̂ ∈ gα̂, fα̂ ∈ g−α̂ such that (eα̂, fα̂ = 2
(α,α) and let hα̂ = [e ˆalpha, fα̂]. Then

eα̂, fα̂, hα̂ satisfy the relations of sl(2).

Proof.

1. (α + nδ, α + nδ) = (α, α) 6= 0.

2. We can write eα̂ = eαtn, fα̂ = fαt−n. Then hα̂ = [e ˆalpha, fα̂] = [eα, fα] + n 2
(α,α)k =

hα + n 2
(α,α)k.

If I commute with eα̂ or fα̂ the second term gives zero. So we get [hα̂, eα̂] = [hα, eα̂] =
2eα̂. Similarly check the relation for f and you get the same.

By the way, this fails if you take an imaginary root. It would not give you sl(2), but instead
the finite dimensional Heisenberg algebra. I’m not going to use that much. Let me think of
real roots first.

Lemma 2 Define for α̂ ∈ R̂re, sα̂ : ĥ∗ → ĥ∗ by sα̂(β̂) = β̂ − 2(β̂,α̂)
(α̂,α̂) α̂.

Then sα̂(R̂) = R̂.

You should recall that (α̂, α̂) is never zero by the last lemma; for imaginary roots this just
does not make sense.

I can do this by looking at the actions explicitly since I know what all of my roots are, but I
think it is more instructive to modify the finite dimensional proof.
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Proof. Consider ĝ as a module over sl(2) generated by eα̂, fα̂, hα̂. If I have x ∈ ĝβ̂ , if I have
a module over sl(2) then the weights are symmetric. So x has weight equal to 〈β̂, hα̂〉, and it
is an easy calculation, basically one we already did, that this is 〈β, hα〉 = 2(β,α)

(α,α) .

Okay. You remember how the proof goes for the normal finite dimensional case. If you have
such a module and you start with weight λ, you can apply f and get weight −λ. This will be
nonzero, so the set of weights is symmetric. Thus fn

α̂x 6= 0, ∈ ĝβ̂−nα̂ = ĝsα̂(β̂) for n = 2(β̂,α̂)
(α̂,α̂) .

This is the same theory as in finite dimensional Lie algebras, but with a twist. I actually
cheated a little bit. Can anyone see where I cheated? I said that in every sl(2) module the
roots are symmetric. That’s not true, it’s only true in finite dimensional modules. Unfortu-
nately, ĝ by itself is not finite dimensional.

So now what I want to do is to split ĝ into the direct sum of finite dimensional sl(2) modules.
A simple argument is that the weights add. I slice my original set with slices parallel to
whatever my original one is. As long as the slope is finite, each slice will be of finite size. So
it is still the direct sum of finite dimensional modules.

The key argument is that this is what people call “locally finite dimensional,” so that any
piece I take will be in a finite dimensional module, so I can ignore the rest and take what
I want from the normal theory of finite dimensional modules over sl(2). I should also have
said that each of the fractions is an integer. The same thing as before but I replace “finite
dimensional” with “locally finite dimensional.”

It is interesting to study what kind of group these reflections generate. They are reflections
of a very funny nature.

1 Affine Weyl group

Let me start with the example of ŝl(2). So ĥ∗ = h∗ ⊕ CΛ0 ⊕ Cδ, where h∗ = Cα. Then
ĥ0 = h∗ ⊕ Cδ.

If I take α̂ = α + nδ, then where does this map λ + aδ? We have

sα̂(λ + aδ = λ + aδ − 2(λ + aδ, α + nδ)
(α, α)

(α + nδ) =

(λ + nδ)− 2(λ, α)
(α, α)

(α + nδ) = sα(λ) + (aδ − 2(λ, δ)
(α, α)

nδ),

and if I normalize so that (α, α) = 2 I get something even easier. Since the dimension is one
the only reflection in h∗ sends λ to −λ. So this is −λ + (aδ − (λ, α)nδ).

For n = 0 we have sα̂ : λ + aδ 7→ −λ + aδ.
For n = 1 it is sα̂ : λ + aδ 7→ −λ + aδ − (λ, α)δ.
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Can you visualize the two dimensional linear operator at work here? It reflects in one of the
directions and then shears.

If we identify h∗ with C so that α ⇐⇒ 2 then sα : λ 7→ −λ and sα+δ : λ+aδ 7→ −λ+aδ−λδ.

This is a very funny operation. So in the same example as sl(2) let’s see what kind of group
they generate. This is Ŵ = Waff , the affine Weyl group.

Note τ = sα ◦ sα+δ : λ + aδ 7→ λ + aδ − λδ. Then τ2 : λ + aδ 7→ λ + aδ − 2λδ. From here you
can see that τ is generating a group isomorphic to Z.

Theorem 1 For ĝ = sl(2), Ŵ = Z2 n Z.

These come from sα and τ respectively. Let’s check the commutation relations to be sατsα =
τ−1.

Here we have a group which is infinite and generated by two reflections or a reflection and
a shear, an element that acts freely. This is different than the usual Weyl groups because it
includes shears.

Okay.

So more generally ĥ∗ = Cα⊕ CΛ0 ⊕ Cδ and

sα+nδ(λ + kΛ0 + aδ) = (λ + kΛ0 + aδ)− (λ + kΛ0 + aδ, α + nδ)(α + nδ) =

λ + kΛ0 + aδ − ((λ, α) + kn)(α + nδ) = (λ− (λ, α)α− knα) + kΛ0 + (a− ((λ, α) + kn))δ.

Let me make some observations and then stop. We have not changed the Λ0 coefficient. Each
of these affine subspaces is preserved by the action. Even in the pure finite dimensional part
I don’t get the usual reflection. I get the usual reflection but also a knα term which is not
linear in λ, so a translation. Also there is a rather complicated action in the third direction.

Actually this is not really so messy. Let me tell you one thing.

How Ŵ acts on ĥ∗k = {λ+kΛ0+aδ}. The statement is that each of these preserves it. How does
sα act? sα : λ+kΛ0+aδ 7→ −λ+kΛ0+aδ. If n = 1 I get sα+δ : λ+kΛ0+aδ 7→ −λ+2k+ · · · .
So on the finite dimensional part, I get that sα+δ is reflection around k instead of 0. So
τ : λ + · · · 7→ λ + 2k + · · ·

So τ generates again a group isomorphic to Z. So either you say it’s generated by two
reflections, or by a reflection and a translation.

Next time I will discuss this group in full generality. It will include the ordinary Weyl group
but also something corresponding to the translations or shears.
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