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Let me remind you what we know so far. Let me start with a harmonic oscillator, which
we discussed before. There we had, classically, (p, q) ∈ R2, two numbers, position and
momentum, and the Hamiltonian H = 1/2(p2 + ω2q2) where ω is frequency. If you do this
quantum mechanically you get [P,Q] = −i, and then a = 1√

2
(ωQ + iP ), a∗ = 1√

2
(ωQ− iP ).

Now [a, a∗] = ω. Since now we don’t have commutativity, we replace H with a∗a + ω/2 =
aa∗ − ω/2. Instead of a particle, now we have φ(z) =

∑
φnz−n, π(z) =

∑
πnz−n with

S1 = {|z| = 1} = R/2πZ. So instead of two coordinates now we have countably many
coordinates, twice over.

The Hamiltonian we have chosen is H = 1
2

∫
π2(z) + |φ′(z)|2, where

∫
is either 1

2πi

∫
dz/z or

1
2π

∫ 2π

0
dθ. If you want to write things in coordinates, this is not so bad, it is 1

2 (
∑

πnπ−n +
n2φnφ−n). This is almost positive definite; φ0 doesn’t enter here so it’s only semidefinite.
This might create problems, but we will deal with them later.

To complete the picture we need analogues of the commutation relations. What will they be
here? Let me answer, let me give you the answer. Suppose I quantize everything, but first
let me describe the Poisson bracket. We don’t need to know exactly what it is, here it is
{π(z), φ(w)}. So these are measuring your field at point w or the momentum of your field at
point z. These are unrelated if z 6= w. So whatever this is, it involves a delta function δ(z/w)
or δ(θ − θ′) where z = eiθ, w = eiθ′ . So then we write [π(z), φ(w)] = −iδ(z/w). I still don’t
exactly understand what this means.

Let’s do this in a straightforward and stupid way. This is [
∑

πnz−n,
∑

φnw−n]. Then can we
write the delta function as a power series? It has integral one over the circle and is zero except
at one point. The Fourier series of this is δ(z) =

∑
δnz−n where δn =

∫
δ(z)zn =

∫
δ(eiθ)einθ,

which will give you just the value of einθ at one, which is 1. So δ(z) =
∑

zn.

Pretending that I am a physicist and do not care about convergence, I get that this is
−i

∑
(z/w)k. This is very nice since I can write these two series as equal. If the power of z

and power of w are not negatives of each other, the terms on the left vanish. So that gives
[πn, φm] equal to 0 if n 6= −m, and −i if n = −m. So what do we have? What we have is
the following. Forget about fields, integrals, and all that. Let me write the summary. The
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summary is that whatever the description, you should have a Hilbert space with operators
πn, φn, with commutation relations [πn, φ−n] = −i, and everything else commutes. We also
know that the Hamiltonian should be 1

2 (
∑

πnπ−n + n2φnφ−n). So we want a representation
of this. So this algebra effectively splits into a direct sum.

So you can write this as, you have a subalgebra generated by π±1, φ±1, with H1 = π1π−1 +
1φ1φ−1, and then one generated by π±2, φ±2, with H2 = π2π−2 + 4φ2φ−2, and so on. The
Hamiltonian is the sum of these Hamiltonians.

This looks similarly to the original Hamiltonian we were looking at for the harmonic oscillator.
A physicist would tell you that a free bosonic field is represented as a series of harmonic
oscillators with positive integer frequencies. This is not exactly true because there are four
operators, not two. But we will clear this up later.

To study representations of the whole thing. If you have a direct sum of Lie algebras, under
reasonable assumptions the only representations of g = g1⊕g2 are ⊕V ′

i ⊗V ′′
i , where these are

representations of g1, g2, respectively. Semisimplicity of g would be a sufficient reasonable
assumption.

We still don’t have exactly the harmonic oscillators, because we have four instead of two. So
now, for every n, introduce an = 1√

2
(nφn + iπn) and a∗n = 1√

2
(nφn − iφn).

Exercise 1 If we write a(z) =
∑

anz−n−1 and a∗n(z) =
∑

a∗nz̄−n−1 then

φ(z) =
1√
2
(
∫

a(z)dz +
∫

a∗(z̄)dz̄).

This should be easy, since the Fourier series makes a like the derivative of φ.

[in response to a question]: We’re going to have an adjoint condition that φ†n = φ−n, and
likewise for π, so that a†n = a∗−n.

So now, what do I have with this change of variables, so what?

Theorem 1 So defined, an, a∗n satisfy:

• [an, a∗m] = 0

• [an, am] = nδn−m = [a∗n, a∗m].

Let’s check the first property. [an, a∗k] is clearly zero unless k = −n, because subscript n
commutes with everything except subscript −n. So that’s the only case to check. Then

[an, a∗−n] =
1
2
([nφn,−iπ−n] + [iπn,−nφ−n])

=
1
2
([iπ−n, nφn]− [iφn, nφ−n])

2



=
in

2
([π−n, φn]− [φn, φ−n]) = 0

So to do the ones for a, you do the same thing.

[an, a−n] =
1
2
([nφn, iπ−n] + [iπn,−nφ−n])

=
1
2
(−[iπ−n, nφn]− [iφn, nφ−n])

=
in

2
(−[π−n, φn]− [φn, φ−n]) = −2i

in

2
= n.

At this point we say goodbye to physics and go to mathematics.

Definition 1 The Heisenberg algebra H is generated by an, n ∈ Z, subject to the relations
[an, am] = nδn−m.

If we are talking about a free massless bosonic field, such a thing is described by a pair
of commuting Heisenberg algebras, one denoted by an, the other by a∗n. If I forget about
adjointness, all you need to do to study the representations of such a pair is to study repre-
sentations of one, and then look at tensor products. The Hilbert space of the theory will be
⊕Vi ⊗ V̄i. I’m hiding a lot, but I’m not giving a course on quantum field theory.

So from now on, I’m interested in representations of one Heisenberg algebra. As before, this
Heisenberg algebra has a single part a0, and then pairs a1, a−1 and a2, a−2, and so on. After
suitable rescaling this is the direct sum of harmonic oscillators. The easiest and only way of
constructing irreducible representations of H is to tensor irreducible representations of each
of these together. And subject to a positive energy condition there is a unique representation.
So for a1, a−1 you take v with a1v = 0, so that the representation is C[a−1]. For the next it
is C[a−2].

So for the whole thing F , you generate it by v0, called the vacuum vector, such that aiv0 = 0
for i > 0. How do negative ones act? As a vector space, this is C[a−1, a−2, · · · ]v0, with all of
these variables commuting.

Definition 2 F is called the Fock module over the Heisenberg algebra.

It is described in a very simple way. Its vector space structure is clear, and we see how ai

with negative indices act on it, by multiplication. How about the action of ai with positive
indices?

Lemma 1 1. an = n δ
δa−n

for n > 0.

2. F is irreducible.

3. F is graded, that is, F = ⊕n≤0Fn, where deg v0 = 0 and deg ai = i. So a3
−2a−4v0

has degree 3(−2) + (−4) = −10.
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I should check that this is consistent. This uniquely determines the degree of all vectors
in the space; now the degree of the positive ones comes from seeing how they change the
grading. If I define degree in this way, then the degree of ai will be i for all i. I leave this as
an exercise for you.

I was not entirely careful because of a0. The only irreducible representation of a one-dimensional
algebra like that of a0 is a constant representation. So this acts by a constant, but there is
no restriction, the constant can be anything. So a0v = λv for some fixed λ.

Theorem 2 Any graded irreducible H -module with the following positivity condition,
Vn = 0 for n >> 0, where Vn is the space with grading n,
is isomorphic to one of the Fock modules Fλ.

Let me make you a picture of this Fock module. On top we have v0.
0 v0 1
-1 a−1 1
-2 a−2, a

2
−1 2

-3 a−3, a−2a−1, a
3
−1 3

I should stop around here. I didn’t prove the theorem, but it is similar to the other one.
Take the highest degree vector, then it must be killed by an for positive n, and so on. Okay,
we still have minor problems, we don’t really know, we have the choice of eigenvalue for a0,
which is related to the fact that the others have pairs. Next time I’ll try to tell you how you
can fix that. The operator a0 forgot about some of the structure. We had an = nφn + iπn,
which is bad for n = 0 because φ0 enters with coefficient 0.

We might try to fix this, which we will do next time.

[What happens if you drop the positivity condition?]

You can interchange them; you could have a vector killed by positive odd and negative even
i. Next time I will define the energy, the Hamiltonian, and then instead we can say, positive
energy.

I will see you on Wednesday.
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