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We will move to 5-127. Class will be MW, 10:25 to 11:35, and there will be a seminar. We’ll
meet Friday at 10:40 to determine a topic and a time for the seminar. Are there some things
you’ve wanted to learn, and what are they?

Now let me remind you what we did. Recall:

1. The Heisenberg algebra is generated by {a, a∗} with [a, a∗] = 1. We also have H =
aa∗ − 1/2 = a∗a + 1/2. This is an attempt to describe a harmonic oscillator in a
quantum mechanical sense. As functions these just commute and it’s just aa∗, so you
split the difference; this is aa∗+a∗a

2 . Okay. So this is the Heisenberg algebra. We had
some relations there.

2. The statement is that to describe the harmonic oscillator, the state space is an irre-
ducible representation of the Heisenberg algebra such that

(a) it is positive energy, so that the eigenvalues of the Hamiltonian are nonnegative.
(b) it is unitary, in that a† = a∗. This justifies the notation.

I think it’s better if I consider this with frequency ω, so I replace scalars with multiples
of ω. At the moment I decided not to scale my variables.

Of course the question was how many representations are there? Can you recover the infor-
mation from the state space?

Theorem 1 Stone- von Neumann

1. The Heisenberg algebra has a unique positive energy irreducible representation V with
basis ψ0, ψ1, · · · and the action is recovered uniquely from aψ0 = 0 and ψn = (a∗)n

√
n!
ψ0.

In this representation, the action of a, a∗ is given by a∗ψn =
√

(n+ 1)ωψn+1 and
aψn =

√
nωψn−1, along with Hψn = ω(n+ 1/2)ψn.
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2. There is a unique positive definite inner product on this representation such that ||ψ0|| =
1 and a† = a∗. Dagger denotes the adjoint under the inner product. If I use this inner
product, then moreover {ψi} is an orthonormal basis. I should also notice that as a
vector space, this space has a simple description as C[a∗], polynomials in a∗. Then the
action of a, up to a constant, is d

da∗ , which makes sense because a decreases the degree
by one, so making the constants agree, that’s what a derivative does.

The proof is relatively simple. Before I continue, this is the algebraic version. I’m talking
about vector spaces, not Hilbert spaces. There is an analogue in terms of Hilbert spaces but
that is technical and more difficult, as we’ll see in the examples.

This is closely modeled on the proof for representations of sl(2).

So let ψ0 ∈ V have lowest energy for V an irreducible representation. For our purposes it
suffices to choose E0 such that E0 − ω is not an eigenvalue.

We know that [H, a] = −ωa. That means that aψ0 is an eigenvector for H with eigenvalue
E0 − ω. But therefore aψ0 = 0, since E0 is lowest in this sense.

Now define ψn by this formula, ψn = (a∗)n

√
ωnn!

ψ0. A very easy lemma by induction gives

Lemma 1 a∗ψn =
√

(n+ 1)ωψn+1.
aψn =

√
nψn−1.

For n = 0 this is exactly the formula we have. Now you can write aψ1 = a(a∗/
√
ωψ0) =

a∗a+ω√
ω
ψ0 =

√
ωψ0. So the lemma is easy to prove by induction.

1. Now, by the lemma, all of the ψn are nonzero. since anψn =
√
n!ωnψ0.

2. Then they are all linearly independent because they have different eigenvalues for H.

3. It already means that if I take the subspace in my original representation spanned
by these, it will be a subrepresentation. Then if my original one was supposed to be
irreducible, this must be the basis. It only remains to show that this one is irreductible.
You can get from any basis element to ψ0 by applying a sufficiently many times.

So this is just like what you normally do for sl(2). In addition to specifying that e kills the
highest weight vector, you also need to specify the highest weight. But you don’t need that
here; H is in terms of a and a∗ completely.

Has anyone thought of why this algebra has no finite dimensional representation. Consider
the commutation relation [a, a∗] = ω. If it has a finite dimensional representation, what is
the trace of ω in that representation? Can someone complete the argument for me?

This is because the trace of a commutator must be zero, but here the commutator ω must
be a constant.
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Now that we know that, maybe it’s a good idea to go back and compare, we know that there
is exactly one irreducible unitary representation before you complete it to a Hilbert space,
so you might expect an analogue, but you have to be careful because your operators are not
everywhere defined. But there is another way ignoring this analysis, by guessing.

Let H = L2(R), and I always mean complex-valued functions, so here square integrable
complex valued functions on the reals.

Let Q = â and P = −i d
da . Then a = ωQ+ iP = ωâ+ d

da and a∗ = ωQ− iP = ωâ− d
da . It’s

reasonable to expect that if we define a Hilbert space with an action of this algebra, that
this would be a representation. So the Hilbert space analog should identify this with the
representation from the Stone-von Neumann theorem.

How can we identify H = C[a∗]? What is the analogue of ψ0? It should be a vector an-
nihilated by a, aψ0 = 0. So the equation reads (ωâ + d

da )ψ0 = 0, an ordinary differential
equation. You can write this ψ′0 + ωqψ0 = 0, where ′ is derivative with respect to q. Then
this is ψ0 = Ce−ωq2/2. Then you choose the constant so that the square integral is one. We
need to check that this is in L2, because if it were not we wouldn’t know what to do. Here
C, I believe, is 1

π1/4 . There should be ω here, let me think for a second. For ω = 1 that is the

correct answer. So how do you change variables? You can do that as well as I can. It’s
√

ω
π1/4 ?

I’m not really worried. So since we know how to get ψn from ψ0 from the theorem, so up to
a constant this is Cn(ωâ− d

da )ne−ωq2/2. So this will give a polynomial multiplied by ψ0, and
will be CnHn(q)e−ωq2/2. Up to normalization these polynomials are very well known and
are called Hermite polynomials.

We’ve identified inside L2 a subspace like the one we want. What we have done is identified
the irreducible representation V we were talking about before with the following thing: the
space of polynomials in one variable multiplied with our ψ0, namely C[q]e−ωq2/2 ⊂ L2(R),
which is everywhere dense in L2, so that L2(R) ∼= V. You need some analysis to show that
these are everywhere dense. There is some technique, purely analytical, to show this. One
way is to describe Dirac’s delta in terms of them. Again, I’m not teaching analysis so I won’t
go deeply into that.

One way you can do it is forget about analysis. If the closure is not the whole space, then
there is an orthogonal complement, which would also be a representation of the Heisenberg
algebra, and then there would be a vacuum vector there to satisfy the same equation, but
the solution is unique. There are still problems because the operators are not acting on L2,
but on an every dense subset.

[Why is the complement a representation?]

Think about a group. If you think of these as generators of a Lie algebra as translations for
P and multiplication by eix for Q. So the action of the Lie group will be invariant under the
inner product, so that the complement is as well.

That’s the end of the story for irreducible representations and we can find out everything
about it. We can do this algebraically and have it be polynomials in one variable, or complete
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it and have it be L2 in one variable. I prefer the polynomials so I’ll ditch L2 as soon as I can.

Let’s see now what happens when we move to something really interesting. I won’t have time
to complete it today, but I can start. This will be as physical as I’m going to get, you can
try to ignore the physics and at the end I will make a mathematical statment. We’ll go from
a harmonic oscillator to free bosons.

H.o. Free F ield Theory on Circle

(q, p) ∈ R2 φ(z), |z| = 1, z = eiθ, π(z), φ =
∑
φnz

−n, φn = 1
2πi

∫
φ(z)zn dz

z = 1
2π

∫ 2π

0
φ(eiθ)einθdθ, π =

∑
πnz

−n · · ·
{p, q} = 1

H = 1
2 (p2 + ω2q2) H(φ, π) = 1

2
1
2π

∫
|π(z)|2 + |ψ′(z)|2 dz

z = 1
2 (

∑
πnπ−n + n2φnφ−n)

a = 1√
2
(ωq + ip)

a∗ = 1√
2
(ωq − ip)

q = 1√
2ω

(a+ a∗)
p = 1√

2
(a− a∗)

{a, a∗} = iω,H = aa∗

Here we have the classical picture and this analogous picture. π is like a time derivative.
The phase space is an infinite dimensional vector space with coordinates φn, πn, n ∈ Z. So
R2 becomes two copies of RZ.

So for physicists writing the Hamiltonian or Lagrangian we will define the system. Let me
start with the Hamiltonian. You have a field and you have the momentum π which says how
this changes with time.

The φ′(z) is z d
dzφ. Sometimes you will see a term with a φ2; this is a special case called

massless theory.

That’s what physicists tell us the energy should be. How do we rewrite it in terms of φn and
πn? Well, π2(z) =

∑
πnz

−nπmz
−m =

∑
(
∑

n+m=k πnπm)z−k. If you integrate these over the
circle, what happens? I get precisely

∑
πnπ−n. If you do the same thing for the other term,

what you get is
∑
n2φnφ−n. It makes sense because differentiation of the n term will pick

up n in front of it. You can do the math yourself, but you can see the Hamiltonian in a
very reasonable form H = 1

2 (
∑
πnπ−n +n2φnφ−n). It looks like the variables are separating.

Nothing involves φ4 and φ5 together. So this will be like an infinite collection of harmonic
oscillators with various frequencies, and that is what happens but I will have to complete it
next time. I need to talk about the Poisson bracket and then quantize. This is as physical
as I’m going to get. If you’re uncomfortable you won’t have to worry. From the fact that π
is a real valued function, you should get πn = π−n, and similarly for φ. So this operator is
positive definite, which is what we want.

The goal is to show that this simplest example of field theory gives a nice generalization of
the Heisenberg algebra. Let me remind that we are moving to 5 − 127, effective next time.
As for next time, I want to have the organizational meeting for the seminar. My idea is that
everyone says what topics he wants to hear, and then we say who will talk on what topic. I
will send an email to the department. We continue on Monday with the Heisenberg algebra.
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