Infinite Dimensional Lie Algebras
 February 9, 2005

Gabriel C. Drummond-Cole

March 18, 2005

Last time: we say that a lattice is integral if $(L, L) \in \mathbb{Z}$. What is the order of the set $\left\{\lambda_{0}+L,\left(\lambda_{0}, L\right) \in \mathbb{Z}\right\}$? That was the question. So $L=\oplus \mathbb{Z} e_{i}, A=\left(e_{i}, e_{j}\right)$, and $\left|L^{*} / L\right|=\operatorname{det} A$.

For example, let $L=\left\langle e_{1}, e_{2}\right\rangle$ be the root lattice for A_{2}. Then L^{*} is the weight lattice, $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and $\left|L^{*} / L\right|=3$.

Okay, so $\hat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C}$ subject to the relations $\left[x t^{n}, y t^{m}\right]=n(x, y) \delta_{n,-m}$. Here $x t^{n}=x[n]$. So when $\mathfrak{h}=\mathbb{C}$ then $a[n]=a_{n}$.

Now $W=\operatorname{Vect}\left(S^{1}\right) \otimes \mathbb{C}=\left\langle d_{i}\right\rangle$. Here $d_{n}=-t^{n+1} \frac{d}{d t}$. The relations are $\left[d_{n}, d_{m}\right]=(n-m) d_{n+m}$.
So W acts on $\hat{\mathfrak{h}}$ by $d_{n} x[k]=-k x[k+n]$.
A question: can we define the action of W in representations of $\hat{\mathfrak{h}}$? So $d_{n} \rightarrow L_{n} \in \operatorname{End}\left(\mathscr{F}_{\lambda}\right)$. Here $\left[L_{n}, x[k]\right]=d_{n} x[k]=-k x[k+n]$. For $h=\mathbb{C}$ we have $L_{n}=\frac{1}{2} \sum_{k+l=n}: a_{k} a_{l}:$. Oh, $L_{0}=H$.

So why this formula? Well, acting by a decreases the number of a by one so it should be quadratic. By degree considerations, L_{n} must be of degree n. So $k+l=n$. So it must be $\sum c_{k l}: a_{k} a_{l}$: and then solving for constants gives this formula.

Now

$$
\begin{gathered}
{\left[L_{n}, L_{m}\right]=\frac{1}{2}\left[L_{n}, \sum: a_{k} a_{l}:\right]=\frac{1}{2} \sum\left(\left[L_{n}, a_{k}\right] a_{l}+a_{k}\left[L_{n}, a_{l}\right]\right)} \\
=\frac{1}{2} \sum\left(-k a_{n+k} a_{l}-l a_{k} a_{l+n}\right)
\end{gathered}
$$

Call this *. Now, if $n-m \neq 0$ this becomes

$$
\begin{aligned}
& \frac{1}{2} \sum-k a_{n+k} a_{l}+\frac{1}{2} \sum-l a_{k} a_{l+n} \\
= & \frac{1}{2} \sum_{i+j=m+n}(n-i) a_{i} a_{j}+\frac{1}{2} \sum(i-m) a_{i} a_{k}
\end{aligned}
$$

$$
=\frac{1}{2} \sum_{i+j=m+n}(n-m) a_{i} a_{j}=(n-m) L_{m+n}
$$

When $m+n=0{ }^{*}$ makes sense since for all but finitely many terms we get cancellation. There we have

$$
\frac{1}{2} \sum\left((n-i) a_{i} a_{-i}+i a_{i-n} a_{n-i}\right)
$$

which we turn into

$$
\begin{gathered}
=\frac{1}{2} \sum:\left((n-i) a_{i} a_{-i}+i a_{i-n} a_{n-i}\right):+\frac{1}{2} \sum(n-i) i x(i)+i(i-n) x(i-n) \\
=2 n L_{0}+\frac{1}{2} \sum_{i=0}^{n}(n-i) i=2 n L_{0}+\frac{1}{12}\left(n^{3}-n\right)
\end{gathered}
$$

Here $x(i)$ is zero for negative i and 1 otherwise so that : $a_{i} a_{-i}:+i x(i)=a_{i} a_{-i}$. So $\left[L_{n}, L_{m}\right]=$ $(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12}$.

Definition 1 Vir $=W \oplus \mathbb{C} c=\left\langle L_{n}, c\right\rangle$ with commutation relations $\left[L_{n}, L_{m}\right]=(n 0 m) L_{n+m}+$ $\delta_{n,-m} \frac{n^{3}-n}{12} c$ and $\left[c, L_{n}\right]=0$.

Theorem 1 The action of W on $\hat{\mathfrak{h}}$ extends to an action of Vir on \mathscr{F}_{λ} such that c acts by $\operatorname{dim} \mathfrak{h}$. [i.e., a representation with (Virasoro) central charge $\operatorname{dim} \mathfrak{h}$]

Instead of writing commutation relations between a_{n}, L_{n}, consider $a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}$, that is, what physicists call functions in z with operator values. Then

$$
[a(z), a(w)]=\sum\left[a_{n}, a_{m}\right] z^{-n-1} w^{-m-1}=\sum_{n \in \mathbb{Z}} n z^{-n-1} w^{n-1}=z^{-1} \delta_{w}\left(\sum_{n \in \mathbb{Z}}(w / z)^{n}\right)
$$

where this last sum is the Fourier series for the δ function at w / z. Then this is $z^{-1} \delta_{w} \delta(w / z)$, where $\delta(z)=\sum z^{n}$.

Exercise 1 For P a Laurent polynomial in z and $w, P(z, w) \delta(z / w)=P(z, z) \delta(z / w)=$ $P(w, w) \delta(z / w)$. This is similar to $f(x) \delta(y)=f(y) \delta(x)$.

Now $L(z)=\sum L_{n} z^{-n-2}=\frac{1}{2} \sum_{k, l}: a_{k} a_{l}: z^{-(k+l)-2}=\frac{1}{2}: a^{2}(z):$. The commutation relations are

$$
\begin{gathered}
{[L(z), a(w)]=\sum_{n, k}\left[L_{n}, a_{k}\right] z^{-n-2} w^{-k-1}} \\
=\sum-k a_{n+k} z^{-n-2} w^{-k-1}=\sum a_{i}\left(\sum_{n+k=i}-k z^{-n-2} w^{-k-1}\right)
\end{gathered}
$$

Try to figure out where to go from here.

Okay, now

$$
\begin{gathered}
\left.\frac{1}{2}\left[: a^{2}(z):, a(w)\right]=\frac{1}{2}\left[a^{2}(z), a_{w}\right)\right]=\frac{1}{2}([a(z), a(w)] a(z)+a(z)[a(z), a(w)]) \\
=\frac{1}{2}\left(z^{-1} \delta_{w} \delta(w / z) a(z)+a(z) z^{-1} \delta_{w} \delta(w / z)\right) \\
=z^{-1} a(z) \delta_{w} \delta(w / z)
\end{gathered}
$$

As homework, try to write $[L(z), L(w)]$. Here is a reference: E. Frenkel and B. Zvi, "Vertex Algebras and Algebraic Curves," and V. Kac, "Vertex Algebras for Beginners."

The operators "almost" commute except when $w=z$.

