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Let me get back to where we are. Today will be the last day about Bosons, Fermions, and
so on. Then Kac-Moody algebras.

Okay, recall [ai, aj ] = iδi,−j and Fm with |m〉 such that ai|m〉 = 0 for i > 0 and a0|m〉 =
m|m〉

Let VZ = ⊕Fm and eλ : |m〉 7→ |m+ λ〉 with deg |m〉 = −m2/2.

This was a while ago. For Fermions, {ψi, ψ
∗
j } = δi,−j for i, j ∈ 1/2 + Z. Now F =

∧∞/2[ψi]
with |0〉 = ψ1/2 ∧ ψ3/2 ∧ · · · and |m〉 = ψ1/2−m ∧ ψ1/2−m+1 ∧ · · · There is a bigrading by
degree and charge; we denote by F (m) the vectors of charge m. Then |m〉 is the vector in F (m)

of maximal degree, that being −m2/2 as well. The dimension of this space is the partition
number.

We can actually relate these two constructions. If I define the following operator in the
Fermionic space F, namely a(z) =: ψ(z)ψ∗(z) : or ak =

∑
i+j=k : ψiψ

∗
j then these satisfy

the relation [ak, ψi] = ψi+k and similarly [ak, ψ
∗
i ] = −ψ∗i+k and [ak, al] = kδk,−l. So F (m)

becomes a module over the Heisenberg algebra.

Note that a contains ψ and ψ∗, one of each, so preserves charge. So we can break up by
charge. Here is the answer.

Theorem 1 |m〉 7→ |m〉 gives an isomorphism Fm → F (m) and thus VZ ∼= F as modules
over the Heisenberg algebra.

This is known as, or is part of, the Boson-Fermion correspondence.

Let me prove it for m = 0; the other arguments are similar. Since the Foch module F0 is
freely generated by a vector |0〉 with the above relations, I need first to check that ai|0〉 = 0
in F for i > 0. But this is easy. If i is positive one of k+ l is positive in

∑
k+l=0 . So either I

have ψ∗ with positive index (checking for something with negative index) or ψ with positive
index (wedging with something already in |0〉.
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So the defining relation is satisfied.

Now we need to check that this map is an isomorphism. It’s not immediately obvious. If we
have a−1|0〉, this maps to ψ1/2ψ

∗
−1/2|0〉 and a−2|0〉 has two terms, and it’s going to turn out

to be hard to do this in a basis.

But it is injective since F0 is irreducible; it is surjective by comparison of dimensions, since
dim F0[−n] = dim F (0)[−n], that is, the number of partitions of n.

This isomorphism also has other properties. It agrees with degree. The charge is exactly
identified with the eigenvalue for a0.

First of all notice that the degree, think in terms of degree on VZ. We can see that ai shifts
degree by i. Since we know that acting by as on this vector give you everything, so all degrees
are specified by the ground vector and conditions on what ai does to its degree.

You can do the charge part yourself. Next let me say something I’m not going to prove. On
the Fermionic part we have a special basis, that given by monomials. On the Bosonic side
you have the basis of the ai. if I take a monomial basis ωλ ∈ F (0) in the Fermionic description
then under the isomophism, if it is idenitfied with Sλ(a−1, a−2 · · · )

Under suitable change of basis this becomes the Schur polynomials

Let me do something different, something I can prove.

Consider trF (q− degzcharge) and also trF (qL0za0). You can replace q−L0 with q− deg.

Anything in F can be gotten by applying some ψ and ψ∗withnegativeindices.

If I look at F =
∧

[ψ−1/2, ψ−3/2, ψ
∗
−1/2, · · · ]|0〉 then I get the expansion of (1 + q1/2z)(1 +

q3/2z)(1 + q1/2z−1). So I have
∏

i>0,i∈1/2+Z(1 + qiz)(1 + qiz−1).

If I want to take trF0q
L0za0 , well, a0 acts by 0 so za0 acts by 1 and gives you nothing.

So F0 = C[a−1, · · · ]|0〉, we get the option to apply things more than once. So I get (1 + q +
q2 + · · · )(1 + q2 + q4 + · · · ). I’m using that polynomials in infinitely many variables is the
tensor product of polynomials in each variable, so that I get a product on this side. Let me
notice that these are 1

1−q ×
1

1−q2 × · · · so this is
∏

n≥0
1

1−qn . What if we’re working in Fm?

Then trFm
qL0za0 = (

∏
1

1−qn q
m2/2zm since Fm = C[a−1, · · · ]|m〉.

So putting these together we see that the right hand side is
∑

m∈Z(qm2/2zm)
∏

n>0
1

1−qn . We
write then ∑

m∈Z
qm2/2zm =

∏
n>0

(1− qn)
∏

i>0,i∈1/2+Z

(1− qiz)(1− qiz−1).

This is known as the Jacobi triple product identity. It’s not very difficult to prove it directly
by combinatorial arguments. Still, this way of deriving it is really rather nice. You compute
the trace, the character in two realizations, and in comparing them you see you have an
identity. There are many other such connections. Later I hope to give you more examples of
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the same sort.

The thing on the left is basically a θ function; this triple product gives you roots of it.

Jacobi did this, as far as I know, by pure combinatorial arguments. I don’t remember how he
proved it. You don’t need vector spaces with a basis but vector spaces make it nicer. It’s not
easy to construct a correspondence between monomial bases. But trace is basis independent
so you don’t need to construct this.

[When you have the vectors that the Bosons and Fermions act on, you only have, the
Fermions, how do they generate the same space since the Bosons have only the pairs.]

We know that we have an isomorphism between VZ = ⊕Fm and F = ⊕F (m) with ai, e
λ on

one side and ψi, ψ
∗
i on the other. So how does ψi act on the Heisenberg algebra. So the

question is, can we write ψ in terms of an, e
λ?

It’s not an obvious question; let me tell you how to approach it. Recall that [ai, ψk] = ψk+i.
Recall that ψ(z) =

∑
ψkz

−k−1/2. If you try to write this in terms of series, it gives you
[ai, ψ(z)] = ziψ(z).

All the commutation relations look nice in terms of generating series. So forgetting for a
second about everything else, if you think of taking commutator with ai as being like a
derivative, then this is like ψ′ = Cψ so we should look for an exponential. So if [a, b] = λ
then [a, eb] = λeb. So if we want to write ψ(z), it should be exp(A(z)) where [ai, A(z)] = zi.
But this equation is actually very easy to solve. If I want to write A(z) as a formal power
series in z and I want ai to give this, then the zi coefficient should be a−i. If you match
the coefficient precisely you’ll see that the coefficient is A(z) =

∑
an

z−n

−n . This is essentially
the only solution. The general solution is that the operators ai, my space, one of these Foch
spaces is irreducible, so the only thing that commutes with all of them is a constant. So
effectively that’s the only solution.

Symbollically write this sum as
∫
a(z)dz since a(z) =

∑
anz

−n−1.

Okay. So we would normally expect that, this is just an idea, but we would write ψ(z) =
exp

∫
a(z)dz. That’s the idea, not more. Why are there problems with it? How do you

compute exp of a sum. You have a term like a1z
−1, forget about numerical coefficients, and

you have −a−1z. If you want to take exp of something like this, it should be the sum of ( )n

n! .
You will have problems if you look at this, even calculating the constant term. All of them
come from an infinite series. So the naive definition has problems.

Let me tell you how you fix it. There’s one way, you probably know it by now.

Theorem 2

ψ(z) =: exp(
∫
a(z)dz) := e1za0 exp(

∑
n<0

an
z−n

−n
) exp(

∑
n>0

an
z−n

−n
);

ψ∗(z) =: exp(−
∫
a(z)dz) :
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Here e1 is the shift operator. It looks stupid but it’s too late, we’ve set notation. The za0

makes sense formally as integrating a0z
−1 and then exponentiating. As an exercise, write ψ∗

explicitly.

For the proof,

1. So defined, ψ satisfies [ai, ψ(z)] = ziψ(z). This is not the only thing we want. We need
to know how it agrees with the shift operator. Now, ψ is supposed to move from Fm

to Fm+1. To do this we also need ψ(z)|m〉 = zm|m+ 1〉 up to terms of lower degree.

Both of these facts are rather obvious. Why? For the first case, you are using the
argument I outlined above. To commute ψ(z) with a1, you only look to the exponential
of the negative parts; it commutes with everything else. So you repeat the argument
yourself. Instead of ψ = exp(z) I have exp(A+(z)) exp(A−(z)).

The second one is also quite obvious. ψ(z)|m〉 = e1za0exp(
∑

n<0 zn
z−n

−n ) = e1za0(|m〉+
lower degree) = e1(zm|m〉+ lower degree) = zm|m+ 1〉+ · · ·
That’s basically the end of the story. There are two more steps.

2. These conditions define ψ(z) uniquely.

3. Finally, the actual ψ(z) satisfies the same relations. If I combine all three steps I will
see that ψ(z) is actually given by this formula.

The hardest part is the second part. I don’t really have time to do this step.

[What is [ψ(z), eλ]? Don’t you need that condition?]

I don’t need that. It’s not immediately obvious. It may have been, there are some complica-
tions there too. I can write eλψ(z) = z−λψ(z)eλ but I need to prove it.

So the moral is that I can describe ψ and ψ∗ in terms of a as long as you have also the shift
operator. An interesting exercise is to show that these satisfy the relations for ψ. You need
to be able to do computations with power series, and it’s a good test of your ability to work
with this language.

Next time I’ll be done with these free things. Next time we’ll have Kac-Moody algebras and
others, where you start with something anticommuting.

Now let me tell you something else.

Corollary 1
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