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I talked to Takhtajan, and he said he could give a lecture, but it will be next week, not this
week. Also, there will be a colloquium talk tomorrow which I highly recommend.

We were talking about representations of the Heisenberg algebra H = 〈an〉n∈Z, with com-
mutation relations [an, am] = nδn−m.

If we are talking about positive energy, there is a unique irreducible module, the Fock module
Fλ. We called the highest weight vector v0 last time; today we will call it |λ〉, which is the
most common thing. So ai|λ〉 = 0 for i > 0 and a0|λ〉 = λ|λ〉. The dimension of the graded
component F0[−n] = p(n), the number of partitions of n. So the partition λ1 ≥ · · · ≥ λk is
associated with aλ1 · · · aλk

|0〉.

Degrees can be chosen for the highest weight arbitrarily, but for good reasons I will choose
deg |λ〉 = −λ2/2, which doesn’t have to be an integer. Note that if λ is an integer then this
is a half-integer; if λ is in

√
2Z then this is an integer. Usually λ will be in

√
NZ so we will

be in one case or the other.

So why do we choose this degree? For a harmonic oscillator we didn’t need degree at all.
Let me tell you how this is related to the Hamiltonian. The naive definition, the classical
formula for the energy operator with the functions replaced by operators, gives

Hnaive =
1
2

∑
ana−n =

1
2
a2
0 +

1
2

∑
ana−na−nan.

This seems to be a reasonable definition. What is the commutation relation of H with ai?
It’s an easy question. [H, ai] = 1

2 [aia−i + aia−i, ai], so by Liebnitz this is −1
2 (ai[ai, a−i] +

[ai, a−i]ai) = −iai. What does this mean? So ai shifts the eigenvalue of H by exactly i; if
Hv = hv then H(aiv) = (h− i)aiv. In other words, every element shifts the eigenvalue of H
by the negative of the degree of the element. So Hv = −deg v plus a constant. The easiest
way is to compute for the vacuum vector |0〉. This is H|0〉. The a0 part and the a−nan kill
it. So this is 1

2

∑
ana−n|0〉 = 1

2

∑
(n + a−nan)|0〉 = (1

2

∑
n≥0 n)|0〉.

This is why we call this a naive definition. This splits into infinitely many pieces. If you
add the lowest energy levels for all the oscillators, you get this infinity. The physicists say

1



“we don’t need to know energy, just the difference of energy.” So let’s get rid of the infinite
constant, and define H to be −deg v. There is a more elegant, or at least one more, way to
explain the same thing.

H =
1
2
a2
0 +

1
2

∑
n>0

2a−nan.

We’re removing the constant by brute force. This operation of reordering is quite useful and
has a special name and notation: 1

2

∑
: ana−n : . It is called normal ordering and is defined

as : anak : is anak or akan, written so that a negative one of these is first. If they are both
positive or both negative, then they commute so the order doesn’t matter.

Now : anak : may differ from anak by a constant; the idea is to kill infinite constants. The
idea is that with this definition everything will be fine.

Lemma 1 1. H = 1
2a2

0 +
∑

n>0 a−nan is well-defined in any Fλ, in that only finitely
many terms will be nonzero when applied to any vector.

2. Hv = −(deg v)v.

3. [H, ai] = −iai.

Barry McCoy argues that physicists are not doing real physics in the sense of analysis, they’d
rather do algebra, manipulations like this avoid analysis. I tend to agree but I don’t see it
as a bad thing.

Let me show you how you, for example, prove the first part of this lemma. To prove it,
suppose, for simplicity, we’re in the vacuum model, with a vector v = a−n1 · · · a−nk

|0〉. Then
in Hv, only finitely many terms will be nonzero. I think actually each of you can prove it
on your own. If it is bigger than the sum of the indices here, then anv is zero. There is
a more elementary argument but I want to use this one. The degree of v is −

∑
ni, and

then the degree of anv is positive so this vector is zero. This works even with many nonzero
commutators, not just in this special case. Then only finitely many terms are nonzero. I
don’t want to prove the other two. The third we proved before. Subtracting an infinite
constant doesn’t change the commutator, you can use the same reasoning. Then the second
one is going to justify our choice of degree for |λ〉. That is, H|λ〉 = 1

2a2
0|λ〉 = λ2

2 |λ〉.

Okay, so now we do have a nice description of the Hamiltonian. Now I can say that this is a
unique irreducible positive energy module. Positive energy now means that the eigenvalues
of H are bounded from below. Okay.

Second, there is one more loose end in what I discussed last time. One more loose end is an
element a0 in the center, so we have no unique Fock module, we have a family of them. Since
we had φ and π gave us an as 1√

2
(nφn + iπn) and a∗n = 1√

2
(nφn − iπn). For n = 0 this is not

an invertible change of variables. We are forgetting about φ0, so we need to add information
to recapture φ0. So we can add it by hand.

a0 is central. To fix it, let’s add one more operator which does not commute with a0,
something like adding back the φ0 we lost. We could recall aa∗ = −i and add an operator
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to coomute with a0 to get 1. Instead usually people add an operators eλ which commute
in the following way: a0e

λ = eλ(a0 + λ). This should satisfy eλeµ = eλ+µ but it is not the
exponential.

Let me explain the model example. Suppose you have x̂ : f(x) → xf(x). Then [ d
dx , x] = 1.

Now exp(λddx) : f → f(x + λ). How does this commute with x? In one order you get
xf(x + λ); in the other (x + λ)f(x + λ), and the relation you get looks something like what
we have here.

Another way to put it is as follows. So, if a0v = µv, then a0e
λv = (λ + µ)eλv. So.

Definition 1 For a fixed N, Ĥ [
√

NZ] is the algebra generated by an, n ∈ Z and eλ, λ ∈√
NZ.

Commutation relations are as before, these shift operators commute with a0 as above, and
they commute with ai for i 6= 0.

For example I can take N = 2 and get ek
√

2.

This is roughly exp(φ0). I can tell you the physical meaning, and I won’t describe how to
get from the physical meaning to this, but just in case, this describes what appears in a
description of a free field on S1 with values in R/

√
NZ. Physicists would tell you this is a

free boson in the circle.

So this is the Heisenberg algebra with some shift operators as well. What are representations
of this algebra? They must be representations of a Heisenberg algebra. So restricted to the
Heisenberg part it should be the direct sum of several Fock modules.

Theorem 1 H [
√

NZ] has a unique positive energy irreducible representation

V√NZ = ⊕λ∈
√

NZFλ

Where eλ|µ〉 = |λ + µ〉.

So the idea is that the a act up and down in the grading and the shift operators act sideways,
not horizontally but along a parabola, since the degree of |λ〉 = −λ2/2. This thing ensures
there is only a finite dimensional space at each degree.

This is the simplest case of a lattice algebra. So far I was talking about Heisenberg algebras
with one generator for each n. I could have two; more generally let h be a finite dimensional
space with nondegenerate ( , ). Then ĥ = 〈h[n]〉, where h ∈ h, n ∈ Z, so I’m just making
countably many copies of my original space. If my original space was one dimensional, I have
something like what we got in the case of the Heisenberg algebra. Each generator gives me
countably many generators.

And what are the commutation relations? [x[n], y[m]] = nδn−m(x, y). If the vector space is
Ca with (a, a) = 1 then we recover the old Heisenberg algebra. Most of the things we’ve
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done can be generalized for this multidimensional Heisenberg algebra. Let me define the
Fock module, then I’ll have to stop.

This is generated by |λ〉 again, here for λ ∈ h, with x[n]|λ〉 = 0, n > 0; x[0]|λ〉 = (x, λ)|λ〉,
and negative ones act freely. Then Fλ = S(h−)|λ〉, where h− = ⊕n<0h[n].

See if you can figure out on your own what is the analog of such a lattice algebra; I will
describe it next time.

When you try to naively extend things you know to this infinite dimensional setting, you
sometimes run into infinite constants you have to kill with brute force.
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